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MODELS AND ALGORITHMS FOR AUTOMATIC GROUPING OF OBJECTS BASED
ON THE K-MEANS MODEL
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The paper is devoted to the study and development of new algorithms for automatic grouping of objects. The
algorithms can improve the accuracy and stability of the result of solving practical problems, such as the problems of
identifying homogeneous batches of industrial products. The paper examines the application of the k-means algorithm
with the Euclidean, Manhattan, Mahalanobis distance measures for the problem of automatic grouping of objects with
a large number of parameters. A new model is presented for solving problems of automatic grouping of industrial
products based on the k-means model with the Mahalanobis distance measure. The model uses a training procedure by
calculating the averaged estimate of the covariance matrix for the training sample (sample with pre-labeled data). A
new algorithm for automatic grouping of objects based on an optimization model of k-means with the Mahalanobis
distance measure and a weighted average covariance matrix calculated from a training sample is proposed. The
algorithm allows reducing the proportion of errors (increasing the Rand index) when identifying homogeneous
production batches of products based on the results of tests. A new approach to the development of genetic algorithms
for the k-means problem with the use of a single greedy agglomerative heuristic procedure as the crossover operator
and the mutation operator is presented. The computational experiment has shown that the new mutation procedure is
fast and efficient in comparison with the original mutation of the genetic algorithm. The high rate of convergence of the
objective function is shown. The use of this algorithm allows a statistically significant increase both in the accuracy of
the result (improving the achieved value of the objective function within the framework of the chosen mathematical
model for solving the problem of automatic grouping), and in its stability, in a fixed time, in comparison with the known
algorithms of automatic grouping. The results show that the idea of including a new mutation operator in the genetic
algorithm significantly improves the results of the simplest genetic algorithm for the k-means problem.

Keywords: automatic grouping, k-means, Mahalanobis distance, genetic algorithm.

MOJIEJIA U AITOPUTMbI ABTOMATHYECKOM I'PYIIIIUPOBKH OB bEKTOB
HA OCHOBE MOJEJIN K-CPEJHUX

I'. OI. [Ixa6epuna, JI. A. Kazaxosres, XK. JIn

Cubupckuii rocy1apCTBEHHBIN YHUBEPCUTET HAYKU U TEXHOJIOTHI MMeHHU akanemuka M. @. PemerHeBa
Poccwuiickas @enepauus, 660037, r. KpacHosipck, mpocrt. um. ras. «KpacHosipckuii padounii», 31
*E-mail: z_guzel@mail.ru

