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s ananuza HanpsciceHHo-0ehopMupoB8aHHO20 COCMOSIHUSL 0OHOPOOHbIX U Komnosumuvlx men (KT)
appexmusno npumeHsemcs Memoo MHO2OCEMOUHbIX KOHeuHblx 2nemenmos (MMKDI), @ xomopom
UCNONIL3VIOMCSL MHO20CemOoUnble KoHeunvle anemenmul (MuHK3). MMKD nopoocoaem muococemoumvie
OucKkpemmuvie MOOeIU MAOU PA3MEPHOCMU, 8 KOMOPLIX HeOOHOPOOHASL CIMPYKMYPA mell Y4umuledemcs 6
pamkax muxponooxoda c¢ nomowpio MuKD. basoevie ouckpemuvie mooeau (bBM), yuumvlearowue
HEOOHOPOOHYIO CMPYKMYPY me, UMEeIOm 6biCOKYIO pasmepHocmb. [l NOHUdICEHUS pA3MEpHOCTU
ouckpemuwvix moodeneti men ucnoavzyemes MMKD. Oonaxo, cywecmsyrom BM KT (nanpumep, BM men ¢
MUKDOHEOOHOPOOHOU CIMPYKMYpOll), KOMopble UMEIOm MaKylo 8biCOKYIO pasMepHOCMb, YMo peanusayus
MMKD ona maxux BM, 6 cuny oepanuyennocmu pecypcog DBM, sampyonumenvua. Kpome moeo, ons
MHO20CEMOUHbIX  OUCKPEemHbIX MoOenell gvlcokol pasmeprocmu MMKD  nopooicoaem  uucienno
Heycmouuugsle peuwieHus, 4mo Ces3aHO C nozpeuwiHocmovlo @viuucienuit. IBM. /s pewenus Oanmvix
npobiem 30ech nPedazaemcs 8 paciemax UCHOIb308aMb UKMUGHbIE OUCKPEMHbLE MOOEU, 0CODEHHOCb
KOMOPBIX COCMOUM 8 MOM, YMo ux pasmeprocmu menvue pasmepruocmeii BM KT.

B 0annoii pabome npeonazaemcs memoo QuxmusHvix Ouckpemuvix mooenei (MDIAM) ons pacuema na
CMAMU4ecKyro nPOYHOCHb YAPY2UX KOMHOSUTNHBIX el C HeOOHOPOOHOU, MUKPOHEOOHOPOOHOU pecyaapHol
cmpykmypotu. M®IM peanuzyemcs ¢ nomowwpro MMKD ¢ npumenenuem cKoppexmup 08aHHbIX YCI0GULL
NPOYHOCTMU, KOMOPblEe YUUMbBIEAION NOZPEUHOCHb NPUOIUNCEHHbIX peutenuil. B ocnose M®IIM neacum
noaooicenue, umo pewenus, omeeuarowue M KT, mano omauuaomes om mounvlx, m. e. 9mu peulenus
cuumaem moyHbLMU.

Pacuem KT no M®JIM ceodumcs k ROCMpOeHUio u pacuemy Ha NPOYHOCb QUKMUBHBIX OU CKPEMHbIX
mooeneti (OM), komopule obradaiom ciredyrowumu ceoticmeamu. DM ompascarom opmy, xapakmephvle
pasmepel, Kpenjenue, Hazpydicenue u uo HeoOHopoowou cmpykmypel KT, pacnpedenenue mooyneti
ynpyeocmu, omeeuaiouee BM  KT. Pasweprnocmu ®OM  menvwe pazmepwocmu BM  KT.
Tocneoosamenvrocmo, cocmoswas uz @M, cxooumces k BM, m. e. npedenvuas ®M coenadaem ¢ M. Kak
NOKA3bIBAIOM  pAcHembl, CXOOUMOCMb MAKOU NOCIe008aAmMeNbHOCMU —0becneyusaem pasHOMePHYIO
CXO0UMOCMb MAKCUMANBHBIX IKGUBANIEHMHbIX HanpsaxceHuti @M K MaxcumanbHOMy SKEUBALEHMHOMY
nanpsaxcenuio BM KT, ymo noseonsem npumenams maxue @M 6 pacuemax ynpyaux men Ha NPOYHOCMb.

