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The method of fictitious discrete models in the calculation of bodies
with an inhomogeneous regular structure

A. D. Matveev

Institute of Computational Modeling of SB RAS
50/44, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
E-mail: mtv241@mail.ru

When the strength of elastic composite structures (plates, beams, shells) widely used in aviation, rocket
and space technology is calculated with the finite element method (FEM), it is important to know the solu-
tion error. To analyze the solution error, it is necessary to use a sequence of approximate solutions con-
structed according to the FEM using the grinding procedure for basic discrete models (BMs), which take
into account an inhomogeneous microheterogeneous structure of bodies within the microapproach. Dis-
crete models obtained by grinding BMs have a high dimension, which makes it difficult to use the FEM for
them. In addition, there are BMs of composite solids (CSs), for example, BMs of bodies with a microheter-
ogeneous structure, which have such a high dimension that the implementation of the FEM for such BMs is
practically impossible due to limited computer resources. To solve these problems, it is proposed to use
fictitious discrete models in the calculations of CSs according to the FEM.

In this paper we propose a method of fictitious discrete models (MFDM) for calculating the strength of
elastic bodies with an inhomogeneous microheterogeneous regular structure. The MFDM is implemented
with the help of the FEM using corrected strength conditions, which take into account the error of approx-
imate solutions. The method is based on the following provision. We believe that BMs of CSs generate solu-
tions that slightly differ from the exact ones. Such BMs always exist for CSs due to the convergence of the
FEM. The calculation of CSs according to the MFDM is reduced to the construction and calculation of the
strength of fictitious discrete models (FMs), the dimensions of which are smaller than the dimension of the
BMs. FMs reflect: the shape, characteristic dimensions, fastening, loading and the type of the inhomogene-
ous structure of CSs and the distribution of the elastic moduli corresponding to the BM of the CS. The se-
quence consisting of the FM converges to the BM, i.e., the limiting FM coincides with the BM. The conver-
gence of such a sequence ensures uniform convergence of the FM stresses to the corresponding BM stress-
es. The implementation of the FEM for FMs with the use of multigrid finite elements leads to a large saving
of computer resources, which makes it possible to use the MFDM for strength calculations of bodies with a
microheterogeneous regular structure. Calculation of the CS strength according to the MFDM requires

10® +10° times less computer memory volume than a similar calculation using the BM of the CS, and does
not contain the procedure for grinding the BM. The given example of calculating the strength of a beam
with an inhomogeneous regular fibrous structure according to the MFDM shows its high efficiency. Apply-
ing the adjusted strength conditions allows using approximate solutions with larger errors in CS strength
calculations, which leads to improving the efficiency of the MFDM.
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B pacuemax ma npounocmv ynpyeux KOMHOSUMHBIX KOHCMPYKYUl (naacmumbl, 6anku, 0060104Ku),
KOmopble WUpoKo NPUMEHAIOMCA 8 Ad8UAYUOHHOU U PAKEMHO-KOCMULECKOU MeXHUKe, C NOMOWbIO Memood
KoHeyHbIx nemenmos (MKD) easicno 3nams noepewinocmos peuterus. [ns aHanusza nozpeutHocmu peueHus
HeoOX00UMO UCNONB308AMb NOCAEO08AMENLHOCHb NPUOTUNICEHHBIX peuteHull, nocmpoernvix no MKD
C NpUMEHeHueM npoyeoypvl UMenbYeHus 01a 0a308vix Ouckpemuvix mooenei (bBM), xomopuvle
VUUMBIBAIOM 8 PAMKAX MUKPON0OX00a HEOOHOPOOHYIO, MUKDOHEOOHOPOOHYIO CMPYKMYPY KOHCHPYKYULL
(men). Juckpemuvle modenu, noiyyennsvie nymem usmeavienus bM, umerom bicoKYI0 pazmepHochib, 4mo
sampyousem 0na Hux npumenenue MKD. Kpome moeo, cywecmeyrom BM xomnozumnvix men (KT),
Hanpumep, BM men ¢ MUKpOHeOOHOPOOHOU CMPYKMYpPOU, KOmopvle UMEIOm maKylo  blCOKVIO
pasmepHocms, umo peanuzayusi MKD ona maxux BM, 6 cuny oepanuuennocmu pecypcos IBM,
NPAKMuU4ecKu Heeo3mModicHA. i peuterus 0auHbix npobiem 30ech npeoaazaemcs 8 pacuemax KT no MKO
UCNOABL3068aMb PUKMUBHBIE OUCKPEMHbIE MOOEU.

