Cubupckuil srcypHan Hayku u mexvoaoeui. Tom 21, Ne 3

UDC 004.3
Doi: 10.31772/2587-6066-2020-21-3-296-302

For citation: Aab A. V., Galushin P. V., Popova A. V., Terskov V. A. Mathematical model of reliability of informa-
tion processing computer appliances for real-time control systems. Siberian Journal of Science and Technology. 2020,
Vol. 21, No. 3, P. 296-302. Doi: 10.31772/2587-6066-2020-21-3-296-302

Jns uuTupoBanusi: MaremaTH4yecKas MOZIENb HaA&KHOCTH alllapaTHO-IPOrPAMMHBIX KOMIUIEKCOB 00pabOTKH
rH(pOpMAIIH IS CHCTEM YIIpaBIIeHHs pearsHoro BpeMeru / A. B. Aao, I1. B. lNamymmn, A. B. [omosa, B. A. Tepckos //
Cubupckuii xypHan Hayku U TexHomoruid. 2020. T. 21, Ne 3. C. 296-302. Doi: 10.31772/2587-6066-2020-21-3-296-302

MATHEMATICAL MODEL OF RELIABILITY OF INFORMATION PROCESSING
COMPUTER APPLIANCES FOR REAL-TIME CONTROL SYSTEMS

A. V. Aab', P. V. Galushin®, A. V. Popoval*, V. A. Terskov!

'Reshetnev Siberian State University of Science and Technology
31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037, Russian Federation
*Siberian Law Institute of Ministry of Internal Affairs of the Russian Federation
20, Rokossovsky st., Krasnoyarsk, 660131, Russian Federation
*E-mail: anastasiya.popowa@mail.ru

One of the main characteristics of computer appliances for processing real-time information is reliability.

The reliability of software is understood as the property of this software to perform specified functions, maintaining
its characteristics within the established limits under certain operating conditions.

Software reliability is determined by its reliability and recoverability.

Reliability of software is a property to maintain its performance when using it for processing information in the in-
formation system. The reliability of the software is estimated by the probability of its operation without failures under
certain environmental conditions during a given observation period.

The development of real-time systems requires a large amount of resources for design and testing. One of the solu-
tions to this problem is mathematical modeling of computer appliances. This allows more flexible design of real-time
systems with the specified reliability, taking into account the limitations on price and development time, and also opens
the possibility of more flexible optimization of computer appliances for real-time control systems.

To develop a mathematical model of the reliability of computer appliance for real-time systems, it is necessary to
take into account the provision of a given level of reliability, with reasonable development costs.

There are many methods for improving software reliability, but the most promising and effective methods are re-
dundancy, which is achieved using N-version programming.

To increase the reliability of the hardware of the computer appliance, it is also necessary to use redundancy and re-
dundancy, which includes multiprocessor and provision of different buses and independent RAM.

This paper discusses existing approaches to improving the reliability of hardware and software, proposes a model
of reliability of a computer appliance, which is understood as the product of the probability of failure-free operation of
hardware and the probability of error-free operation of software.

In addition, new formulas are proposed for the steady state probabilities of the hardware states of a multiprocessor
computer appliance with heterogeneous processors, which give the same result as the existing ones, but require fewer
computations.

The paper concludes with a question about the possibility of optimizing the reliability of computer appliances based
on the developed model, and indicates optimization methods that can be used to solve this problem.

Keywords: reliability, sofiware reliability, real-time systems, mathematical model, multiversion programming.

MATEMATHYECKAS MOJEJb HATEXKHOCTH AIIIMMAPATHO-ITPOT'PAMMHBIX KOMILJIEKCOB
OBPABOTKHN UH®OPMAIINU AJIs1 CUCTEM YIIPABJIEHHUSA PEAJIBHOI'O BPEMEHH

A.B. Aa6', I1. B. lanymmn®, A. B. TTorosa' ", B. A. Tepckos'

'Cubupckuit rocy1apcTBEHHbIIH YHUBEPCHTET HAYKH M TEXHOIOTHI MMeHH akagemuka M. ®. Pemernena
Poccuiickas ®enepanms, T. KpacHospck, 660037, mpocn. um. ra3. «KpacHospckuii pabounii», 31
Cubnpckuit ropuaudeckuii ”HCTUTYT MBJI Poccun
Poccuiickas ®enepamms, T. KpacuHosapck, 660131, yin. Pokoccockoro, 20
*E-mail: anastasiya.popowa@mail.ru

OO0HOUL U3 21ABHBIX XAPAKMEPUCTIUK ANNAPAMHO-NPOZPAMMHBIX CUCTEM 00paboOmKu UH@OpMayuu pearbHo2o epe-
MeHU ABNAEMCsl HAOEHCHOCD.

