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IIpocTpaHCTBeHHBIC IBYyMEPHbIE pPelICHUSA

C. U. Cenamos”, U. JI. CaBocThsIHOBA

Culupckuii rocy1apCTBEHHBIH YHUBEPCUTET HAYKH U TEXHOJIOTMI nMeHH akagemuka M. @. Pemernea
Poccutickas @enepanus, 660037, r. KpacHosipck, mpocit. uM. ra3. «KpacHospckuii pabounii», 31
“E-mail: sen@sibsau.ru

B pabome paccmampugaiomcs —cmayuoHapHwvle  NPOCMPAHCGEHHbIE — VPABHEHUS  UOeANbHOl
nracmuynocmu ¢ yciosuem mexkyuecmu Muszeca. Mamepuan npeononazaemcs necocumaemvim. Iloopobno
uzyuen ciyyail, K020a 8ce mpu KOMHOHEHMbL 8EKMOPA CKOPOCMU U 2UOpOoCmamuyeckoe 0asileHue 3a8ucsm
MONLKO Om 08X KOOpOuHam X, y. [[na 9mozo ciyuas 66edeno Ho80e HA38amue — NpOCMpPAHCMECHHAS.
08YMEPHASL cucmeMa YpagHeHull, Ymoodbl OMAULUMb ee Om 0OWenPUHAMBIX 08YMEPHBIX CUCEM YPABHEHUI,
K020a Om Myl OMAUYHLL MONbLKO 08¢ KOMNOHEHMbl 6eKMOpa CKOPOCMU U 2u0pOoCmamudeckoe oasienue.
Jokaszano, umo cucmema Odonyckaem, 6 cmuvicie C. Jlu, aneedpy Jlu pazmepnocmu 10. Ilokazano, umo
NpOCMpAHCmEeHHoe O08yMepHOoe 0eqh)OPMUPOBAHHOE COCMOAHUE — IMO eCMb CYHepno3uyus NioCcKo20
HANPSNCEHHO20 COCMOAHUSL U NIACMUYECKO20 KpyueHus 6okpye ocu z. IlocmpoeHvl 08a UHBAPUAHMHBIX
peuienus ypasHeHull, ONUCLIBAIOWUX NPOCMPAHCINGEHHOE O08yMepHOe OedopMUpOBaAHHOe COCMOsTHUE.
Tlepeoe peutenus MOIAICHO UCHOABL30BAMD OISl ONUCAHUS NIACTIUYECKUX MEeYeHULl MeNCOY 08YMS HCeCTnKUMU
NAUMAMU, KOMOpble COUICAIOMCA C PA3HbIMU CKOpocmaMu. Bmopoe pewenue cuyscum O onucamus
HANPsIHCEHHO-0e)OPMUPOBAHHO20 COCMOAHUSL MAMEPUANd 6HYmMpU HNIOCKO20 KAHAAd, 00paA308aHHO2O0
CXOOAUUMUCS, NIUAMU.

Kmoueswie cnosa: npocmpanCmeenHbvle peutleHusl ypaeneHmZ UOeAIbHOU naiacmuvyHocmu, moueydHvle
cummempuu, UHeApPUAHMHbLE PEULeHUA.
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In this paper, we consider stationary 3-dimensional equations of ideal plasticity with the Mises flow
condition. The material is assumed to be incompressible. The case when all three components of the veloci-
ty vector and hydrostatic pressure depend only on two coordinates X, y is studied in detail. For this case, a
new name is introduced — 3-dimensional solutions from two variables, to distinguish it from the generally
accepted two-dimensional state, when only two components of the velocity vector and hydrostatic pressure
differ from zero. It is proved that the system admits, in the sense of S. Lie, a Lie algebra of dimension 10. It
is shown that all 3-dimensional solutions from two variables is a superposition of the plane stress state and
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plastic torsion around the z-axis. Two invariant solutions of the equations describing the 3-dimensional
deformed state are constructed. The first solution can be used to describe plastic flows between two rigid
plates that approach at different speeds. The second solution is used to describe the stress-strain state of
the material inside a flat channel formed by converging plates.