B oannoii pabome npeonracaemces memoo uxmuervix ouckpemuuvix mooeneti (MDIM) ona pacuema Ha
NPOYHOCMb YHpYyeUxX mei C HeOOHOPOOHOU, MUKPOHeOOHOPOOHOU pecynapHou cmpykmypou. M®OJM
peanuzyemcs ¢ nomowppto MKD ¢ npumeHeHuem cKOppeKmuposanuvlX YCI08Ull NPOUYHOCMU, KOMOpble
VUUMBIBAIOM NOZPEUIHOCTNb NPUOTUdICEHHbIX peuteHull. B ocnoee memooa nexcum ciedyroujee nonosicenue.
Cuumaem, wmo BM KT nopoowcoaiom pewienus, Komopvie MAai0 OMAUHAOMCI Om MOYHbIX. B cuny
cxooumocmu MKD maxue BM ons KT ecez0a cywecmsyiom. Pacuem KT no M®/M ceodumcs k
NOCMPOEHUIO U pacyemy Ha NPOYHOCMb QUKMUBHBIX OUCKpemHblX mooenell (PM), pazmeprocmiu KOmMopsix
MmeHvue pasmeprocmu BM. @M ompadicarom: ¢popmy, xapakmepHvie pazmepbl, KpenieHue, HazpyiceHue u
6U0 HeoOHopoonou cmpykmypul KT u pacnpedenenue moodyneii ynpyeocmu, omeewarowee bM KT.
Tlocreoosamenvuocmo, cocmosiwas uz @M, cxooumces k BM, m. e. npedeavnas @M cosnadaem ¢ hM.
Cxoo0umocms makoi nocied08amenbHOCmu 0becnedudaem pagHOMEPHYIO cXo0umMocms Hanpsicenu @M
K coomeemcmayiowum Hanpsdxcenusm bBM. Peanuzayus MKD ons @M ¢ npumenenuem MHOSOCEMOUHBIX
KOHEYHbIX DNIEMEHMO8 Npugooum K 60abwiol 3KoHoMuu pecypcos DBM, umo nossonsem ucnonb3o8amo
M®JIM ona pacuemos na npouHoCmb Mell ¢ MUKPOHEOOHOPOOHOU pe2yliapHou cmpykmypou. Pacuem na

npounocms KT no M®IM mpebyem ¢ 10° +10° pas menvwe o6vema navsimu IBM, uem ananocuunbviii
pacuem ¢ ucnoavzosanuem BM KT, u ne codepocum npoyedypy uzmenvuenuss bM. Tlpueedennwiii npumep
pacuema Ha NPOYHOCMb OAIKU C HEOOHOPOOHOU pe2YspHOU BOAOKHUCTOU cmpykmypou no MOIM
nokasvieaem ezo 8bICOKVIO
appexmusrocmo. Ilpumenenue CKOPpPeKMUPOBAHHBIX YCAOBULL NPOYHOCHIU NO360I51em UCNOTb306AMb
6 pacyemax KT na npounocme npubnudicennvie peuieHus ¢ O0AbUWION NOSPEUHOCHIbIO, YO NPUBOOUM
K noswiuenuio sppexmuenocmu MPDIM.
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Knroueswle cnosa: ynpyeocmb, KOMNO3Uumbvl, CKOPPEKMUPOBAHHbIE YCI06UA NPOYHOCMU, d)uKmuGHble
()UCerWIHble MO()eJZl/l, MHO20CEMOYHbIE KOHEYHblE d1eMEHMDbL.

Introduction

Composite structures (plates, beams, shells) especially those with a microheterogeneous fibrous
structure are widely used in modern aviation, rocket and space technology. Calculation of the structure
strength is one of the most important at the stage of preliminary design, which is a feasibility study of
a structure project. As a rule, the static strength calculation of an elastic structure (body) of a certain
class (for example, aircraft structures) is carried out according to the safety margins [1-3] and comes
down to determining the maximum equivalent stress of the structure. In this case for the bodyV, the
specified conditions (in terms of safety margins) have the formn, <n, <n,, where n;, n,are speci-
fied; nyis the bodyV, safety factor, ny=o; /o,; oris a yield point (ultimate stress) [1]; o,is the
maximum equivalent body stress corresponding to the exact solution of the elasticity problem (con-
structed for the bodyV, ). For stresses that are determined approximately, the corrected strength condi-

tions are used [4], taking into account the stress error. When analyzing the stress-strain state (SSS) of
elastic bodies, the finite element method (FEM) is actively used [5—11]. Basic discrete models (BMs)
of bodies, which take into account their inhomogeneous, microheterogeneous structure within the mi-
cro-approach [12], have a very high dimension.