296

HquopMamuKa, eblduciumenlbHas mexunuKka u ynpaejienue

o0 Haoéxcnocmuro npoecpammuoco obecneuenus (I10) nonumaemcs ceoucmeo 3moco obecneyeHus 6bINOIHAMb
3a0anHble QYHKYUL, COXPAHSL CB0U XAPAKMEPUCTIUKU 8 YCIMAHOBIEHHbIX NPedeax npu OnpeoeléHHblX YCI08UAX IKC-
nIyamayuu.

Haoéacnocmo I10 onpedensiemcest e20 6€30mKaA3HOCMbIO U 80CCIMAHAGIUBAEMOCTBIO.

besomxasnocms I10 — smo ceolicmgo coxpanams pabomocnocobOHOCHb Npu UCNOAb308AHUU €20 Ol 00padbomKu
ungopmayuu 6 ungopmayuonnol cucmeme. bezomraznocmvio npocpamMmHO20 0becneueHus: OYeHUBAEMcs 8epOosini-
HOCMb €20 pabomul Oe3 OMKA308 NPU ONPEOeNEHHbIX YCI08UAX BHEUHell cpedbl 8 meyeHue 3a0aHH020 nepuood Haoa-
OeHusl.

Paspabomra u npoexmuposanue cucmem peanbHo20 6peMeHU mpebyem 6016020 KOMUYECBEa PeCypcos Ha NPOeKmu-
posanue u mecmupoganue. OOHUM U3 peuweHuti OanHOU NPOOIEMbL AGTAENCA MAMEMAMUYECKOe MOOETUPOBAHUE ANNd-
PAMHO-NPOSPAMMHBIX KOMNIEKCO8. Dmo noseoisiem 0o0nee 2UbOKO NPOEKMuposams CUCMEMbl PealbHO20 6peMeHU
€ 3a0aHHOT HAOENCHOCIBIO C YYEMOM 02PAHUYEHUI NO YeHe U BpeMeHU pa3pabomKU, a maxdice OMKpbleaen 603MOiC-
Hocmb Donee 2UOKOT ONMUMUZAYUL ANNAPAMHO-NPOSPAMMHBIX CUCHEM PEATbHO20 BPEMEHU.

Jlna paspabomku mamemamuieckou Mooeau Ha0EICHOCMU AnnapamHo-nPOSPAMMHOS0 KOMNIEKCA CUCMEM Peab-
HO20 8peMeHU HeoOX00UMO YYumpléams obecneyenue 3a0aHH020 YPOBHS HAOEICHOCIU NPU YeleCOOOPA3HbIX 3Ampa-

max Ha paspabomxy.

Cyu;ecmeyem MHO20 Memo008 NOBLIULEHUS HAOENCHOCMU npocpamMmHoco 06@Cﬂ€'—l€Hu}l, HO Haubonee nepcnekmue-
HbLUL U Sd)d)EKmu(belﬁ Memoo — 2mo u36blm0'{HOCmb, Komopast docmueaemcst 3a C4ém UCNONIb308AHUS Mylrbmueep-

CUOHHO2O0 npocpammupoeanusl.

ﬂ]lﬂ NOBbIULCHUSL HAOENCHOCTU annapamnozi Yacmu KOMNIeKca makaice Heobxooumo UCnonb308ams U30bIMOUYHOCHb
u pesepeuposanue, 4Hmo exKjiodaem 6 cebs MYTbmunpoyeccopHocms u obecneyenue PA3HBIX WUH U He3asuUcUMoll one-

pamueﬁoﬁ namsamu.

B oaunoii cmamve paccmampueaiomces cywecmayiowue nooxoovl K NOBbUUEHUIO HAOENCHOCMU annapamtozo
U NPOCPAMMHO20 0becnedenust, NPedaazaemcs Mooeib HAOENCHOCMU AnnapamHo-nPOSPAMMHOZO KOMNIEKCA, KOMopas
NOHUMAEMCS KaK NpoussedeHue 6eposimHocmy 6e30mKa3Hol pabomsl annapamnozo obecneuerus u 6eposimHocmu 6e3-

OWUOOUHOU pabombl NPOSPAMMHO20 0becneyeHus.

Kpome moeo, npeonazaromes nogvie opmynvl 015 6epoAMHOCMEN COCMOAHUL annapamnozo obecneueHus MHO2O0-
npoOYeCccopHO20 BLIMUCTUMENLHO20 KOMNAEKCA C PAZHOPOOHBIMU NPOYECCOPAMU 8 YCIMAHOBUBUIEMCSL pedicuMme, Oalouue
Mom dice pe3ynbmam, 4mo cyuwjecmeyiowue, Ho mpedoyrouue MeHble 8bl4UCTCHUL.

