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The shock gas-dynamic processes that have found wide application in rocket and space technology in
the design and optimization of devices and power plants are considered. The analysis of known exact and
asymptotic relations/conditions on a shock wave, in particular, generalized differential relations (GDRS)
on a curvilinear oblique shock wave (SW) (COSW) for a model of a viscous heat-conducting gas at high
Reynolds numbers is made. The advantages of using the discrete-analytical approach are shown, for exam-
ple: 1) the ability to make maximal use of the smoothness of the shock gas-dynamic formation (shock wave)
in the tangential direction; 2) to build efficient computational algorithms devoid of the negative effect of
approximation/artificial viscosity on the schematized discontinuity. In parallel, a very common graphical
method for mapping the results of gas-dynamic calculations on the plane of shock polars, proposed by
Busemann, and a volumetric (3D) polaroid, proposed by V. N. Uskov, are considered. The mathematical
apparatus of shock polars itself is based on exact relations of the Rankine-Hugoniot type and has proven
itself well even in modeling the flows of a viscous heat-conducting gas. However, in numerous literature
sources there are results (shock solutions) of both physical and computational experiments, which are not
mapped strictly on shock polars. In this paper, we show that in rare cases this very common way of such
mapping may be incorrect. It has been proven that the main causes of such a defect are the combined ac-
tion of three main factors: the nonuniform flow in front of the shock formation, the edge/boudary effect be-
hind it, the action of the external factor of viscosity and the heat conduction mechanism.

Keywords: shock gasdynamic process, gasdynamic discontinuity, generalized differential relations at
the shock wave, shock polar and polaroid.
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Paccmampusaromesn yoapuvle eazodunamuveckue npoyeccwvl, Haweowue WUPOKoe NpUMeHeHue 6
PAKEMHO-KOCMUYECKOU MeXHUKe NpU KOHCMPYUPOBAHUU U ONMUMUSAYUU YCIPOUCNG, IHEPEMUYECKUX
yemanosok. Ilpouzeooumes ananus u36ecmHblx MOYHBIX U ACUMNIMOMUHECKUX COOMHOWEHUT/YCI08Ull HA
yOapHou 607He, 6 uYacmHocmu — 0000wenHvlx Ouggepenyuanvuvix coomuoutenutl (OHC) Ha
Kpugonuretinom xocom ckauxe yniomuenus (KKCY) ona moodenu 613x020 mennonpogooHo2o 2asa npu
oonvwux uuciax Petinonvoca. [loxkaszanvl npeumywecmea ucnoib308aHus OUCKPEMHO-AHATUMUYECKO20
nooxoda, Hanpumep: 1) 03MONCHOCNL — MAKCUMATLHO — UCHONB308AMb  21AOKOCHb  YOAPHO20
2a300UHAMUYECK020 00pA308aHUs (CKAUKa) 6 KacameabHOM HanpaeieHuu; 2) cmpoums 3Qdexmustbie
BbIUUCTUMENbHBIE ANCOPUMMDL, JULEHHbLE He2AMUBHO20 OelCmBUs annpoKCUMAYUOHHOU/UCKYCCMEEHHOU
BAKOCMU HA CXeMAMU3UPOBAHHOM paspulee. llapannenvHo paccmompen 8ecbMa pacnpoCmpaHeHHbIl
epagpuueckuti cnocob omoopaXCceHUs pesyabmamos 2a300UHAMUYECKUX PACYEMO8 HA NIOCKOCHb YOAPHbIX
noaap, npeonoxcennwviii bysemanom, u 00wémuwiii (3D) noaapoud, npeonosxcennviti B. H. Ycxosvim. Cam
Mamemamuieckuli. annapam YOdpHulX HOJAp NOCMPOEH HA MOYHBIX COOMHOWeHUsX muna Penxuna —
T1020HUO U HEennoXO 3apeKomerH008an cebs dadce npu MOOETUPOBAHUY MEYEHULL 653K020 MENIONPOBOOHO20
2aza. OOHAKO 6 MHOZOYUCICHHBIX TUMEPAMYPHbIX UCIOYHUKAX NPUCYMCMEYIOm pe3yibmambl (yoapHvle
peuienust) Kak pusuuecko2o, max u GbIMUCTUMENBHO20 IKCNEPUMEHMO8, KOMOpble He OMmoOpaicaomcs
Ccmpo2o Ha yOapHulx noaspax. B nacmosweii pabome NOKA3AHO, MO @ peOKUx CyYasx OAHHbI U 6eCbMd
PACPOCMpPanénubiil CHOCO6 MaKo2o OmMooOpadicenuss Modcem Oblmb U HEKOPPeKMHbIM. [lokazano, umo
OCHOBHbIMU NPUHUHAMU MAKO20 0epeKma AGIAemcs. COBMeCmHoe Oeticmeue mpex OCHOGHbIX (Pakmopos:
HEPABHOMEPHOCHb meyeHUs neped YOapHbIM 00pasosanueM, Kpaegou dggexm 3a HuM, Oelicmeue GHEUHUX