Let us consider the main difficulties in composite solids (CSs) calculation using the FEM. To ana-
lyze the error of the approximate solution, it is necessary to use a sequence of solutions constructed
according to the FEM using the grinding procedure (within the microapproach) of composite discrete
models. The use of the grinding procedure leads to a sharp increase in the dimensions of discrete mod-
els. The multigrid finite element method (MFEM) [13-19] which uses multigrid finite elements
(MFEs) [24-29] is effectively used to solve problems of the elasticity theory [20-23]. Since nnested
grids (n>2) are used instead of one grid when constructing a n-grid finite element (FE), the MFEM
can be considered to be a generalization of the FEM, i.e., the FEM is a special case of the MFEM.
From here it follows that if the MFEs are used in the calculations of bodies according to the FEM, then
in this case, in fact, the MFEM is implemented. Inhomogeneous, microheterogeneous structures in
multigrid discrete models are taken into account within the microapproach. MFEs generate discrete
models of small dimension. However, for example, BMs of bodies with a microheterogeneous regular
structure have such a high dimension that the implementation of the FEM for such BMs with the use
of MFEs is difficult due to limited computer resources. To solve this problem, it is proposed to use
fictitious discrete models when calculating the strength of CSs according to the FEM. Let us note that
the existing approximate approaches and methods for calculating CSs have complex formulations, are
laborious and difficult to implement for CSs of complex shapes [30-38].

In this paper, we propose the method of fictitious discrete models (MFDM) for calculating the
strength of bodies with an inhomogeneous, microheterogeneous regular structure, which is imple-
mented with the help of the MFEM using the corrected strength conditions. Let us introduce the fol-
lowing definition.

Definition 1. Discrete models constructed for the CS V will be called fictitious models (FMs) if
these FMs have the following properties.

1. Inhomogeneous FM structures differ from the inhomogeneous structure of the CS V BM.

2. FMs reflect the shape, characteristic dimensions, fastening, loading and type of the inhomogene-
ous structure of the CS V, as well as the distribution of elastic moduli corresponding to the CS V BM.

3. The sequence consisting of FMs converges to the CS V BM, that is, the limiting FM of the se-
guence coincides with the CS V BM.
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4. The dimensions of the FM are smaller than the dimension of the CS V BM, except for the limit-
ing FM, the dimension of which is equal to the dimension of the CS V BM.

Let us note that properties 3, 4 are important for practice.

Scaled composite discrete models, the dimensions of which are smaller than the dimension of the
CS BM, are considered as FMs in this paper. The proposed FMs formed with a scaled regular CS cell
have the same characteristic dimensions, shape, fastening, and loading as BMs, but the inhomogene-
ous FM structures differ from the inhomogeneous BM structure. The considered FMs reflect the form
of the BM inhomogeneous structure and the distribution of the elastic moduli corresponding to the
BM. The FM sequence that converges to the BM is used in the calculations, i.e., the limiting FM of
this sequence coincides with the BM. The convergence of such a sequence (see property 3 in definition
1) ensures the convergence of the FM stresses to the corresponding BM stresses. Calculations show a
uniform monotonic convergence of the maximum equivalent stress of the FM to the maximum equiva-

lent stress of the CS BM. The implementation of the MFDM requires 10° =10° times less computer
memory than a similar calculation using the CS BM, and does not require grinding the CS BM. The
implementation of the FEM for FMs with the use of MFEs leads to a large saving of computer re-
sources, which makes it possible to use the MFDM for strength calculations of bodies with a micro-
heterogeneous regular structure. The given example of calculating a beam with an inhomogeneous
regular fibrous structure according to MFDM shows its high efficiency. The use of the corrected
strength conditions allows using the approximate solutions with a large error in the CS strength calcu-
lations, which leads to an increase in the MFDM efficiency. When calculating a CS of a complex
shape according to the MFDM, it is advisable to use FMs with variable characteristic dimensions.

1. The main provisions of the method of fictitious discrete models. The MFDM is applied for
CSs that satisfy the following basic provisions.

Provision 1. CSs consist of isotropic homogeneous bodies of different modulus, connections be-
tween which are ideal, i.e., the functions of displacements and stresses are continuous on the common
boundaries of different-modulus isotropic homogeneous bodies.

Provision 2. Displacements, deformations and stresses of different-modulus isotropic homogeneous
bodies correspond to the Cauchy relations and Hooke's law of the three-dimensional linear problem of
the elasticity theory [39].

Provision 3. Approximate solutions that correspond to the CS BM differ little from the exact ones.
Such approximate solutions will be considered to be exact ones. Let us note that such BMs for CSs
always exist due to the convergence of the FEM.

2. The theorem of the method of fictitious discrete models. Corrected strength conditions which
take into account the error of approximate solutions are used in the MFDM.
Theorem. Let the strength conditions be given for the safety factor n, of the elastic body V,

n<ng<n,, 1)

wheren,, n, are given; n, >1, ny, =o; /o, ; oy is ultimate stress of the bodyV, ; o, is the maximum
equivalent bodyV, stress, which corresponds to the exact solution of the problem of the elasticity theo-
ry, constructed for the body V.