Paccmampusaromes 0éa muna @M. Ilepsvii mun — macwmabupoganuvie @M, emopot — OM c
NEePeMEHHbIMU  XAPAKMEPHbIMU  pasmepamu. B oannoii pabome nodpobno paccmampusaiomcs ©OM
emopoeo muna. Pacuemvl noxasviearom, umo pearusayus MMKD ons @M ¢ 00num, 08ymsa uiu mpems
nepemMentbiMU  XApaKmepHulMU pasmepamu npugooum K 00abol dKoHomuu pecypcog IBM, umo
nosgonsem ucnoavzosams M®@/IM 0ns men ¢ MUKDOHEOOHOPOOHOU pe2yasapHou cmpykmypoti. Pacuemol na

npounocmov KT no M®IIM mpebyrom 6 10% +10’ pas menve odbvema namamu IBM, yem ananozuumwiil
pacuem ¢ ucnoavzoganuem BM KT, u ne codepocam npoyedypy usmenvuenus bM. Ilpusedennvlii npumep
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pacyema HA NPOYHOCMb MpexmepHol komnozumuou 6arku no M®JM c npumenenuem @M ¢ mpems
nepemMeHHbIMU XaAPAKMEPHbIMU PA3MEPAMU NOKA3bIBAENT €20 BbLCOKYIO D eKmusHocmb.

Knioueguvie cnoga: ynpyzocms, KoMnO3umel, CKOppeKmMupoB8anHvle YCI08U NPOYHOCHU, QUKMUBHDbIE
Oouckpemmubvie MOOeIU, MHO20CEMOUHble KOHEUHbLe 1eMEHMbL.

Application of fictitious discrete models with variable characteristic
dimensions in calculations for the strength of composite bodies
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To analyze the stress-strain state of homogeneous and composite bodies (CB), the method of multigrid
finite elements (MMFE) is effectively applied, which uses multigrid finite elements (MgFE). MMFE gener-
ates multigrid discrete models of small dimension, in which the inhomogeneous structure of bodies is taken
into account within the framework of a micro-approach using MgFE. Basic discrete models (BM), taking
into account the heterogeneous structure of bodies, have a high dimension. To reduce the dimensional ity of
discrete models of bodies, MMFE is used. However, there are BM CB (for example, BM bodies with a mi-
cro-inhomogeneous structure), which have such a high dimension that the implementation of MMFE for
such BM, due to limited computer resources, is difficult. In addition, for multigrid discrete models of high
dimension, the MMFE generates numerically unstable solutions, which is associated with the error of com-
puter calculations. To solve these problems, it is proposed here to use fictitious discrete models in calcula-
tions, the peculiarity of which is that their dimensions are smaller than the dimensions of BM CB.

In this paper, we propose a method of fictitious discrete models (MFDM) for calculating the static
strength of elastic composite bodies with an inhomogeneous, micro-inhomogeneous regular structure.
MFDM is implemented using MMFE with adjusted strength conditions application which takes into ac-
count the error of approximate solutions. The MFDM is based on the position that the solutions that meet
the BM CB differ little from the exact ones, i. e. we consider these solutions to be accurate.

The calculation of CB by MFDM is reduced to the construction and calculation of the strength of ficti-
tious discrete models (FM), which have the following properties. FM reflecst: the shape, characteristic
dimensions, fastening, loading and type of inhomogeneous structure of the CB, and the distribution of elas-
tic modulus corresponding to BM CB. The dimensions of FM are smaller than the dimensions of BM CB.
The sequence consisting of FM converges to BM, i. e. the limiting FM coincides with BM. Calculations
show that the convergence of such a sequence ensures uniform convergence of the maximum equivalent
stresses of the FM to the maximum equivalent stress of the BM CB, which allows the application of such
FM in the calculations of elastic bodies for strength.

Two types of FM are considered. The first type is scaled FM; the second type is FM with variable char-
acteristic sizes. In this paper, the FM of the second type is considered in detail. Calculations show that the
implementation of MMFE for FM with one, two or three variable characteristic sizes leads to a large sav-
ing of computer resources, which allows the use of MFDM for bodies with a micro-inhomogeneous regular
structure. Calculations for the strength of CB according to MFDM require several times less computer
memory than a similar calculation using BM CB, and does not contain a procedure for grinding BM. The
given example of calculating the strength of a three-dimensional composite beam according to MFDM us-
ing FM with three variable characteristic dimensions shows its high efficiency.
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Introduction
Static calculation on the strength of an elastic structure (body) V, is carried out, as a rule,

according to the strength reserves [1-3] and comes down to determining the maximum equiva-
lent stress of the structure. In this case, for the body V,, the given strength conditions have the

form n <n,<n,, where n, n, are set, n, - is the body safety factor V,, ny=0; /c,, oy —
the ultimate tension of the body V,, o, - the maximum equivalent stress of the body V,, cor-

responding to the accurate solution of the elasticity problem, constructed for the body V,. For