¢al<m0pa GAZKOCMU U MEXAHUIMA menﬂonpoeodﬁocmu.

Kniouesvie cnosa: yoapmulii eazoounamuyeckuti npoyecc, 2a300UHAMUYecKUll paspwis, 0006weHHble

oughghepenyuanvHbie COOMHOUEHUA HA CKAYKE YNIOMHEHUs, YOapHble NONAPA U NOAAPOUO.

Introduction

Impact gas-dynamic processes [1] are widely used in rocket and space technology in the design and
optimization of devices, power plants, in modern technologies, and even in medicine. The “shock for-
mation” itself (thin shock layer), with its correct idealization (separation of surface boundaries or
schematization of a shock wave (SW), curvilinear oblique SW (COSW)) can be considered discontin-
uous, which made it possible to apply an analytical apparatus to relate gas-dynamic parameters on
both sides of such a “discontinuity” [2—13]. Moreover, if there is an additional margin of smoothness
in the direction tangent to the COSW, then it is possible to connect analytically not only the parameters
themselves, but also the partial derivatives of them on both sides of the COSW. Such a connection for
the model of an ideal gas in the form of differential conditions for dynamic compatibility on COSW
(DCDC) is given in [8] by V. N. Uskov. In [10; 11] their generalized analog is given - generalized dif-
ferential relations on COSW (GDR) for the model of viscous heat-conducting gas at high Reynolds
numbers (Re.). The mathematical apparatus in the form of the GDR makes it possible to reduce from
the Navier-Stokes equations of a viscous heat-conducting gas (ENSVHC) to the GDR system in terms
of setting the viscous problem of COSW penetration into the shear layer. In the process of mathemati-
cal modeling based on the GDR, it is possible, within the framework of a single computational algo-
rithm, to pass "through” from the gas-dynamic to the diffusion stages of COSW evolution in the shear
layer, while specifying various boundary/edge effects (BE), and on the other hand, to significantly
save computing resources: instead of many hours (ENSVHC), the calculation process on a PC takes
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seconds. However, the most important thing is that in such formulation of the problem (especially tak-
ing into account the viscosity and heat conducting external (on both sides of the discontinuity) factor
(VHC factor)) the natural order of solution smoothness in the tangent to the COSW direction is pre-
served, which was the main motive for applying the discrete-analytical approach [11].

Busemann in his work laid the foundation of graphical methods for solving problems of gas-
dynamic discontinuities interference using shock polars (SP) [13], which relate the intensity of oblique
SWs to the angle of flow reversal on them. Such polars are called Busnemann polars in his honor, an-
other name is heart-shaped curves because of their characteristic appearance, as well as isomachs,
since each shock polar is constructed for a specific Mach number of the oncoming flow. In problems
of gas-dynamic discontinuities interference, when one of the elements of a particular configuration can
be a rarefaction wave, the term “shock-wave polar” (SWP) is more often used instead of SP [8—11].

The purpose of this paper is to study the correctness (rightness) of using the SWP apparatus for
representing individual viscous shock solutions. Partially, such a study on the SWP plane was carried
out in [11]. In the present paper such solutions are mapped, among other things, to the volumetric (3D)
analog of the SWP - the shock-wave polaroid. It should be noted that the problems of such an incor-
rect representation/mapping of the obtained solutions can occur only in rare cases, since the SWP
mathematical apparatus itself is built on exact Rankine-Hugoniot relations and has proven itself well
even in modeling viscous heat-conducting gas flows. These rare but important cases can be observed
under the combined action of the following three factors: 1) non-uniformity of the undisturbed flow in
front of the COSW; 2) BE behind it, formed by overtaking disturbances; 3) VHC factor.