Let the safety factor n, of the bodyV,, corresponding to the approximate solution of the problem of
the elasticity theory, satisfy the corrected strength conditions
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L <n<—2-.
1-8 1+,

o

(2)

Then the safety factor n, of the body V,, which corresponds to the exact solution of the problem of
the elasticity theory, satisfies the given strength conditions (1), where n, =o; /o, ; o,is the maxi-
mum equivalent stress of the body V,, corresponding to the approximate solution of the problem of
the elasticity theory, constructed for the body V,, and found with such an error &, that

8] <8, <C,=E=E, ®3)
where &, is the upper estimate of the relative error 3, ; §,, is given, the error §, for the stress o, is de-
termined by the formula &, = (5, —o},)/ oy.

Let us note that if the body V, consists of plastic materials, then o is the yield point. From (3) it
follows that if n, —n, is small, then it is necessary to determine o, with a small error 5, . The proof of
the theorem is presented in [4].

3. Implementation of the method of fictitious discrete models. For the sake of simplicity, with-
out losing the generality of judgments, we will consider the main procedures for implementing the
MFDM using the example of the beam V, with an inhomogeneous regular structure with dimensions
HxLxH, where H=96h, L=1152h, h is given, the beam is located in the Cartesian rectangular
coordinate system (Fig. 1).

“1 1"

F 3
=
{) - H=96"h

v

X L=1152h re. H=96h

<
<

Fig. 1. The dimensions of the beam (body) V, (model R,)

Puc. 1. Pasmeps! 6anku (tena) V, (Moxenu R, )

The regular cell G, of the beamV, has a cubic shape with the side 6h (Fig. 2). The cell G, is locat-
ed in the local Cartesian rectangular coordinate systemOxyz, i, j,k =1,...,7. Fibers with the cross-
section hx hare located along the axis Oy , the cross-sections of the fibers in the plane Oxz are colored
(Fig. 2). So, the beam is reinforced with longitudinal continuous fibers. When y = 0the beam is fixed,
when z =H it has the loading g, , g, . Strength conditions are specified for the beam V, (1).

/'Al‘. i

35 |6h

%

O X, i
6h

Fig. 2. The regular cell G,
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Puc. 2. Perynsapnas siueiika G,

Isotropic homogeneous fibers have the same elastic moduli. It is believed that if the thickness of
the fibers is less than 0.5 mm, then these fibers form a microheterogeneous fibrous structure.

3.1. Basic discrete model of the composite bodyV, . The BM R, of the CS V,, which consists of
one-grid finite elements (1gFES) th of the 1% order of a cubic shape with the side h (in which a three-

dimensional SSS is realized [39]), takes into account the inhomogeneous structure of the CS V,, within
the microapproach and generates a uniform (basic) grid with the step hof the dimension
97 x1153x 97 with the total number of nodal unknowns of the FEM equal to N, =32517504, the

bandwidth of the FEM simultaneous equations (SE) is equal to b, =28524 . Since the BM R has a

high dimension (over 32 million of unknown FEMSs) and taking into account thath/H <<1
(h/H=h/(96h)=0,0104 <<1), we believe that the maximum equivalent stress corresponding to the

BM R, differs little from the exact one, provision 3 MFDM for BM R is performed (see item 1).
Fig. 2 shows the basic grid of the regular cell G, .

3.2. Scaled composite discrete models. Following the MFDM, (see Fig. 1) we determine the FM
sequence for the CSV,. We use scaled composite discrete models R, that form the sequence
{R.}*¢ as FMs. The modelR,, n=1,...,16, has the same characteristic dimensions, shape, fastening
and loading as the BM R, (Fig. 1). The discrete model R, , consisting of 1gFEs of the 1* order of a

cubic shape with the side h, (a three-dimensional SSS is implemented in 1gFEV,"), has a uniform

grid with the step h, of the dimension n{™ x n{™ x n{” , where
™ =6n+1, ni"=12x6n+1, n{”=6n+1, n=1..,16. (4)

The steps of the nodal grid of the model R, along the axesOx, Oy, Oz respectively, are equal to
h™ =H/(6n), h{” =L/ (72n),h{™ =H/(6n). Since L=12H, thenh, =h{" =h{" =h{" . By virtue
of (4), we have

h,=B,h, n=1..,16, (5)

where B, is the scale factor, B, =16/n, for n=1,...,15we have B,>1, i.e. h,>h, for n>16we
have B, =1, B =1, hg=h.

According to (4), the model R, consists of a finite number of bodies G,, of the same shape with di-
mensions 6h, x6h, x6h,, n=1,...,16 (Fig. 3). The CSG, is located in the local Cartesian rectangular
coordinate system Oxyz . The body G, has the same number of fibers (with the cross-sectionh, xh,)
and the same mutual arrangement of these fibers as the regular cell G, (Fig. 2). In Fig. 3 the fiber sec-
tions of the cell G, in the plane Oxz are coloured, i, j,k =1,...,7 . The fibers and the binder of the CSs
G,and G, have the same modulus of elasticity.