B 3akmiouenuu cmamvu cmagumcs 60nNPOC O BO3MOICHOCMU ONMUMUZAYUYU HAOEICHOCMU aANNApAmHO-
NPOCPAMMHBIX KOMNJIEKCO8 HA OCHOGE NOCMPOEHHOU MOOENU, YKA3bIBAIOMC s MEMOoO0bl ONMUMUZAYUU, KOMOPble MO2YM

ObIMb UCNONL30BAHBL NPU PEUEHUU OAHHOU 3A0aylU.

Kniouesvie cnosa: H(laé.?iCHOCI’)’lb, npoecpammnoe O6€CI’[€V€HH€, Cucmemvl pedalbHo20 6peMeHU, mamemamuvecKkas

MoOenb, MYTbMUBEPCUOHHOE NPOSPAMMUPOBAHUE.

Introduction. Reliability is one of the main character-
istics of real-time hardware and software systems for
processing information [1-3].

Reliability of software is understood as the ability of
this software to perform specified functions, while main-
taining its characteristics within established limits under
certain operating conditions.

The reliability of the software is determined by its
faultlessness and recoverability. Faultlessness of software
is a property to maintain operability when using it to
process information in an information system (IS). The
faultlessness of the software is the probability of its op-
eration without failures under certain environmental con-
ditions during a given observation period.

Real-time systems development requires a lot of de-
sign and testing resources. One of the solutions to this
problem is mathematical modeling of hardware and soft-
ware systems. This allows for more flexible design of
real-time systems with a given reliability, taking into ac-
count the limitations on price and development time, and
also opens up the possibility of more flexible optimization
of hardware and software complexes of real-time control
systems.

With the development of processing power, evolu-
tionary algorithms and neural networks, such models are
becoming increasingly relevant.

297

To develop a mathematical model of the reliability of
the hardware and software complex of real-time systems,
it is necessary to take into account the provision of a
given level of reliability with reasonable development
costs.

Reliability of the software. The reliability of the soft-
ware architecture includes both the reliability of the cen-
tral system core and the reliability of the individual com-
ponents provided to the user. Failure of an individual
component can lead to the inoperability of this and, possi-
bly, other software components. However, this should not
lead to the inoperability of the entire system as a whole. A
thorough analysis of the software architecture allows to
identify the components, the errors in which have the
most significant impact on the reliability of the system.
Generally, these are the components most commonly used
or architecturally related to many other components.
There are a lot of methods for increasing the reliability of
software [4; 5], but currently only the multiversion fault-
tolerant programming approach is a possible alternative to
testing and verification methods, providing a high level of
reliability of critical software functioning [6]. It is impor-
tant to realize that verification does not guarantee correct-
ness, since the specifications and / or verification systems
themselves (like any other software) may contain errors.

Cubupckuil srcypHan Hayku u mexvoaoeui. Tom 21, Ne 3

The use of decision support systems in multiversion
programming allows us to focus on the quality of re-
quirements at the stage of creating reliable software.
However, improving software reliability characteristics
using redundancy requires additional time and financial
resources. Therefore, the main question at this stage is
how, using redundancy in the software architecture, to
maximize reliability and reduce development costs. This
area includes methods of multicriteria decision making,
focusing on problems with a discrete decision space. Tak-
ing into account different levels of information about the
expert's preferences, a variety of methodologies for mul-
ticriteria decision support have recently been developed.
The use of various methods for determining the depth of
multiversion and multi-criteria decision-making when
choosing an architecture makes it possible to design a
software system that meets the requirements.

Depending on the number and size of the components,
the conditional and unconditional probabilities of failure,
access, analysis and recovery time, as well as the usage
time of the components, are different. The model [7],
given below, can be used to assess the reliability of soft-
ware for possible architectural changes, select a reliable
architecture from various options and has the following
designators:

1) M — number of architectural levels in software ar-
chitecture;

2) N;—number of components at level j,j € {1, ..., M};

3) D; — set of component indices depending on the
component i at levelj, i € {1,..,N;},j e {1, .., M};

4) F; — a failure that occurred in a component 7 at
levelj,ie {1,..,N},j e {l,.., M}

5) PU; — probability of using component i at level j,
ie{l,.,N},je{l,.,M};

6) PF; — probability of a failure in a component i
atlevelj,ie {1,..,N},je {l,.., M};

7) PLY,,, — the conditional probability of a failure in
component m at level n when a failure occurs in a compo-
nentiatlevelj,i e {1,..,N},je {l,..M},ne{l,..,N,},
me {l,.. M}

8) TA; — relative access time to the component i at
levelj,i € {1, ..,N;},j e {1, ..., M}, defined as the ratio
of the average access time to component i at level j to the
number of failed components at small levels of architec-
ture for the same time;