Paboma noceawena uccnedosanuio u paspabomre HOBbIX Al2OPUMMOE AGMOMAMUYECKOU PYNNUPOBKU 00bEKMO8,
KOmMOopbie N0360IAI0N NOBbICUMb MOYHOCHb U CMAOUILHOCMb PE3YIbMAma peuleHus Npakmuieckux 3a0a4, Hanpumep,
MAKUX Kaxk 3a0a4d ebloeeHuss 0OHOPOOHbIX NAPMUL NPOMBIULIEHHOU NPoOYyKyuu. B cmambe uccredyemcs npumenenue
aneopumma k-cpeonux ¢ Eexnuoogvim, Manxsmmenckum, Maxananoduca mepamu paccmosnus 078 3a0adu asmoma-
MUYeCKol 2PYRIUPOSKU 00beKmos ¢ DOIbUUM KOIUYecmgom napamempos. Ilpedcmaesnena Ho6as MoOensb 05l peuenus
3a0ay a8MoMamu4eckoll epynnuposKU NPOMbIUIEHHOU NPOOYKYUU HA OCHO8e MOOelU k-CpeOHUX ¢ Mepotl paccmosHus
Maxananobuca. [lannas moodenv ucnoivzyem npoyedypy 00yuenus nymem GblyucieHus YCpeOHeHHOU OYeHKIU Kosapua-
YUOHHOU Mampuysl 0151 0byuaiowel 6b100pKU (6b100pKA ¢ NPeOSaApUMenbHO pasmedyeHHbiMu oannbimu). Ilpednooicen
HOBbLIL ANI2OPUMM ABMOMAMUYECKOU SPYNNUPOSKU 0ObEKMO8, OCHOBAHHBII HA ONMUMUZAYUOHHOU MOoOenu k-cpednux
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¢ mepou paccmosnus Maxananodbuca u cpeoneg36eueHH Ol KOBAPUAYUOHHOU Mampuyetl, pacCYumaHnHol no oobyuaro-
wetl svibopxe. Aneopumm no380asem CHU3UMb 00110 OWUb0K (nogvicums unoekc Panoa) npu evisenenuu 00HOPOOHBIX
NPOU3E0OCMEEHHBIX RAPMULL NPOOYKYULU HO PE3YTbMamam mecmoguix ucnvimanuti. [lpedcmagnen HoGwlli N0OOX00 K pas-
pabomke ceHemMUYeCKUX aneopummos O 3a0auyu k-cpeOHux ¢ npumeHeHuem eOUHOU MHCAOHOU a2ioMepamueHoll
IEPUCMUUECKOU NPOYEIYPbL 68 Kauecmee Onepamopa CKpeuwjueanus U onepamopa mymayuu. Buluuciumenvbuvitl dKcne-
PUMEHmM NOKA3ANL, YMO HO8Asl Npoyedypa Mymayuu sSeasemcst Oblcmpoi u 3¢)@GekmusHot no CPABHEHUI0 ¢ UCXOOHOU
Mymayuel 2eHemu4ecko2o aneopummd, NOKA3aHa 6blCOKAsL CKOPOCHb cx00uMocmu yenesou @yuxyuu. Ipumenenue
OaHHO20 anzopumma no360Jsem CMAMmUCmu4ecku 3Ha4UMO NOGbICUMb MOYHOCIb pe3yibmama (Yiyyiums 0ocmuzae-
Moe 3HaueHue yenesol QYHKYuU 8 pamkax 6blOPAHHOL MAMEMAMUYECKOU MOOENU PeteHUs 3a0a4u agmomMamu4eckou
2PYRRUPOBKU), 4 maKdice e20 CmabuIbHOCMb 3d (DUKCUPOBAHHOE B8PEMsL NO CPAGHEHUIO C U3BECHHBIMU ANCOPUMMAMU
agmomamuyeckoll epynnuposku. Pezyrvmamer noxasvieaiom, umo udes 6KIIOYEHUs HOBO20 ONEPAMOpa Mymayuu
6 2CHEMUYeCKOM aN2Opumme 3HAYUMENbHO YIyuuaem pesyivmamsl NpOCMeuuec0 2eHemuueckKo20 aneopumma

ona 3a0aqu k-cpeonux.

Kniouegvie crosa: asmomamuueckas epynnuposka, k-cpeonux, paccmosuue Maxananobuca, zememuyeckuii aneo-

pumm.

Introduction. Automatic grouping (AG) involves di-
viding a set of objects into subsets (groups) so that objects
from one subset are more similar to each other than to
objects from other subsets according to some criterion.
General characteristics of the object and the methods by
which the division took place are taken into account in the
process of grouping objects of a certain set into certain
groups (subsets).

To exclude the emergence of unreliable electrical ra-
dio products intended for installation in the on-board
equipment of a spacecraft with a long period of active
existence, the entire electronic component base passes
through specialized technical test centers [1; 2]. These
centers perform operations of full incoming inspection of
electrical radio products, additional verification tests, di-
agnostic non-destructive testing and selective destructive
physical analysis. Detection of initial homogeneous pro-
duction batches of electrical radio products from shipped
batches is an important stage during testing [1].

The k-means model is one of the best known cluster
analysis models. The goal is to find k points (centers)
X1, ..., X, in d-dimensional space, such that the sum
of the squared distances from known points (data vectors)
Ay, ..., Ay to the nearest of the required points (centers)
reaches a minimum [3]:

. N . 2
argmlnF(Xl,...,Xk):Zizljgl&%’||Xj—A," .