maximum equivalent stresses, which are determined approximately, corrected strength condi-
tions are used [4]. When analyzing the stress-strain state (SSS) of elastic bodies, the method
of multigrid finite elements (MMFE) [5-11] is effectively applied, which uses multigrid finite
elements (MgFE) [5-17]. The MMFE generates low-dimensional multigrid discrete models,
in which the inhomogeneous structure of bodies is taken into account in the framework of the
micro-approach [18] with the MgFE application. Basic discrete models (BM) of composite
bodies (CB), which take into account their inhomogeneous, micro-inhomogeneous structure
within the micro-approach, have a very high dimension. To reduce the dimensions of discrete
models, the MMFE is very effectively used. However, for example, BM bodies with a micro-
inhomogeneous regular structure have such a high dimension that the realisation of MMFE
for such BM, due to limited computer resources, is difficult. In addition, for high-dimensional
multigrid discrete models, the MMFE generates numerically unstable solutions, what is asso-
ciated with the error of computer calculations. To solve these problems, in this article it is
proposed to use fictitious discrete models in calculations, the peculiarity of which is that their
dimensions are less than those of BM CB. The existing approximate approaches and methods
for calculating CBs have complex formulations and are difficult for implementation for bod-
ies with a complex inhomogeneous structure [19-26].

In this paper, a method of fictitious discrete models (MFDM) is proposed for calculating
the strength of bodies with inhomogeneous, micro-inhomogeneous regular structure. MFDM
is realised with MMFE application using corrected strength conditions which take into ac-
count the error of numerical solutions. Let us introduce a definition for fictitious discrete
models.

Definition. Discrete models CB V will be called fictitious models (FM) if these FM have
the following properties.

1. The inhomogeneous structures of the FM differ (do not differ) from the inhomogeneous
structure of the BM CB V.

2. FM reflect: the form, characteristic dimensions, fastening, loading and type of inhomo-
geneous structure of CB V, and the distribution of elastic moduli corresponding to BM CB V.

3. A sequence consisting from FM converges to BM CB V, i.e., the limit FM of the se-
guence coincides with BM CB V.

4. The dimensions of the FM are less than the dimension of the BM CB V, except for the
limiting FM, the dimension of which is equal to the dimension of the BM CB V.

Two main types of FM are considered here. The first type is scaled FM, the second is FM
with variable characteristic sizes.

In [27], scaled composite discrete models are considered in detail as FM, the dimensions of
which are less than the dimension of BM CB. The proposed FM, formed using a scaled regu-
lar CB cell, have the same characteristic dimensions, shape, fastenings and loadings as the
BM, but the inhomogeneous structures of the FM differ from the inhomogeneous structure of
the BM. The scaled FMs reflect the type of inhomogeneous structure of the BM CB and the
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distribution of elastic moduli corresponding to the BM. The convergence of the scaled FM
sequence ensures uniform convergence of the maximum equivalent voltages of the FM to the
maximum equivalent voltage of the BM. The high efficiency of using scaled FMs in MFDM
is shown by the example of strength analysis of a beam with an inhomogeneous regular struc-
ture [27].

In this paper, the FM of the second type is considered in detail. Calculations show that the
realisation of the MMFE for FM with one, two or three variable characteristic sizes leads to a
large saving of computer resources, which makes it possible to use the MFDM for bodies with
a micro-inhomogeneous regular structure.

Calculation of the strength of CB by MFDM requires 10° =10" less computer memory than
a similar calculation using BM CB, and does not contain the procedure for grinding of BM.
The given example of strength calculation of a three-dimensional composite beam according
to MFDM using FM with three variable characteristic dimensions shows its high efficiency.

1. Main provisions of the method of fictitious discrete models

MFDM is used for CBs with a regular structure which satisfy the following provisions.

Statement 1. CBs consist from multy-module isotropic homogeneous elastic bodies, the
connections between which are ideal, i.e., on the common boundaries of multy-module iso-
tropic homogeneous bodies, the functions of displacements and stresses are continuous.

Statement 2. Displacements, deformations and stresses of multy-module isotropic homoge-
neous bodies correspond to the relations of a three-dimensional linear problem of the theory
of elasticity [28].

Statement 3. Approximate solutions, which correspond to BM CB, differ little from exact
ones. Such approximate solutions will be considered as accurate. Note that, due to the conver-
gence of the MMFE, such BMs for CBs always exist.

2. Fictitious discrete models with variable characteristic dimensions

In practice, composite beams and shells with a constant cross section are widely used,
which are reinforced with continuous fibers of constant thickness. The fibers are parallel to
the axis of the beam (shell).