9) TC;; — relative time to analyze failure in component
iatlevelj, i e {1,.., N}, je {1, .. M}, defined as the
ratio of the average time of failure analysis in component
iatlevelj,ie {1,..,N},je {1, .., M}, to the number of
faulty components at all levels of the architecture ana-
lyzed at the same time;

10) TE; — the relative time to resolve a failure in
component i at level j, i € {1, .., Ni}, j € {1, .., M},
defined as the ratio of the average recovery time in com-
ponent i at the level j, i € {1, ..., N;},j € {1, ..., M}, to the
number of failed components at all levels of the architec-
ture, in which failures are eliminated at the same time;

11) TUj; - relative usage time of component i at level /,
ie{l,..,N},je {l,.., M}, defined as the ratio of the
average use time of component i at the level j, i € {1, ..., N;},
j € {1, ..., M}, to the number of components at all levels
of the architecture used at the same time;

12) TR —average system downtime in a large real-
time software architecture, defined as the time during
which the system is unable to perform its functions;

13) MTTF (Mean Time to Failure) —the average time
to failure in a large real-time software architecture, de-
fined as the time during which no system failures occur.

In the architecture of real software, the average time
for the appearance of a failure, that is, the time during
which the software functions correctly, is [7]:

J=M i=Nj
MTTF =" Y {PU; x(1- PF,)x[TU; +
j=l =l

n=Nm

m=M
+ > [A-PL)TU,, + > [(1-PLy)xTU, 111+
(m=1)&(m=j) n=1 leDnm
m=M n=Nm

+ 2 [A-PL)[TU;+ Y. D [A-PL)x

keDij (m=1)&(m=j) n=1

x[TU,,, + Y [A—=PLy")xTU,, 113

leDnm

The average downtime (recovery) of the software
is [7]:
J=M i
TR =
j=1

I
S

1 {PU,; x PF,; x[(T4; +TC; + TE;)+

m= n=Nn

+ > > [PL), x[(TA,, +TC,, +TE,,)+
(m=1)&(m#j) n=1

+ Y [PLy x (T4,

Im

+TC,, +TE,)1

m

le Dnm
D [PL x[(TAy + TCy; + TE;) +
keDij

n=Nm
> [rLy (T4, +TC,,, +TE,

m=M
+ Z nm
(m=1)&(m#j) n=1
+ 20 [PLy X (T4, +TC,, +TE,)TN
leDnm

)+

Average system downtime and average failure time
can be used to predict the reliability of software in gen-
eral. For the case of continuous operation of complex
software (and for a real-time system, this is the most
likely mode of software operation), the reliability of the
software can be estimated using the availability factor S,
calculated by the following formula:

_ MTTF
MTTF +TR

The availability factor can be interpreted as the prob-
ability of correct software functioning.

The main approach to increasing the reliability of soft-
ware, which is subject to increased requirements for con-
tinuity and correct functioning, is multiversion develop-
ment, that is, the creation by independent developers of
several versions of a software component that correspond
to the same specifications, but differ in implementations.
The software architecture should provide for a mechanism
for forming the overall result of the operation of this
software component based on the results of the work of
each individual version. In [8], two main methods of
building architecture when using multiversion develop-
ment are given, which are abbreviated as NVP and RB.

298

HquopMamuKa, eblduciumenlbHas mexunuKka u ynpaejienue

When building a multiversion component from K versions
by the multiversion programming method (NVP,
N-version programming) for any K, the reliability
is equal to:

K
-TTa-pp |,

keZ[j

R; = p;

where p"; — probability of failure of the voting algorithm
for component i at level j, Z; — many versions of this
component, and pki,- is probability of failure of version
keZ,;.

When building a multiversion component from K ver-
sions using the recovery block (RB, recovery block)
method, the reliability is:

K
R;= Zp,k,p,,TH((l pp)pi” + py=pih),

kEZ,-j

where p?” ; — the probability of failure-free operation of
the acceptance test for component i at level j, pki,- is prob-
ability of failure of version k€Z;.
The last two formulas can be used to calculate the
probabilities of failure of software components:
PF; =1-R;.

Hardware reliability. To increase the reliability of
the hardware part of the complex, it is also necessary to
use redundancy and reservation, which includes multi-
processing and the provision of different buses and inde-
pendent RAM.

Each processor and bus fail at some random points in
time, after which they begin to recover. Let us assume
that the flows of failures and recoveries are the simplest.
The bus failure rate is denoted as v, the bus recovery rate
is Ho. The rate of processor failure streams is denoted
by v;, and the rate of recovery of processors of the i type
is .