Keywords: 3-dimensional solutions of ideal plasticity equations, point symmetries, invariant solutions.

Introduction

The notion of “3-dimensional solutions from two variables” has been added to the title of the arti-
cle. Mechanics know the plane deformed state — this is the case when in a two-dimensional Cartesian
coordinate system two components of the strain rate vector and the hydrostatic pressure depend
onx,y. The plane stress state is also known — this is when the components of the stress tensor

G,1 Ty Ty, are equal to zero, and the components o, ,c,,T,, do not depend on z.

In our case, all components of the stress tensor do not depend on z, just such a case we called the
spatial two-dimensional state.
The system of 3-dimensional equations of plasticity in the Cartesian coordinate system x; = X,

X, =Y, X3 =2 inthe stationary case has the form
08 =0, =1 (iu; +0,u; )/ 2,0,u; = 0,558 =2kZ i, j=1,2,3 (1)

Here oy,s;; are components of the tensor and deviator of the stress tensor; u; =u, U, =v, Us=Ww

ij?
— components of the strain rate vector; L — non-negative function; k, — constant plasticity; p— the

hydrostatic pressure, summation is carried out over repeated indices.
Eliminating the stress tensor deviator components from the system of equations (1), we obtain the
following nonlinear system of equations

2k

2A

\/_k

0P = 04U — €m0 Uy, &85 = A2, 0u; =0, 2)
It is known that the system of equations (2) is of elliptic type. Let us describe the known solutions
of this system.
The solutions of this system were constructed by R. Hill in 1948 [1], W. Prager in 1954 [2], D. D.
Ivlev in 1960 [3; 4], MA Zadoyan in 1964 [5-8], as well as by the authors of this article [9-13]. We
also note a number of exact solutions constructed by B. D. Annin [14] for the plasticity equations in

the spatial case with the Tresk yield condition.

Symmetries of system (2)
The group of point symmetries of the system of equations (2) is generated by the following opera-
tors

X|=a, lea N:Xiaxi, M =Ui8ui, |::L2,3

uj?

Tl = X26u3 auZ y T2 = X3a aus y T3 = XlauZ - Xzaul, (3)

W’

The operators X;,Y;,N,M correspond to the following continuous transformations
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X =X+a, Uj=U;+b, X;=xexpa, u;j=uexpb, i=123.
These are translations along the coordinates and components of the strain rate vector, as well as
tension.
Transformations T, show that the system of equations (2) does not change under rigid displace-

ments
ulz =U2 _C]_X3, U'3 ZU3 +Cl.x2, U'l =U1 +02x3,

The groups generated by the operators Z;, are rotations around the coordinate axes
X'y =X, COSQ; + XgSINQ;, X'3 =—X,SINQ; + X3 COSP;,
X' = X3 COSP, + X SINQ,, X'} =—X3SIN@P, + X, COSQ,,
X' =X COSP; + X, SiNQ,, X'y =—X SiN@Q; + X, COS Q3.
The last transformation describes the invariance of the hydrostatic pressure with respect to dis-
placements
p'=p-+d.
In all these formulas ai, bj, Ci, @i, d are group parameters. It is usually assumed that they vary con-
tinuously in a neighbourhood of zero.
The investigations carried out have shown that all the solutions constructed by R. Hill, V. Prager, D.
D. Ivlev, and M. A. Zadoyan are invariant solutions with respect to some one-dimensional subgroups of
point transformations generated by operators (3). The invariance here means that the solutions do not
change under some transformations generated by the symmetry group (3). Thus, R. Hill's solution is in-
variant under the subalgebra generated by the operator 2C,S + X, + aY; +pT,, D. D. Ivlev's solution is