1. Classical and non-classical shock transition models

It is known that the shock formation itself, with its correct idealization (schematization) [1-13], al-
lows one to approximately replace it with a mathematical discontinuity surface of the first kind, when
the main gas-dynamic variables have a finite discontinuity. In stationary problems, SWs are considered
instead of moving SWs [1; 7; 12]; although a SW moving at a constant speed can also be considered
as a COSW in a moving coordinate system. The relations connecting the quantities on both sides of the
SW are called the Rankine-Hugoniot relations, and similar relations on the COSW are called the rela-
tions on the oblique SW, including the normal COSW. In both cases, one can speak in general terms
about relations of the Rankine-Hugoniot type. These relations form a one-parameter family of formu-
las, i.e., with known parameters before the discontinuity, it is enough to specify one parameter after it
in order to determine (not always unambiguously!) all the relationships of quantities on both sides of
the SW or COSW. In the latter case, the velocity of the SW itself often acts as such a parameter. These
relations also have more complete implementations, namely:

1) their continuation in the form of differential conditions of dynamic compatibility (DCDC [8; 10;
11], V. N. Uskov);

2) GDR [10; 11] is a generalization of DCDC for the case of the action of an external VHC factor
when using the viscous heat-conducting gas model (ENSVHC) at high Reynolds numbers;

3) differential relations (as well as DCDC in the inviscid approximation), which are satisfied at the
front of a curvilinear SW moving with acceleration were obtained in [12] as applied to non-stationary
gas-dynamic flows.

Without loss of generality, we consider the usual, i.e., without taking into account the external
VHC factor, relations on an oblique SW (COSW), which follow from the integral conservation laws at
the discontinuity

0 (1)

~n V2
[PVa]=pVa =PV, =0, [p+pV§]:0, [pV,v,]=0, {m?“}
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and can be written in various known forms and are therefore not given. In (1) pis density; pis pres-
sure; v,and v_are the normal and tangential velocity components to the discontinuity surface; h is
enthalpy (heat content); h=y/(y—1)p/p; y=c,/c, is the isentropic exponent.

The universality, and therefore the frequent applicability of nonlinear, but simple rela-
tions/conditions on the oblique SW (COSW) can be explained as follows:

1) even in the case of a complex spatial (3D) configuration of the SW (COSW), the gas-dynamic
process is considered locally exclusively in two-dimensional space (2D) — the plane formed by the
normal vector to the smooth surface of the shock and the velocity vector of the oncoming supersonic
flow (Mach number - M >1);

2) the dissipative mechanism is not explicitly present in the relations themselves, but its operation
inside the SW (COSW) is externally reflected, in particular, in the production/increase of entropy.
There are no (jamps) in the total enthalpy and the velocity component tangent to the COSW:

[h + (V2 +vf)/2} =0, [v.]=0, but this is the case only with ordinary relations.

When using the ENSVHC model, it is possible to generalize the usual relations on a COSW by add-
ing the action of a small external VHC factor [10; 11]. Additional terms with a small parameter
(1/Re.) appear at derivatives of gas-dynamic quantities in such generalized relations. However, even
in this case, if there are no gradients of these values on both sides of the discontinuity, the usual rela-
tions on the oblique SW (COSW) are fully satisfiable regardless of the Reynolds number, which has a
positive effect on the accuracy of the shock gas-dynamic process description and, accordingly, the fre-
quent applicability of these relations.

Busemann in his work [13] laid the foundation of graphical methods for solving problems of gas-
dynamic discontinuities interference with the help of shock polars, which relate the intensity of
oblique SWs to the angle of flow reversal on them. Let us consider what the regular and irregular
(Mach) reflection of an obliqgue SW from the wall looks like in the physical plane and the plane of
shock polars.

Fig. 1 shows the types of SW reflection. The polars are plotted in coordinates (3, A =In(J)), where

B is the angle of refraction/reversal of the velocity vector on the oblique SW, and J = p/p is its inten-
sity (the ratio of the pressure behind the SW to the pressure in front of it). The polars are plotted from
a specific Mach number and isentropic exponent y=c, /cv. Here B, is the flow reversal angle on the
incoming/incident shock, B, is a similar angle on the reflected shock, B, is the reversal angle on the
main shock with irregular reflection, o,, o,, o5 are the incoming, reflected, and main shock (Mach
stem), respectively. If the reflection is regular, then the secondary polar released from point 1 (con-
structed according to the Mach number behind the incoming shock) must cross the coordinate axis at
point 2. Then the total reversal angle is B, + B, =0, and the total degree of flow compression will be
A, +A,. If the reflection is irregular, then one or another triple configuration of shock waves is

formed [8; 9], a similar calculation of which is based on the equality of pressures and slopes of the
velocity vectors on the tangential discontinuity © emanating from the triple point (dash-dotted line in
fig. 1, b).
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a b