Initially it is necessary to predict the number of groups
(subsets) in the k-means algorithm. In addition, the result
obtained depends on the initial choice of centers. The
distance function and its definition also play an important
role in the problem of dividing the set under study into
groups.

The first genetic algorithm for solving the discrete p-
median problem was proposed by Hosage and Goodchild
[4]. The algorithm [5] gives fairly accurate results. How-
ever, the rate of convergence of the objective function is
very slow. In their work O. Alp, E. Erkut, Z. Drezner [6]
presented a faster simple genetic algorithm with a special
recombination procedure, which also gives accurate re-
sults. These algorithms solve discrete problems. The au-
thors of the work “Genetic algorithm-based clustering
technique” [7] encode solutions (chromosomes) in their

GAs as sets of centroids, represented by their coordinates
(vectors of real numbers) in a multidimensional space.

The analysis of the literature has shown that the exist-
ing solutions in the field of AG of multidimensional ob-
jects either have high accuracy, or ensure the stability of
the result with multiple runs of the algorithm, or have
high speed of operation, but do not combine all these
qualities at the same time. To date, algorithms for k-
means and k-medians have been developed only for the
most common distance measures (Euclidean, Manhattan).
However, taking into account the feature space peculiari-
ties of a specific practical problem when choosing a dis-
tance measure can lead to increasing the accuracy of AG
objects. In the presented work, we use the Rand Index
(RI) [8] as a measure of the clustering accuracy.

It is extremely difficult to improve the AG result of
multidimensional objects with increased requirements for
the accuracy and stability of the result using known algo-
rithms without a significant increase in time costs. When
solving practical problems of the AG of multidimensional
data, for example, the problems of identifying homogene-
ous batches of industrial products, the adequacy of the
models and, as a result, the accuracy of the AG of indus-
trial products are questionable. It is still possible to de-
velop algorithms that further improve the result based on
the chosen model, for example, the A-means model.

In a multidimensional feature space, there is often a
correlation between individual features and groups of
features. The use of correlation dependences can be used
by moving from search in the space with the Euclidean or
rectangular metric to search in the space with the Maha-
lanobis metric [9-11]. The square of the Mahalanobis
distance D), is defined as follows:

Dy(X)=(X-p)' C'(X —p) , 2)

where X is the vector of values of the measured parame-
ters, u is the vector of mean values (for example, the cen-
ter of the cluster), C is the covariance matrix.

The aim of the study in the presented work is to im-
prove the accuracy and stability of the result of solving
problems in automatic grouping of objects.

The idea of the work is to use the Mahalanobis dis-
tance measure with the averaged estimate of the covari-
ance matrix in the k-means problem to reduce the propor-
tion of the AG error in comparison with other known al-
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gorithms, and also to use the mutation operator as a part
of the genetic algorithm to improve the accuracy and sta-
bility of the solution according to the achieved value of
the objective function in a fixed execution time in com-
parison with known algorithms for separating objects.

Initial data. The study was carried out on the data of
testing the batches of integrated circuits [12], intended for
installation in space vehicles. The tests were carried out in
a specialized center for technical tests. The data is a set of
parameters for electrical radio products (ERP). The origi-
nal batch of ERI belongs to different homogeneous
batches, in accordance with the manufacturer's marking.
The total number of products is 3987. In each batch, the
product is described by 205 measured parameters. Batch 1
contains 71 products, batch 2 — 116 products, batch 3 —
1867 products, batch 4 — 1250 products, batch 5 —
146 products, batch 6 — 113 products, and batch 7 —
424 products.

The algorithm of k-means with the Mahalanobis
distance with an averaged estimate of the covariance
matrix over the training sample. The computational
results of experiments on automatic grouping of industrial
products with k~-medoid and k-means models, in which the
Mabhalanobis metric is applied, show an increase
in clustering accuracy with automatic grouping into
2—6 clusters and a small number of objects and informa-
tive features [13].