Let us introduce the following definitions, which are used in the construction of scaled composite
discrete models.
Definition 2. We will say that the three-dimensional elastic body G is formed by scaling the elastic

three-dimensional body G° with the scale factor p > 0if any point Ae G? corresponds to such a single
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point Be G that Xg = pX,, Yg = PYa, Zg = PZp, Where X,,Ya.Za (Xg, Yg,Zg) are the coordinates of
the point A (point B) corresponding to the Cartesian rectangular coordinate system Oxyz . And vice

versa, if any point B e G corresponds to such a single point AcG® that X, =Xg/p, Ya=VYg /P,

2, =25 / p . The elastic moduli at the points A G®, B G are the same.

/.\ v

3/, | 6N,

6h

n

Ol . X, i
6h,

Fig. 3. The regular cell G,

Puc. 3. Perynsapnas siueiika G,

Definition 3. The three-dimensional elastic body G obtained by scaling the given (basic) elastic three-
dimensional body G° with the given scale factor p will be called a scaled one. The relationship between
the scaled body G and the base body G is represented asG = p G°, where p is the scale factor.

So, by virtue of (5), the CS G, is formed by scaling the regular cell G, of the CSV, BM with the scale
factor B, (see Definition 2), that is, the body G, is a scaled regular cell (see Definition 3). The shapes
and inhomogeneous structures of the bodies G,, and G, are geometrically similar, that is, they differ only
in scale (Fig. 2, 3, whereh, >h, atn=115). Then, taking into account (5) and that the fibers and the

binder of the CSs G, and G, have the same elastic moduli, the connection between the bodiesG,, G, is
represented in the form (see definition 3).

G, =B,G, , (6)

where B, =16/n; n=1...,16, at n »>16 we have B, =1, ;5 =1.
Since the inhomogeneous structure is taken into account in the regular cell G, , by virtue of (6) and
in the CSG,,, the inhomogeneous structure is also taken into account with the help of a 1gFE V,"of a
cubic shape with the side h, . The model R, , which by virtue of (5), (6) is formed using the scaled reg-
ular cell G,,, will be called a scaled one. We note that the CS G, is, in fact, a regular cell of the mod-
el R, . Since the inhomogeneous structure is taken into account in the regular cell G,, therefore, the

inhomogeneous structure is also taken into account in the model R, . For the model R, , we note the
following properties, which show the main advantages of the MFDM.

1. The dimension of the model R, at n<15 due to (4) is smaller than the dimension of the BM
R, . Therefore, the implementation of the FEM for the model R, (atn<15) requires less computer
resources than for the BM R, .
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2. When constructing scaled composite discrete models R, , the procedure of grinding the BM of
the CS is not used.

We note that the models R, , n=1,15are, in fact, fictitious discrete models.

3.3. Convergence of a sequence of scaled discrete models. Let us show that the sequence
{R,}*¢, consisting of scaled discrete models R, converges to BM R, atn —16 . According to (5), (6)
at n=16 (hg =h,B;s =1,G5 = Gy) the discrete models R;s, R, coincide, that is, R = R. Since the
model R4, like the BM R, has a high dimension, that is, it has N, = 32517504 nodal unknown FEMs,
and taking into account that h<<H (h/H =h/(96h)=0,0104), we assume that the maximum
equivalent stress o,40f the model R, differs little from the exact stress o, of the CSV,,. Then we as-
sume o, = 0;4, that is, provision 3 of the MFDM for the BM Ry is satisfied (see item 1). By virtue of
(5), (6) at n—>16 (at B, —1) we have G, - G,. Hence, taking into account that CSs G,, G, are
regular cells of the models R,, Ry, respectively, and that these models have the same shape and char-
acteristic sizes, we obtain

R,—»R, for n—16. (7)

According to (7), for n - 16 (taking into account that R,; =R,) we have o, — o, 0r (taking into
account the equality o, =6,5) o, = 6,, where o, is the maximum equivalent stress of the discrete
model R, . Let 8, = |o, -0, |/c, beasmall valueand|3, | <3§,, where §, is the relative error for
the stresso,, that is, 8, =(c,—0,)/ 0y, 8,is given, &, <C, (see (3)), n=2, 3, .... Then we ac-
cepto, =o,. Let the safety factor n, (wheren,=o;/0c,, taking into account thatc, =c,, we
have n, =o; /c,), corresponding to the approximate solution of the elasticity problem, satisfies the

adjusted strength conditions (2). Then the safety factor n, of the CSV,, corresponding to the exact so-

lution of the elasticity problem satisfies the given strength conditions (1) (see the theorem in item 2).
MFEs are used to reduce the dimension of the model R, .

4. The results of numerical experiments. Let us consider a model problem of calculating the
strength of a cantilever beam V, with an inhomogeneous regular fibrous structure with dimensions

96h x1152hx96h (Fig. 1). The regular cell G, of the beam is shown in Fig. 2. For the safety factor
N, of the beam, the strength conditions are specified
1,8<n,<3,4. 8)
For the model problem we have the following initial data:
h=0,2083; o; =4,5; E, =1, E, =10, v,=v, =0,3, 9)
whereE., E, (v.,v,) are Young's moduli (Poisson's ratios) of the binder and fiber, respectively;
oy is the fiber yield point; loads q, =q, =0,00075 act on the surface z=H, 0,5L<y<L (Fig. 1).