Probability Pjy ;i v finding the system in a state in
which j, mmH uHTepdeiica nCIpaBHBI U yYacTBYIOT B BbI-
YHCITUTENILHOM IpoLecce, a (M — jo) HEUCIPaBHBI H BOC-
craHaBnuBatorcs interface buses are in good working
order and participate in the computational process, and
(mgy — jo) are faulty and are being recovered, j; type 1
processors are operational and participate in the computa-
tional process, and (m; — j;) faulty and are recovering, ...,
Jn processors of N type are proper and participate in the
computational process, and (my — jy) are faulty and are
recovered, is determined by the following formula [9; 10]:

N
k! ml

PjOlesu ~:iN N

N
where k= Zml. , and the summation in the denominator
i=0
is carried out over all possible values of the indices
Jos---yn (this will be implied in all subsequent similar

299

formulas). In addition, the

is used:

following designation

Vi

pi=—.
H;

The formula for the probabilities of states in a station-
ary mode can be simplified. First, we can shorten £! in the
numerator and denominator, and also combine the works
in the numerator and denominator:

N

mi! Ji
Hon

i=0]1)']1' l

ZH

l
Jos-oJn =0 m]z)']z'

Jodrse JN

Now let's rewrite the denominator so that first the
summation is performed, and then the multiplication:

PjOJjI:' . ~:jN

Each of the sums in the denominator is now the multi-
plication of the binomial coefficient and the correspond-
ing power of a fixed value, and therefore can be simpli-
fied using the Newton binomial formula as follows [11]:

Thus, we finally obtain the following expression for
the probabilities of the hardware states in the steady state:

Pj07j17"':jN N

Simplified formulas contain fewer values than the
original ones, and, therefore, allow to avoid performing
some unnecessary operations (for example, multiplying
both the numerator and the denominator by k!, which ob-
viously does not affect the value of the expression) and
require significantly fewer operations to calculate the
value of the denominator than the original formulas given
in [9; 10].

Knowing the minimum hardware configuration re-
quired for the real-time system software to generate con-
trol action within the intervals required by the customer,
the reliability of the hardware can be calculated. Indeed, if
the number of trouble-free operating memory buses and
processors exceeds the minimum required, then “redun-
dant” software components can be considered as a re-
serve. Then the reliability of the hardware of the real-time
control system, understood as the probability of ensuring
the minimum required performance of the hardware, can
be calculated as the sum of the probabilities of finding the
hardware in states in which the number of trouble-free

Cubupckuil srcypHan Hayku u mexvoaoeui. Tom 21, Ne 3

operating memory buses and processors exceeds the
minimum required number:

Gop= 2

My<josmg

>

JosJ1r-JN

My <jy<my

where M, is the minimum number of proper memory
buses required to ensure a given performance, M; is the
minimum number of serviceable processors of the i type
required to ensure the specified performance.

The formula for G, involves calculating the probabili-
ties of different states of hardware with different values of
the indices jy, ji, ..., jy- In this case, it is not advisable to
repeat the calculations that have already been performed.
For example, the denominator of all formulas has the
same value, and, therefore, it is sufficient to calculate it
once.

In addition, since it is required to compute states with
sequential values of the indices, one can use the following
recurrent formulas for the degrees and binomial coeffi-
cients, following from the definitions of the degree and
factorial:
pi " =plp;
m,! B mlm—
(m,—j, =)' +1)! (m,—Jj;)Yid i +1

These ratios allow to calculate the probabilities for
states with sequential index values with a minimum num-
ber of additional operations:

m, — j.
Jos--Jithe oy Jos++Jise N Ji+1 P

From this ratio, elementary transformations can be
used to obtain the formula for "decreasing the index":

Ji+1
P. . . =P, . S S,
Jorcdiseedn = Jom St iy (my - j)p”

Ji
Since the simplest form of the formula for the prob-
abilities of states is taken in cases when all buses and
processors are in proper order, or when all of them are in
bad order, it is advisable to start calculating G, with the
probability of a state in which all buses of the RAM and
processors are working correctly:

— i=0

1
Pmo,ml,...,mN N -
(Pi +1) '

-0

1

and then, using the "decreasing indices" formulas, se-
quentially calculate the remaining required state prob-
abilities.

Another opportunity for improvement opens up if the
minimum configuration that provides a given perform-
ance includes fewer hardware components than half of the
components present in the system. In this case, you can
calculate the sum of the probabilities of states in which

300

the performance is not sufficient to generate a control
action within the given time constraints, and then calcu-
late the required probability as the probability of the
opposite event [12]:

GCP =1- z P}Ovjla"‘le.
0<jp<M

a'ng<M N
When calculating using this formula, one should start
with the probability of a state in which all RAM buses
and processors are faulty:

1
Po,o,...,o Y

[1(p; +1)™
i=0
and then use the index increase formulas obtained above.

Reliability model of hardware and software com-
plex. Finally, using the above considerations, we can
combine software and hardware reliability models into a
general reliability model of a multiprocessor hardware-
software complex of a real-time control system with mul-
tiversion software.