Instead of the covariance matrix from (2), it was pro-
posed to calculate the averaged estimate of the covariance
matrix for homogeneous batches of products (according
to pre-labeled data) using the training sample:

k
C:lZCjnj, ?3)
nio

where #; is the number of objects (products) in the j-th
batch, n is the total sample size, C; are the covariance ma-
trices of individual batches of products.

In this paper, we propose an algorithm for automatic
grouping of objects based on the k~-means model with the
adjustment of the Mahalanobis distance measure parame-
ter (covariance matrix) based on the training sample:

Step 4. Increase the number of clusters by (k + 1) and
repeat steps 1 and 2. Form new clusters with the squared
Euclidean distance:

D(Xjaui)=Z(in_“i)2 ) &)
i=1

where n is the number of parameters. Return to step 3
with a new training example (set).

Step 5. Match each point to the nearest centroid using
the square of the Mahalanobis distance (2) with the aver-
aged estimate of the covariance matrix C (3) to form new
clusters.

Step 6. Repeat the algorithm from step 2 until the
clusters stop changing.

The algorithm of 1. k-means with the Mahalanobis
distance with averaged estimate of the covariance
matrix

Step 1. Using the k-means method with Euclidean dis-
tance, divide the sample into a certain number of & clus-
ters (here k is some expert estimate of the possible num-
ber of homogeneous groups, not necessarily accurate);

Step 2. Calculate the center p; for each cluster. The
center is defined as the arithmetic mean of all points in
the cluster

W, :_Zin > 4

where m is the number of points, X; is a vector of values
of one measured parameter (j = 1...m);

Step 3. Calculate the averaged estimate of the
covariance matrix (3). If the averaged estimate of the co-
variance matrix is degenerate, go to step 4, otherwise go
to step 5;
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The paper presents the results of three groups
of experiments on the data of industrial product
samples.

The first group. The training sample corresponds to
the working sample for which the clustering was carried
out.

The second group. The training and working samples
are not the same. In practice, a test center can use retro-
spective data on deliveries and testing of products of the
same type as a training sample.

The third group. The training and working samples
also do not match, but the results of the automatic
grouping of products (k-means in the multistart mode
with the Euclidean metric) were used as the training
sample.

In each group of experiments, for each working sam-
ple, the k-means algorithm was run 30 times with each of
the five clustering models studied.

DMImodel — k-means with the Mahalanobis distance,
the covariance matrix is calculated for the entire training
sample.

DC model — k-means with a distance similar to the
Mabhalanobis distance, but using a correlation matrix in-
stead of a covariance matrix.

DM?2 model — k-means with Mahalanobis distance,
with averaged estimate of the covariance matrix.

DR model — k-means with the Manhattan distance.

DE model — k-means with the Euclidean distance.

For each model, the minimum (Min), maximum
(Max), average (Average) values, standard deviation
(Std.Dev) of the Rand index (RI) and the objective func-
tion, as well as the values of the coefficients of variation
(V) and the range (R) of the target functions (tab. 1) are
calculated.

It was found that the new DM2 model with an aver-
aged estimate of the covariance matrix shows the best
accuracy among the presented models in almost all series
of experiments according to the Rand index (RI) and in
all cases it exceeds the DE model, where the Euclidean
distance is used. The experiments also showed that in
most cases the coefficient of variation of the objective
function values is higher for the DE model, where the
Euclidean measure of distance is used, and also that the
coefficient of the range of the objective function values
has the highest values for the DM2 model, where the Ma-
halanobis distance measure with an averaged estimate of
the covariance matrix is used.
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Table 1
The results of a computational experiment on the data of the 15261E10_002 microcircuit (3987 data vectors
with a dimension of 68), the training sample consists of 10 batches, the third group, the working sample
is made up of 7 batches of products)
Rand index (RI) Objective function
V-series Model Model
DM1 DC DM2 DR DE DM1 DC DM2 DR DE
Max 0.767 0.658 0.749 0.740 0.735 255886 | 379167 | 281265 18897 6494.62
Min 0.562 0.645 0.696 0.703 0.705 250839 36997 274506 17785 5009.42
Average 0.632 0.650 0.725 0.714 0.719 252877 37178 277892 18240 5249.95
Std .Dev 0.047 0.003 0.016 0.008 0.006 1164.5 152.8 2358.9 452.7 366.5
v 0.461 0.411 0.849 2.482 6.981
R 5047 920 6759 1112 1485

Therefore, multiple attempts to run the k-means algo-
rithm or to use other algorithms based on the k-means
model (for example, j-means [14] or greedy heuristic
algorithms [15]) are required to obtain consistently good
values of the objective function.