We use two-grid FEs (2gFEs) in the calculations. We will consider the main provisions of the con-
struction of 2gFEs using the example of the 2gFE Vd(z) with dimensions 6hx6hx6h (Fig. 4), which

consist of one regular cell G, (Fig. 2). The two-grid FE Vd(z) is located in the local Cartesian rectangu-
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lar coordinate system Oxyz . When constructing the 2gFEVd(2) , We use two nested grids: a uniform fine
grid hy with the step h of the dimension 7x7x7 and a coarse one H, with dimensions2x3x2. The
gridH, has the step 6h along the axesOx, Oz and the step3halong the axisOy . Fig. 4 shows the
grids hyand H , the nodes of the coarse grid H, are marked with dots (12 nodes). The fine grid h; is
generated by the basic partition R, of the 2gFE Vd(z), which consists of 1gFE th of the 1% order of a
cubic shape with the side h (in which three-dimensional SSS is realized, j=1,...,M,M is the total

number of 1gFE V', M =216) and takes into account the inhomogeneous structure of the 2gFE V(.

Sy
4z . /

Wi -
EYRL
¥ o
0 i, x

oh
Fig. 4. Fine and coarse grids 2gFE V,?

Puc. 4. Menkast u kpynHas cetku 2cK9 Vd(z)

We construct a superelement Vg on the partition R; using the condensation method [10]. We repre-

sent the total potential energy I1, of the partition R, of 2gFE Vd‘z) in the form
1
M, =2 as[Ksds —0sFs, (10)

where T is the transposition; [Kg]is the stiffness matrix (dimensions 654x654);Fs, Qg are the
vectors of nodal forces and displacements ( of the dimension 654 ) of the superelement Vg .
We write the basis function Ny, (x,y,z) for the node i, j,k of the coarse grid H using Lagrange
polynomials in the form Ny, = L (X)L; (y) Ly (z) , where
2 3 2

L= TT 32 L= 1 22 Lo 1 7=

Z(X

a=loz N T Mo a=lLazj Yj  Ya a=lazk “k

where X;,Y;,z,are the coordinates of the node i, j,k of the grid H in the coordinate system Oxyz ;
i, j,k are the coordinates of the integer coordinate systemijk introduced for the nodes of the coarse
grid Hy; i,k=212, j=12,3 (fig. 4).

Let us denote: Np = Ny, U =Ujj , Vg = Vi , Wy = Wy, Where Uy, Vi, Wy, are the values of dis-
placements u, v, w in the node i, j,k of the grid H,; i,k=12; j=12,3 ; B=1...,12. Then the ap-

proximating functions of displacementsu® ,v(®  w(® of the 2gFE can be written in the form

12 12 12
(@) _ (2 _ (2) _
u _BZ‘INBUB .V _BZ‘INBVB , W _BZ;NBWB . (11)
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Let us denote the vector of nodal displacements of the grid H, (of dimension 36), that is, the
vector of nodal unknowns 2gFE Vd‘z) byq, . Using (11), the vector g of nodal displacements of the
superelement Vg is expressed through the vector g , that is

qs =[AS1dy . (12)
where [A] is the rectangular matrix (of dimension 654x 36 ).

Substituting (12) into (10), from the condition o/, / 6q4 =0, we obtain[K,] q4 =F,, where

[Kal=[ASTKIIAST . Fy =[AST Fs (13)
where [K,] is the stiffness matrix (of dimension 36x36) and F, is the vector of nodal forces (of di-
mension 36) of 2gFE V.

The solution built for a coarse grid H, of 2gFE Vd(z) is projected onto the super element Vg grid us-
ing formula (12), and then, according to the condensation method [10], is projected onto the fine grid
hy , which makes it possible to calculate stresses in any 1gFE th of the basic partition R, of 2gFE
V2,

On the basis of the model R, , we construct a two-grid discrete model R?, which consists of compo-
site 2gFEs of the type V2 with dimensions6h, x6h, x6h,, n=1,...,12. For the two-grid model R?,
we determine (according to the 4™ theory of strength [1]) the maximum equivalent stress 2 ,n =112.
The calculation results are presented in table 1, where o7 is the maximum equivalent stress of the
model R?; N7and bpare the dimension and the bandwidth of the FEM SE of the modelR?,
n=5,...,12, the relative error 5, (in percent) is determined by the formula

8,(%) =100 %x|op —op 4| /o, Nn=6,...,12. (14)

The analysis of the results shows uniform monotonic convergence of stressesc?,n=5,...,12, and

relative errors 3,(%), n=6,...,12.