Fig. 1. Regular (a) and irregular (b) reflection of an oblique shock from the wall

Puc. 1. PerynspHaoe (a) u HeperyssipHoe (6) OTpaskeHHE KOCOr0 CKayKa OT CTEHKH

The dependence B(J) in the plane of polars, which follows from the usual relations on the oblique
SW, is given as follows:

Jn—J (1-¢)(J-1)

= G re)-(1—9)(3-D)'

where J,, =(1+ s)M2 —g is the maximum SW intensity (normal SW), e=(y—-1)/(y+1) . According-

ly, for the secondary polar, it is required to take the Mach number beyond the primary oblique SW.

The most complete description of theoretical analysis of all possible interactions/interferences of
stationary gas-dynamic discontinuities is given in [8; 9]; at the same time, the method of displaying
the results of a physical or numerical experiment on the polar plane does not cause any particular
complaints (see above). At the same time, in numerous modern works of a computational nature, there
are often separate points (solutions) that for some reason (?) do not fall strictly on the shock polars.
Let's look into this issue.

2. Shock penetration into the shear layer and mapping of the process on shock polars and polaroid

Let us consider the interaction of a COSW with a thin shear layer in an inviscid (vortex) and vis-
cous setting (detailed in [10; 11]), which is schematically shown in fig. 2. The supersonic part of the
boundary layer was used as a layer. We consider a thin layer to be formed at the moment of its interac-
tion with the COSW, therefore, the influence of viscous forces can already be neglected locally in the
interaction zone and the usual relations on the oblique SW, more precisely, their differential continua-
tion - DCDC (see above) — can be used to calculate the interaction, since the COSW passing through
the layer is smooth and curvilinear. This is what an inviscid or vortex formulation of the problem
looks like. However, it is possible to take into account the effect of the external VHC factor and make
a calculation based on the universal GDRs (see above), from which DCDC follow automatically when
the VCH factor is excluded. Note that the GDRs are implemented within the framework of the dis-
crete-analytical approach [11], with the help of which these calculations were performed. It is essential
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that in this approach there are fundamentally no (!) such negative effects as circuit or artificial viscosi-
ty, as well as effects caused by the operation of the so-called limiters (monotonic limiters) [14].

INVISCID FLOW
Incident SW Reflected Polar 2 A=InJg
_ Yy dlsu rbance -

Layer boundar \ ‘.""-.. // éz\
W _ o 4 Polar 3

B, 4 Polarl —>

a 9]

Fig. 2. The scheme of interaction of a shock wave (SW) with a shear layer:
a — physical plane; b — polar plane

Puc. 2. Cxema B3aMMOJICHCTBHS CKauKa YIJIOTHCHUS CO CABUT'OBBIM CJIOEM:
a— (1)I/I3I/I‘IGCK3.${ IIJIOCKOCTD, 6 — MJIOCKOCTh IOJIsAIp

On fig. 2, a 1-3 are the main elements of the shock refraction, 4 are overtaking disturbances that car-
ry the BE, and t and t are the same streamline in front of and behind the SW, respectively, which is a
degenerate tangential discontinuity: its intensity is inversely proportional to the number of divisions of
the continuous velocity profile. The same can be said about the reflected disturbance (fig. 2, a 3). The
layer was preliminarily calculated on the basis of ENSVHC, and then tabulated [11] with the help of
smooth interpolants, so that the main parameters inside it were smooth up to the second derivatives.

With the known current intensity J of the COSW at any point of the layer the process of penetration
of the COSW into it with a greater degree of schematization can be mapped on the SWP plane (fig. 2, b).
For this, it is convenient to represent this continuous process as a discrete one. Polars 1 and 2 correspond
to two adjacent streamlines in the undisturbed flow (fig. 2, a) with a small difference (due to the continu-
ity of the given profile) of the Mach numbers, and the linear analogue of the secondary polar 3 corre-

sponds to the streamline behind the incident COSW (corresponds to the Mach number M ).
0.6 —

0.4

Betta(rad)
e
o N
1 1

2
9
!