invariant under the subalgebra 2C,S + X, +a;, Prager's solution is invariant under the subalgebra
aS+ X, +T, +aT,, Zadoyan's solution is invariant under the same subalgebra. What does this fact

mean? It says that in fact all these solutions are "two-dimensional”, that is, in a suitable coordinate sys-
tem they can be written as functions of only two independent variables. The same can be said about the
solutions constructed by the authors of this work. Then the question arises: what is to be understood by a
3-dimensional solution? Based on the solutions presented here, the answer is as follows: 3-dimensional
solutions are solutions that have three components of the velocity vector, pressure, which actually de-
pend on two variables in a suitable coordinate system. These solutions are invariant solutions of rank 2.
In this case, the problem of finding 3-dimensional solutions can be formally stated as follows: construc-
tion of new invariant solutions of rank 2 for 3-dimensional equations of ideal plasticity. The form of such
solutions can be easily enumerated if we enumerate all the different, up to inner automorphisms, one-
dimensional subalgebras of the algebra (3).

There are several subalgebras on which invariant rank 2 solutions can be constructed. Let's list
them.

X3+vS, X, +Z; +9S,aM + N +yS,N +Y; +vS,
Z,+oN+Y, +vS,Z; +oN +BM +7S,

X;+oZ; +M +49S,

Xi+Yy+oT +9S, X4+Z; +T, +yS,M + N +T, +9S,
Zi+Y,+aT +9S, X, +oX, +T, +BT; +7S,

(4)

Xi+Zy+Yy +aT +7S.
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Here o, B, y are arbitrary constants, different values of these constants correspond to dissimilar
subalgebras.
In this paper, we consider only solutions invariant with respect to the subalgebra X5 +vS.

Note. Other solutions based on subalgebras (4), as well as the form of all invariant solutions that
can be constructed for the system of equations (1), can be found in [11].
Solutions invariant with respect to this subalgebra should be sought in the form

U=U(X,y), V=V(Xy), W=W(X,Y), p=p(X,¥) +72. ©)
Substituting relations (5) into the system of equations (1), we obtain

040y +0yT4 =0, Oy1, +0,0, =0, Oy1,, +0,1y, =Y, O, U+0,V=0,

2 2 2 2 .2 .2 2
(o —0y)" +(oy —0,)" Ho, —0,)" +6(ty, + T, +713,) =6k,

Oy = P=A0,U, o, —p=r0\V, c,-p=0, 21, =A(0,V+0,U), ©
21, =hOW, 21, =AW,
We make the change of variables in (6) by the following formulas
o, =k(v/3cosw+sinmcos29), o, =k(v3coso—sinwcos2¢), t,, =ksinwsin2¢. @)
Here k =03k, 0 <8 <1 is some constant.
Substituting these relations into (6), we obtain
(—cosm++/3siN c0s 20)d,» ++/3sinwsin 290, ® —2sin wd,p=0,
(cosm++/3siN C0S 29)d, 0 ++/3siN wsin 208, +2sinwd,e =0,
Oy +0,T,, =Y, BU+0V=0, 1%, +15, =kZ —k* =K?, (8)

oy —P=X0,U, o, —p=A0,V, c,-p=0, 2t, =A(0,V+0I,U),
thz =7u8xw, 2Tyz =7\45yW.
From (8) we see that the original system split into two subsystems: the first two equations essential-

ly coincide with the equations describing the plane stress state
(—cos o +/3sin cos 20)8,» +/3sin wsin 208, ® —2sin wd, e =0, 9)

(cos++/3sin C0s 2)d,® +y/3sin @sin 208, +25in ©d,¢ =0,
and equations reminiscent of the equations describing the plastic torsion of a rod, at y=0 and differ-
ent yield point
OxTyy +0yTy, =7, 2 +‘C§,Z =kZ -k?=K? (10)
Solving equations (9) and (10), it is possible to find the components of the stress tensor, while
o, =p=1/2(c, +o). Theonly problem is to determine the constant k.
To determine the components of the velocity vector, we obtain the following equations

0,u o,V o,N+0,V O.W o,W
. = ! == ! ) ax( 2X )+a( . 2):Y-

26,-06, 20,-0, 61, ﬂ}WXeri g «/wf+wy
Note that the last equation for y = 0 has not yet been sufficiently studied, it has not even been in-
cluded in the handbook [15].
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As a result, it turned out that the solution of the system of equations (6) is actually a superposition
of the plane stress state and plastic torsion around the z axis.