Due to the abstract nature of software and the negligi-
ble probability of errors during its copying and distribu-
tion (in addition, the integrity of the software can be
checked using mechanisms such as checksums), it can be
considered that hardware and software failures occur in-
dependently.

Therefore, the probability of simultaneous failure-free
operation of the hardware-software complex is equal to
the product of the probabilities of failure-free operation of
the software and hardware [12]:

P-=G,-S.

Conclusion. Thus, we have obtained a model for cal-
culating the reliability of multiprocessor hardware and
software systems of real-time systems with heterogeneous
processors and multiversion software, using queuing the-
ory and reliability theory, which allows to consider many
architecture options in a short time and without significant
costs typical for constructing experimental samples and
reliability assessment by organizing trial operation.

The proposed mathematical model can be used to
automate the design of multiprocessor hardware and
software systems. In practice, they strive to ensure that
the projected real-time control system has the highest
possible reliability, provided that the costs of its creation
and operation do not exceed the allocated funds. Thus, we
come to the problem of conditional or multicriteria opti-
mization, in which the objective function is expressed in
terms of the probabilities of states calculated within the
framework of the proposed model. Despite the fact that
there are analytical expressions for the reliability indica-
tors of a multiprocessor hardware-software complex,
this optimization problem has a number of inconvenient
features: the variables being optimized are discrete, the
presence of a single extremum and properties convenient
for optimization (convexity) is not guaranteed, and the
volume of the search space is growing rapidly with an
increase in the number of processor types.

HquopMamuKa, eblduciumenlbHas mexunuKka u ynpaejienue

When solving such optimization problems, evolution-
ary optimization methods, for example, a genetic algo-
rithm [13], a probabilistic genetic algorithm [14] or an
asymptotic probabilistic genetic algorithm [15], as well as
some other “nature-inspired” optimization methods, for
example, the particles swarm method [16]. The disadvan-
tage of evolutionary optimization methods is that they
have a large number of tunable parameters that can sig-
nificantly affect the quality of the solutions found. More-
over, different sets of parameters can be effective for dif-
ferent optimization problems. Thus, the use of evolution-
ary optimization methods requires, as a rule, experimenta-
tion and the involvement of a specialist in the field of
evolutionary optimization methods.

In order to exclude the stage of selecting an effective
combination of parameters, self-tuning can be used [17;
18]. Self-adjusting optimization methods use several sets
of parameters, computing resources (for simplicity, we
can assume that this is the number of calculations of the
objective function) which are distributed depending on
the quality of the solutions obtained with their help. At
the beginning of the optimization process, all parameter
sets receive the same resources. Then the sets of parame-
ters that generate the best solutions receive additional
computing resources due to those that perform worse.
There is a certain lower bound for the allocated resources,
this is done so that any set of parameters can manifest
itself in the future when conditions change, since different
stages of optimization may require different values of
parameters.

The study of the effectiveness of these optimization
methods in solving the problem of optimizing the reliabil-
ity of multiprocessor hardware and software complexes of
real-time control systems with multiversion software and
dissimilar processors is a possible direction for further
research.

References

1. Buttazzo G. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications.
New York, NY, Springer, 2011. XVI+524 p.

2. Vasil'ev V. A., Legkov K. E., Levko I. V. [The
real-time systems and applications]. Informaciya i kos-
mos. 2016, Ne 3, P. 68—70 (In Russ.).

3. CHerkesov G. N. Nadezhnost' apparatno-
programmnyh kompleksov [Reliability of the computer
appliances]. Spb., Piter Publ., 2005, 479 p.

4. Lipaev V. V. Ekonomika proizvodstva pro-
grammnyh produktov [The economics of the software
engineering]. Moscow, SINTEG Publ., 2011, 358 p.

5. Zatuliveter Yu. S., Fishchenko E. A., Hodakovskij
I. A. [The software methods for improving the reliability
of structurally complex distributed computing and control
processes]. Nadezhnost'. 2009, No. 1, P. 42-49 (In Russ.).

6. Avizienis A. The N-Version Approach to
Fault-Tolerant Software. [EEE Trans. Soft. Eng. 1985,
Vol. SE-11 (12), P. 1511-1517.

7. Kukartsev V. V., Sheenok D. A. [Optimization
of the software architecture of logistics information
systems]. Logisticheskie sistemy v global'noj ekonomike.
2013, No. 3, P. 138-145 (In Russ.).

8. Antamoshkin O. A., Degterev A. S., Rusakov M. A.
et al. [The analysis of the reliability of computer appli-
ances]. Uspekhi sovremennogo estestvoznaniya. 2005,
No. 6, P. 4445 (In Russ.).