Table 1
Calculation results for models Ry — Ry,
n| RO o? 3, (%) N? b? n R? o? 3, (%) N? b?
5 RO 1,476 - 12960 240 9 RO 1,819 4,01 64800 636
6 RS 1,576 6,34 21168 321 | 10 RS, 1,888 3,65 87120 765
7 RO 1,665 5,34 32256 414 | 11 RS 1,952 3,28 114048 906
8 RS 1,746 4,64 46656 519 | 12 RS, 2,012 2,98 146016 1059

Let us note that the BM R, generates the maximum equivalent stress o, of the CSV,, which dif-
fers little from the exact one. The stress o is considered to be accurate (see provision 3, item 1). Ac-

cording to calculations, oy =2,140 where o, is the maximum equivalent stress of the model R}, . We
have Rz =R, (see Section 3.3). The two-grid model Rfis built on the basis of the model R4 using
2gFE Vd‘z) (Fig. 4). Since the dimensions of the 1gFE of the BM R are small, the dimensions of the

2gFE model Rjjare also small, so we accept o7 = 6, = 2,140.
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Calculations show that if 5, (%) <3% (see (14)), then the error of the maximum equivalent stress
oy of the model R?is not more than10 %. Since the stresses oy, =2,012and o7, =1,952 differ by
81,(%) =2,98 % (see Table 1), that is, we haved,,(%) <3 %, the stress error o;,is not more than
10%. We note that the stress o7, differs from the stress o, by 5.98%. We will assume that the upper

estimate for the stress error o;,is 10%. Then we acceptd, =0,1, o, =c}, =2,012. Condition (3) is
satisfied, that is, we have the inequality 5, =0,1<C_, =0,3. Substitutings, =0,1, n, =18, n, =3,4in
(2), we obtain the corrected strength conditions for the CS V,, in the form

2<n, <3, (15)
where ny is the safety factor of the CSV, corresponding to the approximate solution of the elasticity

problem,
n,=or /cy. (16)
Using in (16) oy =4,5, o, =2,012, we find the safety factor n, for the CS V.
n, =oy /o, =4,5/2,012=2,24. (17)

So, the safety factor n, = 2,24 of the CS V, (corresponding to the approximate solution of the elas-
ticity problem) satisfies the corrected strength conditions (15). Then, according to the theorem of item
2, the safety factor n, of the CS V, (corresponding to the exact solution of the elasticity problem) satis-
fies the given strength conditions (8). We note that the BM R, of the CS V,, has over 32 million nodal

unknown FEMs, which makes it difficult to implement FEM using 1gFE of the 1% order of a cubic
shape with the side hfor constructing the solution for the BM R, which we consider to be accurate

(see provision 3, item 1 and item 3.1). In calculating the strength according to the MFDM of the com-
posite beam V, (see Fig. 1) we use the model R}, that has N, =146016 nodal unknowns of the FEM

and the bandwidth of the FEM SE of which is equal to b, =1059 (see Table 1). The discrete model

Noxb, 32517504 x 28524
NS xbS,  146016x1059

Ry, requires k; = =5998,34times less computer memory, that is, al-

most 6x10°times less than the BM R, (see item 3.1), which shows the high efficiency of the
MFDM.

5. The application of approximate solutions with a large error in the MFDM. Let us consider
the case of calculating a CS for strength according to the MFDM, when it is possible to use elastic ap-
proximate solutions with a large error on the example of calculating the CS V, (see section 4). Calcu-

lations show that if &,(%) <5% (see (14)), then the error of the maximum equivalent stress o of the
model Rpis not more than 25%. Since the stresses og =1,746and o9 =1,665differ by
85(%) =4,64 % (see Table 1), that is, 54(%) <5 %, the stress error ogis not more than 25 %. In
fact, the stress oy is different from the stress o, = 2,140 by18,41 %. We will assume that the upper

estimmate for the stress error o is 25 % . Then we acceptd, =0,25, o, =ocg =1,746. Condition (3)
is satisfied, that is, we have s, =0,25<C_ =0,3. Substitutings, =0,25, n, =18, n, =3,4in (2), we
obtain the following corrected strength conditions for the CS V,,

2,4<n,<2,7. (18)
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Using o; =4,5, 6, =1,746in (16), we find the safety factor n, for the CS V,

n, =oy /o, =4,5/1,746 = 2,58. (19)

The safety factor n, = 2,58 of the CS V, (corresponding to the approximate solution of the elastici-
ty problem) satisfies the corrected strength conditions (18). Then the safety factor n,of the CSV,
(corresponding to the exact solution of the elasticity problem) satisfies the given strength conditions
(8) (see item 2). In this case, when calculating the strength of the CS V,, according to the MFDM, we
use the model Ry that has Ng = 46656 of unknown FEMs and the bandwidth of the FEM SE of which

Noxby 32517504 x 28524
NS xh®  46656x519

is equal tobg =519. The model Rg requires k, = =38304,76 times less

computer memory, that is, almost 38x10° times less than the BM Ro.