0.4

0.6 .
0.9 0.8 0.7 0.6 o

0.40 0.5 1

Fig. 3. Shock-wave polaroid

Puc. 3. Y napHO-BOTHOBOM MOMISIpOU
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The process of COSW penetration into the layer can be mapped on a volumetric shock-wave polar-
oid (V. N. Uskov’s term, fixed in [11]), which is a 3D analog of SWP (see fig. 3). Note that there is no
need to represent secondary polars in the problem under consideration: it is only desirable to indicate
the direction of the corresponding branch, as in the schematic fig. 2, b.

In the calculation [11] on the external streamline in the undisturbed flow (see fig. 2, a): p,, =1,18;

W, =0,95 (full dimensionless speed); M_, = 2,275, and behind the SW M =1,759 and with each line

the values decrease; Re, =1,6-10%,Pr=1 (important only for viscous setting). BE behind the COSW
was debilitating.
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Fig. 4. SW track:

a —excluding VHC (Viscosity and Heat Conducting) factor; 6 — taking into account VHC factor. 1-5 — main SPs
(Shock Polars) and trajectory points corresponding to streamlines intersected in physical space; 6 — the last point of
the trajectory of the SW (Shock Wave); dotted line — envelope of all SPs. The main SPs are shown with green lines

running across the linearized SWP
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Puc. 4. Tpex CV:
a — 6e3 yaera dakropa BT; 6 — ¢ yuerom daxropa BT. 1-5 — ocroBHbIe YII 1 TOUKH TPaeKTOPHH, COOTBETCTBYIOIINE
nepecekaeMbIM B (PH3MUECKOM IPOCTPAHCTBE JIMHUSAM TOKa; 6 — mocienHsst Touka Tpaekropun CY; MyHKTHp —
orubaromas Bcex YII. OcHoBHsle YII moka3aHsI 3eTIEHBIMH JIMHUSAMH, TIONIEPEK HAYIIMMHE JINHEapH30BaHHBIM Y BIT

Let us analyze the difference between inviscid and viscous (taking into account the VHC factor)
solutions in the problem of COSW penetration into the shear layer on the SWP plane and the polaroid
(fig. 4).

Fig. 4 shows the trajectories of the COSW incident on the layer in the SWP plane in semilogarith-
mic coordinates without taking into account the VHC factor (fig. 4, a) and taking into account this fac-
tor (fig. 4, b). Separate selected points of the trajectory corresponding to five selected streamlines in-
tersected by the COSW, as well as fragments of the main SPs for the corresponding Mach numbers,
are numbered. The dotted line shows a fragment of the envelope of all SPs, for which the analytical
dependence was obtained by V. N. Uskov [8]. In the viscous case, the selected points on the trajecto-
ries (tracks) of the COSW no longer coincide with the corresponding SPs (their numbers), and such a
mismatch accumulates as the SW penetrates into the gradient part of the layer; the SW track goes
through the SP envelope (). The usual relations on the oblique SW in this case are not strictly fulfilled
(1) and, as a result, the SWP apparatus turns out to be less suitable. The action of the VHC factor leads
to a sharper decrease in the COSW intensity than that which occurs only under the action of the BE
that weakens it.

Fig. 5 shows both inviscid and viscous solutions as trajectories (tracks) on the surface of the main
(primary) polaroid. We see that the viscous solution (red track) flakes off from this polaroid, which
indicates the poor feasibility of the usual conditions on the oblique SW and, accordingly, the incorrect
use of polars or polaroid when displaying the results of calculations.

e
o
|

o o
w o>
[ 1

Betta(rad)
o
N
|

0.1— L i s

Fig. 5. Mapping the trajectory of the SW incident on a layer on the polaroid surface.
Blue color — excluding VHC factor. Red color - taking into account the VHC factor

Puc. 5. OtoOpakeHue TpackTopuu najaromiero Ha cinoii CY Ha MOBEpXHOCTH MOJSPOUA.
Cunnii et — 6e3 yuera (akropa BT. KpacHuslit et — ¢ yuerom pakropa BT

Conclusion

The paper shows that in rare cases, with the simultaneous action of several factors: nonuniform
flow in front of the curvilinear oblique SW, the edge/boudary effect, and the effective external VHC
factor - a very common way to map the solution to the plane of shock-wave polars or a 3D polaroid
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may be incorrect. Thus, it has been proven that even when using “ideal” (without scheme/artificial
viscosity, limiters) computational methods, this phenomenon can occur.
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