9. Efimov S. N., Terskov V. A. Rekonfiguriruemye
vychislitel'nye sistemy obrabotki informacii i upravieniya
[The reconfigurable computing systems of information
processing and control]. — Krasnoyarsk, KrIZHT IrGUPS
Publ., 2013, 249 p.

10. Efimov S. N., Tyapkin V. N., Dmitriev D. D.
et al. Methods of assessing the characteristics of the mul-
tiprocessor computer system adaptation unit. ZHurnal
Sibirskogo federal’'nogo universiteta. Seriya: Matematika
i fizika. 2016, Vol. 9, No. 3, P. 288-295 (In Russ.).

11. Graham R. L., Knuth D. E., Patashnik O. Con-
crete Mathematics — A foundation for computer science.
Reading, MA, USA, Addison-Wesley Professional, 1994,
657 p.

12. Ventcel' E. S., Ovcharov L. A. Teoriya veroyat-
nostej i eyo inzhenernye prilozheniya [Probability theory
and its engineering applications]. Moscow, Vysshaya
shkola Publ., 2000, 480 p.

13. Goldberg D. E. Genetic algorithms in search,
optimization, and machine learning. Reading, MA, Addi-
son-Wesley, 1989, 372 p.

14. Vorozheikin F. Yu., Gonchan T. N., Panfilov I. A.
at al. Modified Probabilistic Genetic Algorithm for the
Solution of Complex Constrained Optimization Problems.
Vestnik SibSAU. 2009. No. 5 (26), P. 31-36.

15. Galushin P. V. [Design and evaluation of asymp-
totic probabilistic genetic algorithm]. Zhurnal Sibirskogo
federal'nogo universiteta. Seriya: Matematika i fizika.
2012, No. 1(5), P. 49-56 (In Russ.).

16. Kovalev I. V., Solov'ev E. V., Kovalev D. I. et al.
[Application of particle swarm optimization to design of
N-version software composition]. Pribory i sistemy.
Upravlenie, kontrol', diagnostika. 2013, No. 3, P. 1-6
(In Russ.).

17. Semenkin E., Semenkina M. Stochastic Models
and Optimization Algorithms for Decision Support
in Spacecraft Control Systems Preliminary Design.
Informatics in Control, Automation and Robotics,
Lecture Notes in Electrical Engineering. 2014, Vol. 283,
P. 51-65.

18. Semenkin E., Semenkina M. Self-Configuring
Genetic Programming Algorithm with Modified Uniform
Crossover Operator. Proceedings of the IEEE Congress
on Evolutionary Computation. June 10-15,2012.

Bubaunorpadguyeckue ccblIKM

1. Buttazzo G. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications.
New York, NY, Springer, 2011. XVI+524 P.

2. BacuneeB B. A., Jlerko K. E., Jleko 1. B. Cuc-
TEMBI pealbHOrO0 BpEeMEHH M 00JIaCTH WX IpUMEHEeHHs //
Nudopmanns n kocmoc. 2016. Ne 3. C. 68-70.

3. YepkecoB ['. H. Hapexsoctp ammapaTHO-
porpaMMHBIX KoMIniekcoB. Cr6. : [Tutep, 2005. 479 c.

4. Jlumaes B. B. DxoHOMHKa mpOW3BOACTBA TIPO-
rpaMMHBIX poaykToB. M. : CUHTET, 2011. 358 c.

5. 3arynmusetep 1O. C., ®umenko E. A., Xomakos-
ckuit U. A. IlporpaMMHBIe METObI MOBBIIICHUS HAJEK-

301

Cubupckuil srcypHan Hayku u mexvoaoeui. Tom 21, Ne 3

HOCTH CTPYKTYPHO CJIOKHBIX pacIpeAeieHHbIX BBIYMCIIE-
HUM W mpoueccoB ympasnenus // Hanexnocts. 2009.
Ne. 1. C. 42-49.

6. Avizienis A. The N-Version Approach to Fault-
Tolerant Software // IEEE Trans. Soft. Eng, 1985.
Vol. SE-11 (12). P. 1511-1517.

7. Kykapues B. B., Illeenox [I. A. Ontumuzanus
NPOrPaMMHON apXUTEKTYpHl JIOTHCTUYECKUX HH(popMa-
IUOHHBIX cucTeM // JIorMCTHYeCKHe CHCTEMBI B TI100ajIb-
HoM s3xoHOMHKe. 2013. Ne 3. C. 138-145.

8. AHanu3 Ha/Ie)KHOCTH MYJIbTHBEPCHOHHBIX apXUTEK-
TYp ammapaTHO MpOrpaMMHBIX KomruiekcoB / O. A. Anra-
momikuH, A. C. [lerrepes, M. A. PycakoB u np. / Ycrexun
coBpeMeHHOro ectecTBo3HaHus. 2005. Ne. 6. C. 44-45.