Let us give some other solutions of equations (6). For this, we find the group of point symmetries
of the system of equations (6).

This group is generated by the operators

X1=ax, Xzzay, YI :aui, N :Xax +y8y, M =U|au|, i=L2,3. (11)
T =X0y, =X0y, Z3=%0y, =X0x +UOy, =U0,, S=0,.

We are looking for a solution that is invariant under the subalgebra generated by the operators
Xi+oT +Y, +BY; +vS.
The solution should be sought in the form
u=x+oxy+U(y),v=—a/2x*+V(y), w=Px+W(y), p=yx+P(y). (12)
From the incompressibility equation we obtain
v=—a/2(x* +y?)—y+C,.
Substituting (12) into (6) and we obtain the system of ordinary differential equations

diy(xu V=7, diy(xw V=0, 6kZA 7 =2(1+ay)?+6((U ") +p* + W )2). (13)

From (13) we have
;LU I=’Yy+C2, 7LW‘=C3.
Here C,, C,, C; — arbitrary constants.
We obtain
6k = 2(1+ ay)? +6(B% + L+ (C4 + V)2 )W )?), v=v/C,, C,=C,/Cs,.
The system of equations (13) can be reduced to quadratures, which are expressed through elliptic
integrals.
The constructed solution can be used to describe the plastic flow of a layer compressed by rigid
plates orthogonal to the oz axis.
Let us write system (6) in a cylindrical coordinate system r,0, z.
0,6, + I 040,5 + (0, —0g) I T =0, 8,6, +F 0404 +26,4 /T =0,
0,6y, + 1 04Cp, +6,, I T=0, 6, = P=A0,U, Gg—p=A(U/T+4v/r), 5,—p=0, "
26,5 =MOU/ T+ 10, (V/T)), 20,5 =Ar 0yw, 20, =1d,W,
(6, —04) +(0, —5,)% +(cy —0,)? +6(c% + 05, + G2 ) =6kZ, O,u+U/T+0v/r=0.
We are looking for an invariant solution on a subalgebra Z; + M, it has the form
u=U(0), v=V(0), w=W(0), p=P(0)+alnr. (15)
Substituting (15) into (14), we obtain the system of ordinary differential equations
dyo, + (o, —0y) =a, dyo, +20,4 =0, dyo,y+05,,=0, 5, —p=0,
6o—P=AU/r+V'r), o,—-p=0, 26,=AU"7r+ro,(V/r)),
26, =MW", 26, =AlT, (16)
(5, =9)* +(0, =5,)* +(0 —5,)" +6(07o + 05, +07,) = 6kS,
U+Vv'=0.
Here the prime means the derivative with respect to 0.
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From this we obtain the system of ordinary differential equations
OU=V))' =, (U'=V) =P, (W")'=0, 6kZA % =(U'-V)?+(W)2 +1. (1;
System (17) is solved completely similarly to system (13).
The found solution can be used to describe plastic flow in a converging flat channel with rigid and
rough walls.

Other solutions of system of equations (1) can be found in [11].

Conclusion

In this work, a class of equations has been studied, which is called the equations describing the 3-
dimensional deformed state. For these equations, a group of point symmetries is found, admitted by
them in the sense of Lie. It is shown that a two-dimensional stress state is a superposition of a plane
stress state and torsion around the z axis. Several invariant solutions of these equations are construct-
ed.
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