Genetic cross-mutation algorithm for the k-means
problem. The new algorithm improves the accuracy of
solving the k-means problem and the stability of the result
in a fixed limited execution time. In this chapter, by the
accuracy of the algorithm we mean exclusively the
achieved value of the objective function, without taking
into account the indicators of the model adequacy and the
correspondence of the algorithm results to the actual (real)
separation of objects, if known.

A very limited set of possible mutation operators is
known for genetic algorithms for solving the k-means
problem with real coding of solutions. For example, the
authors of the work “Genetic algorithm-based clustering
technique” [7] encode solutions (chromosomes) in their
GAs as sets of centroids represented by their coordinates
(vectors of real numbers) in a multidimensional space.
Each chromosome undergoes mutation with a fixed
probability p. The procedure (operator) of mutation
is as follows.

Algorithm 2 3.1 Initial GA mutation procedure for the
k-means problem

Step 1. Generation of a random number be(0,1] with
uniform distribution;

Step 2. IF b < p, then the chromosome mutates. If the
position of the current centroid is v, then after mutation
it becomes:

vE2xbxv, vZO0,
° {UiZXb, v=0.

The signs “+” and “—” have the same probability. The
centroid coordinates are shifted randomly.

In our work we replaced this mutation procedure for
the k-means problem with the following procedure.

Algorithm 3 3.2 GA cross mutation procedure for the
k-means problem

Step 1. Generating a random initial solution § =
= {X] Xk},

Step 2. Applying the k-means algorithm to S to obtain
the local optimum S';

Step 3. Applying a simple crossover procedure for the
mutated individual S from the population and S to obtain
a new solution S

Step 4. Applying the k-means algorithm to S~ to ob-
tain local optimum S ;

Step 5. IF F(S') < F(S), THEN § « S .

The proposed procedure is used with a mutation prob-
ability of 1 after each crossover operator.

The results of running the original algorithm 2,
described with a mutation probability of 0.01, and
its version with algorithm 3 as a mutation operator are
shown in the figure (population size Npgp = 20). The new
mutation procedure is fast and efficient in comparison
with the original mutation of the genetic algorithm; a high
convergence rate of the objective function has been
shown.

Greedy genetic algorithms and many other evolution-
ary algorithms for the k-means problem do without muta-
tion. The idea of a greedy agglomerative heuristic proce-
dure is to combine two known solutions into one unac-
ceptable solution with an excessive number of centroids,
and then the number of centroids is successively reduced.
The centroid which shows the smallest increase
in the objective function value (1) is removed at each
iteration.

Algorithm 4. Basic greedy agglomerative heuristic
procedure

It is given: the initial number of clusters K, the re-
quired number of clusters k, £ < K, the initial solution
S={X,...Xg}, where |S| =K.

STEP 1. Improve the initial solution by the k-means

algorithm
WHILE K > k

CYCLE for each i € {I,_K} perform:

STEP 2. S’ « S{X, ;} . Improve the solution S by the
k-means algorithm and store the corresponding ob-
tained values of the objective function (1) as variables
F «F{X}.

END OF CYCLE

STEP 3. Select the subset S.;,, from the centers 7.,
Seiim €S 5 Setim |=Neim With the minimum value of the

corresponding variables Fl . Ny =max{1,0.2-(]S|-k)}.
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STEP 4. Get a new solution S« S/S K=K-1.

elim >
Improve the solution by the k-means algorithm.
END WHILE

END OF CYCLE

The following algorithm is proposed At STEP 6.