9. Epumos C. H., TepckoB B. A. Pexondurypupye-
MBbI€ BEIYUCIIATENFHBIE CHCTEMBI 00pa00TKH MH(POPMAITUHI
u ympasneans. Kpacnosipck : KpWKT UpI'VIIC, 2013.
249 c.

10. Methods of assessing the characteristics of the
multiprocessor computer system adaptation unit / Efimov
S. N., Tyapkin V. N., Dmitriev D. D. u np. / XKypHan
Cubupckoro QenepanbHoro yHuepcutera. Cepus:
Maremaruka u guznka. 2016. T. 9, Ne 3. C. 288-295.

11. T'paxem P. JI., Kuyt [. O., Ilaramnuk O. Kon-
KpeTHasl MaTeMaTHKa. MaremaTriieckue OCHOBBI MH(OP-
MaTHKH : 2-€ m31. ; mep. ¢ aunt. M. : OO0 «U.J. Bus-
ssMey, 2010. 784 c.

12. Berrnens E. C., OBuapos JI. A. Teopust BeposiT-
HOCTEeH U €€ MHKEHEepHBbIE MPWIOXKEHHS : 2-€¢ u31. M. :
Bricmias mxomna, 2000. 480 c.

13. Goldberg D. E. Genetic algorithms in search, op-
timization, and machine learning. Reading, MA, Addison-
Wesley, 1989. 372 p.

14. Vorozheikin F. Yu., Gonchan T. N., Panfilov I. A.
at al. Modified Probabilistic Genetic Algorithm for the
Solution of Complex Constrained Optimization Problems
// Vestnik SibSAU. 2009. Iss. 5 (26). P. 31-36.

15. Tamymua II. B. Pa3pabGoTka u wuccienoBaHue
ACHMIITOTHYECKOTO BEPOSITHOCTHOTO TEHETHYECKOTO a-
roput™a // Kypnan Cubupckoro ¢enepaabHOro YHUBEp-
cutera. Cepus: Matemaruka u ¢usuka. 2012. Ne 1(5).
C. 49-56.

16. Hcronp3oBaHue MeTona post 4acTuIl Ut (hopMHu-
pPOBaHUS COCTaBa MYJBTHBEPCHOHHOTO MPOrPAMMHOIO
obecnieuenus / Kosanes U. B., Conosres E. B., Kosanes
. U. n ap. // llpubops! u cucTemsbl. YTpaBlieHHE, KOH-
Tpoib, quaraoctuka. 2013. Ne 3. C. 1-6.

17. Semenkin E., Semenkina M. Stochastic Models
and Optimization Algorithms for Decision Support in
Spacecraft Control Systems Preliminary Design // Infor-
matics in Control, Automation and Robotics, Lecture
Notes in Electrical Engineering. 2014. Vol. 283. P. 51-65.

18. Semenkin E., Semenkina M. Self-Configuring
Genetic Programming Algorithm with Modified Uniform
Crossover Operator // Proceedings of the IEEE Congress
on Evolutionary Computation. June 10-15, 2012.

© Aab A. V., Galushin P. V., Popova A. V.,
Terskov V. A., 2020

Aab Andrey Vladimirovich — 2-year master's degree student; Reshetnev Siberian State University of Science
and Technology.

Galushin Pavel Viktorovich — Cand. Sc., docent; Siberian Law Institute of Ministry of Internal Affairs of the
Russian Federation.

Popova Anastasiya Valer'evna — 2-year master's degree student; Reshetnev Siberian State University of Science
and Technology. E-mail: anastasiya.popowa@mail.ru.

Terskov Vitaly Anatolyevich — Dr. Sc., Professor; Reshetnev Siberian State University of Science and Technology.

Aad Aunapeii BnagumupoBuy — Maructp; CHOMpCKUi rocyJapCTBEHHBIH YHUBEPCUTET HAYKH M TEXHOJIOTHH UMe-
HU akagemuka M. @. PemerHeBa.

lanymmna ITaBen BUKTOpPOBHMY — KaHIUIAT TEXHHMYECKUX HAyK, JoueHT; CHOMPCKUI IOPHUINYECKHH HHCTHTYT
MB/J] Poccun.

IlomoBa Anactacusi BanepbeBHa — maructp; CuOHpCKUil TOCyAapCTBEHHBI YHUBEPCUTET HAYKH M TEXHOJIOTHI
nMeHn akagemruka M. @. PemerneBa. E-mail: anastasiya.popowa@mail.ru.

TepckoB Burtanuii AHaTobeBHY — JIOKTOpP TEXHHYECKHX Hayk, mpodeccop; CHOMPCKHI TOCYAapCTBEHHBIN
YHUBEPCUTET HAYKH U TEXHOJIOTMM UMeHU akagemuka M. @. PemerHesa.