So, it has been shown that when calculating the CSV,, it is possible to use elastic approximate so-
lutions with a large error. In this case, in the calculations we use the stress og of the model Ry, the er-
ror gg =18,41 % of which is greater than the error &, =5,98 % of the stress o7, 0f the model R},
which leads to an increase in the efficiency of the MFDM (the coefficient k, is 6,38 times greater than
the coefficientk; ). This is due to the fact that the dimension and the bandwidth of the FEM SE of the

model Ry are smaller than the dimension and the bandwidth of the FEM SE of the model R, (see

Table 1). The following conclusion can be drawn on the basis of the results obtained in the given ex-
ample. The use of discrete CS models in MFDM, the maximum equivalent stresses of which have a
large error, leads to an increase in the MFDM efficiency.

6. Fictitious models with variable characteristic dimensions. When calculating CSs of complex
shapes according to the MFDM, it is advisable to use FMs with variable characteristic dimensions. For
the sake of simplicity, let us consider the brief essence of such FMs without losing the generality of

reasoning, using the example of the beam Vo(l) of a complex shape, that is, with a constant cross-
section of a complex shape (such as an I-beam) (Fig. 5). The beam Vo(l) is located in the Cartesian rec-
tangular coordinate systemOxyz , the axis Qy is parallel to the beam axis. Let the beam be reinforced
with continuous longitudinal fibers with the cross-sectionhxh, that is, which are parallel to the ax-
isOy, where h=L,/N , Nis given; L,is the length of the beam V" . The BM R{" of the beam
VY consists of the FE V, of the 1% order of a cubic shape with the side hthat takes into account the

inhomogeneous structure of the beam and generates an approximate solution that does not differ much
from the exact one. We consider such an approximate solution to be exact (see provision 3, item 1).

The FM R,El) of the beam differs from its BM Rél) only by one (variable) characteristic dimension L,
(along the axis Oy ) (Fig. 5). The FM R has fastening and the same loading pattern as the BM R{" of
the beamV, Y .

We determine the characteristic dimension L, of the FM R by the formula
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L,=L,n/N=hn, (20)

where n=ny,...,N ; ny >2, nyis given.

Fig. 5. The beam V®
Puc. 5. banxa Vo(l)

The FM R has the same inhomogeneous structure as the BMR{" , that is, the FM R{" is rein-
forced with continuous longitudinal fibers with the cross section hxhand has the same fiber distribu-

tion in the cross section as the BM R of the beamV" . Inhomogeneous structures of the FM R® and
the BM R{" are taken into account using the FE V, of the first order of a cubic shape with the sideh.

From the above, taking into account that according to (20) L, — Lyat n— N, it follows

RY »RY atn—N. (21)

From the fulfillment of (21) we obtain
o® 56 atn—>N, (22)
where 6 (o) is the maximum equivalent stress corresponding to the FM R (corresponding
to the BM R{" of the beam V).

Since the FM R and the BM R beams consist of the FE V, of the 1-st order of a cubic shape
with the side hand the cross sections of these models are the same, then the sections of the FM
R and the BM R" contain the same number of nodes, which we denote by N, . Then the total num-

ber of nodes M, of the BM R{" is equal to M, = N, (N +1) , the total number of nodes M, of the FM
RWisM, =Ny (n+1) . When n, <n< N we get that M, < M,, that is, the dimension of the FM R®" is
smaller than the dimension of the BM R . For n=N we have M =M,, that is, the dimensions of
the FM R{ and the BM R{" coincide. So, it is shown that when calculating the composite beam V"

(Fig. 5) of a complex shape according to the MFDM, it is advisable to use the FM Rr(]l) with the varia-
ble characteristic dimension L,,, which leads to saving computer resources.

Conclusion
The method of fictitious discrete models is proposed for calculating the static strength of elastic
bodies with an inhomogeneous, microheterogeneous regular structure. The proposed method is re-
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duced to constructing and calculating the strength of fictitious discrete models, the dimensions of
which are smaller than the dimensions of the basic discrete models of composite solids, and is imple-
mented with the help of the FEM using corrected strength conditions that take into account the error of
approximate solutions. The FEM implementation for fictitious discrete models with the use of multi-
grid finite elements provides a great economy of computer resources, which makes it possible to use
the proposed method for calculating the strength of bodies with microheterogeneous regular structure.
The implementation of the method of fictitious discrete models requires less computer resources than
the implementation of the FEM for basic discrete models. When constructing fictitious discrete mod-
els, the grinding procedure for basic models is not used. The calculations show the high efficiency of
the proposed method in calculating the strength of bodies with an inhomogeneous regular fibrous
structure. The use of the corrected strength conditions makes it possible to use approximate solutions
with a large error in the calculations, which leads to an increase in the efficiency of the method of fic-
titious discrete models.
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