Algorithm 8. Selection procedure

The initial solution S can also be obtained by com-
bining two known solutions. Algorithms 5 and 6 modify
the initial solution by the second known solution. In fact,
Greedy procedure 1 supplements the first set in turn with
each element from the second set. Greedy procedure 2
combines both sets.

STEP 1. Randomly select 2 indices k,,ks € {M} ,
ky #ks.

STEP 2. IF f, >f, THEN
Jo, € F(S.),ELSE S, < S, fi, < F(S,).

Sk4 S,

Algorithm 5. Greedy procedure 1 with partial join

It is given: Two sets of cluster centers

S=x,..X tus=(x,.X}

Cycle: for each i e {L_K}

Step 1. Combine S and one element from the
setS 1S« SULX,,... X} .

Step 2. Run Algorithm 3.3 with the initial solution S
and save the result.

END OF CYCLE
Step 3. Revert the best solutions saved in Step 2.

A GA with greedy heuristic for p-medians and
k-means problems can be described as follows.

Algorithm 9. A GA with greedy heuristic for
p-medians and k-means problems (modifications GA-
FULL, GA-ONE u GA-MIX)

Algorithm 6. Greedy procedure 2 with full set union

It is given: Two sets of cluster centers
S ={X,..X }and §={X,. X }

Step 1. Combine two sets of cluster centers
S« Sus.

Step 2. Run Algorithm 3 3.3 with the initial
solution S.

The basic genetic algorithm (GA) for k-means prob-
lems is described as follows:

Algorithm 7. GA with the alphabet of real numbers
for the k-means problem

It is given: Initial population size Npgp

STEP 1. Choose Npgp of 1nitial solutions S;,...,S Npop *
where [Si|=k, and {S,,...,Sy  }is a randomly selected
subset of the set of data vectors. Improve each initial solu-
tion by the k-means algorithm and store the corresponding
obtained values of the objective function (1) as variables

S «F(S)k=1,Npop .

CYCLE
STEP 2. IF the stop condition is met, THEN STOP.

Return the solution . i €{l,Npyp} with the minimum

value f, ..

It is given: Population size Nppp.
Step 1. Set N,,. < 0. Choose a set of initial solutions

iter
{8158 Npop} , where |S;| = k. Improve each initial solu-
tion by the k-means algorithm and store the corresponding
obtained values of the objective function (1) as variables
Ji < F(S,),k=1,Nppp . In this work the initial value

of the population is Npgp = 5.
Cycle
Step 2. IF the stop condition is met, THEN STOP.

Return the solution S i €{l,Npyp} with the minimum

value fl ., ELSE set the population size as follows:

Nier < Ny +15 Npop < max{Nppp [\[1+ Ny, 1} ; 1F
Npop has changed, THEN generate a new one SNPOP as

described in Step 1.

Step 3. Randomly select 2 indices k,k, € {m},
k #k,.

Step 4. Run Algorithm 5 (for GA-ONE¥)
or Algorithm 6 (for GA-FULL*) with solutions Skl

and Sk2 . For GA-MIX* Algorithm 5 or Algorithm 6 are

chosen at random with equal probability. Get a new solu-
tion S, .
Step 5. S, <~ Mutation(S,)By default the mutation

procedure is not used.

Step 6. Run Algorithm 5

END OF CYCLE

* GA-ONE is a genetic algorithm with greedy heuris-
tic with partial union, GA-FULL is a genetic algorithm
with greedy heuristic with full union; GA-MIX is a ran-
dom choice of algorithms 5 or 6

STEP 3. Randomly select 2 indices k;,k, € {1, Nppp} ,

ky #k,.

STEP 4. Start crossing procedure:
S, < Crossingover(S; ,S; ) .

STEP 5. Start mutation procedure:

S, < Mutation(S,) .

STEP 6. Start the chosen selection procedure to
change the population set.

This algorithm uses a dynamically growing popula-
tion. In our new version of Step 5, the cross mutation op-
erator looks like this.

Algorithm 10. A cross mutation operator for Step 5
of Algorithm 9 (modifications GA-FULL-MUT,
GA-ONE-MUT and GA-MIX-MUT)

Step 1. Run the k-means algorithm for a randomly se-
lected initial solution to obtain solution S'.
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Step 2. Run Algorithm 5 (for GA-ONE) or Algorithm
6 (for GA-FULL) with solutions S, and S”. Get a new

solution S, .

Step 3. If F(S. )<F(S,), THEN S, < S..

Computational experiments with datasets from the
Machine Learning Repository, Basic Benchmark reposito-
ries, as well as with data from industrial product samples
(tab. 2) were carried out. New modifications of three GAs
(GA-FULL-MUT, GA-ONE-MUT and GA-MIX-MUT)
were compared with the well-known j-means and k-means
algorithms (in multistart mode), GA without mutation
(GA-FULL, GA-ONE and GA-MIX), automatic grouping
algorithms for the k-means problem with combined appli-
cation of search algorithms with alternating randomized
neighborhoods formed by applying greedy agglomerative
heuristics (k-GH-VNS1, i-GH-VNS2, k-GH-VNS3)
and also for the j-means (j-means GH-VNSI1, j-means

GH-VNS2) problem. 30 attempts were made to run each
algorithm for all datasets. For each algorithm, the mini-
mum (Min), maximum (Max), average (Average) values
and the standard deviation (Std.Dev.) of the objective
function were calculated.

The best values of the new algorithms (*) are high-
lighted in bold, the best values of the known algorithms
are indicated in italics, the most achieved values of the
objective function are underlined (tab. 2). The Mann-
Whitney U-test (T4 ) and Student's t-test (T ) were
used to confirm the statistical significance of the advan-
tages (TM) and disadvantages (U ) of the new algo-
rithms over the known algorithms.

The performed computational experiments show that
GA with a greedy agglomerative crossover operator with
a new idea of the mutation procedure is superior to GA
without mutation in terms of the obtained value of the
objective function.

g 1700 — GA k-means with the original mutation
B — (A k-means with crossover-like mutation procedure
é 1690
s
g 1680
2
O 1670
0 50 100 150 200 250 300
Generation
Results for data set Mopsi-Joensuu (6014 data vectors of dimension 2), 300 clusters, time limit 3 minutes
Pesynbratel A Habopa nanHbix Mopsi-Joensuu (6014 BEKTOPOB TaHHBIX
pasmepHocThIO 2), 300 KIacTepoB, 3 MUHYTHI
Table 2
Results of computational experiments for the Europe dataset (169309 data vectors of dimension 2),
30 clusters, 4 hours
Algorithm Objective function value
Min Max Average Std.Dev.
Jj-means 7.51477E+12 7.60536E+12 7.56092E+12 29.764E+9
k-means 7.54811E+12 7.57894E+12 7.56331E+12 13.560E+9
k-GH-VNSI1 7.49180E+12 7.49201E+12 7.49185E+12 0.073E+9
k-GH-VNS2 7.49488E+12 7.52282E+12 7.50082E+12 9.989E+9
k-GH-VNS3 7.49180E+12 7.51326E+12 7.49976E+12 9.459E+9
Jj-means-GH-VNS1 7.49180E+12 7.49211E+12 7.49185E+12 0.112E+9
Jj-means-GH-VNS2 7.49187E+12 7.51455E+12 7.4962E+12 8.213E+9
GA-FULL-MUT* 7.49293E+12 7.49528E+12 7.49417E+12 0.934E+9
GA-MIX-MUT* 7.49177E+12 7.49211E+12 7.49186E+12 0.117E+9
GA-ONE-MUT*T! 7.49177E+12 7.49188E+12 7.49182E+12 0.042E+9
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Conclusion. The proposed new model of automatic
grouping of industrial products and a new algorithm based
on an optimization model of k-means with Mahalanobis
distances and a trained covariance matrix can reduce the
proportion of errors (increase the Rand index) when iden-
tifying homogeneous production batches of products. The
presented new genetic algorithm for the k-means problem
with the original idea of using one procedure as the cross-
over operator and the mutation operator demonstrates a
more accurate and stable result of the objective function
value in a fixed execution time.
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