Without losing the generality of judgments, for simplicity of presentation, we will consider
the essence of constructing FM with one variable characteristic size using the example of a
cantilever beam, the shape of a constant cross section of which is a symmetrical I-beam, con-
sisting of 3 rectangles (fig. 1). CB V,, located in a Cartesian rectangular coordinate system
Oxyz, when y =0 isrigidly fixed, i.e., when y =0 we have: u,v,w=0. The axis Oy in fig. 1
is parallel to the axis of the beam V,. CB V, is reinforced with continuous fibers with a cross

section hxh that are parallel to the axis Oy and have the same moduli of elasticity. Fig. 2

shows a section of a beam, consisting of 3 rectangles, the sections of the fibers are shaded.
At fig. 1, 3 a, b there are the characteristic dimensions of the cross section of the BM R,

CB V, and FM R,, Ly, (L,) is the length of the BM R, (FM R,), L, <L,. FM R, has the
same fastening (i.e., when y=0 FM R, isrigidly fixed) and the same loading pattern as BM.
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Puc. 1. banka (KT) V,;, BM R, Puc. 2. Ceuenne KT V, Puc. 3. ®M R, 6anku V,
Fig. 1. Beam (CB) V,, BM R, Fig. 2. Section of CB V, Fig. 3. FM R, beams V,

FM R, has the same inhomogeneous structure as CB V,, i.e. FM R, is reinforced with
continuous fibers parallel to the axis Oy with section hxh and has the same type of distribu-
tion of fibers in the cross section as CB V, (Fig. 2). The moduli of elasticity of the fibers and
the binder material of CB V, and FM R, are the same. For simplicity of presentation, let

h=L,/N, (1)
where N isaninteger; N —isset; N >>1; h — few.

BM R, CB V, consists from thelst-order FE V, of the shape of a cube with a side h (in

which three-dimensional SSS is realised [28]), takes into account the inhomogeneous struc-
ture and complex shape of CB V, . Let the BM R, generate a solution which differs little from

the exact one and which we will assume to be exact (statement 3, item 1). The inhomogene-
ous structure in the FM R, as well as in the BM R, is taken into account with the help of the

first-order FE V, . Taking into account (1), the size L, of the FM R, is found by the formula
L,=Lyn/N=hn (2)
where n is an integer, n=n,,..,N, n, isgiven, we have L, <L, .
From the foregoing, taking into account that according to (2) L, —» L, when n— N, it fol-
lows that
R,—> R, when n—N. 3)

When n=N due to (2), (3) we have Ry =R,. Then the fulfillment of (3) implies
o, >0, when n—> N, 4)
where o, (o,) isthe maximum equivalent voltage of the FM R, (BM R;).

FM R, and BM R, consist from the 1-st order FE V, of the shape of a cube with a side h
and the cross sections of these models are the same. This means that the sections FM R, and
BM R, have the same number of nodes, equal to N,. Then the total number of nodes M,
BM R, is equal to My=Ny(N +1). The total number of nodes M, FM R, is equal to
M, = Ny(n+1). From this it follows that when ny <n <N we have

M, <M,. (5)

When n=N we have M =M,, i.e. Ry =R,;. So, the application of FM R, with a varia-

ble size L, in strength calculations according to MFDM CB V,, due to (5), leads to saving

computer resources. Calculations show the greatest efficiency of MFDM when using FM with
three variable characteristic sizes in calculations.

3. Results of numerical experiments
Let us consider a model problem of calculating the strength of a cantilever beam V, with a

non-uniform regular fibrous structure with dimensions 48hx1152h=96h (Fig. 4). A regular
cell G, of a beam with dimensions 6hx6hx6h in fig. 5 is located in the local Cartesian coor-

dinate system Oxyz, fibers with a section hxh are directed along the axis Oy, fiber sections
in the plane Oxz are shaded, i, j,k =1,...,7.
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Puc. 4. Pazmepsi 6ankn V, Puc. 5. Perymapnas sueiika G,
Fig. 4. Dimensions of the beam V, Fig. 5. Regular cell G,

The beam is reinforced with longitudinal continuous fibers. When y =0 the beam is rigid-
ly fixed, on the surface z=H it hasa load on q,, g,. For the safety factor n, of the beam,
the strength conditions are given

1,8<n,<34. (6)
For the model task, we have the following initial data:
h=0,2083; o; =6, E,=1, E, =10, v,=v,=0,3, @)

where E,, E, (v, v,)—are Young's moduli (Poisson's ratios), matrix and fiber; o; — yield
strength of the fiber, at the boundary z=H; 0,5L<y<L the load is set g, =q, =0,000375
(fig. 4).

The basic model R, CB V, is composed from single - grid finite elements (1gFE) th of

the 1-st order cube shape with side h (in which three-dimensional SSS [28] is realised), takes
into account the inhomogeneous structure of the CB V,, and generates a uniform grid with

step h of a dimension 49x1153x97 with a total number of nodal unknowns of the finite ele-
ment method (FEM) [29; 30] takes into account the heterogeneous structure of CB V, and

generates a uniform grid with a step h of a dimension 49x1153x97 with the total number of
nodal unknowns of finite element method (FEM) [29; 30], equal to N, =16426368, the tape

width of the system of equations (SE) (FEM) is equal to b, =14556 . Let us consider, that BM
R, CB V, satisfy Statement 3 item 1. In calculations we use FM R, with three variable char-
acteristic dimensions, b, x L, xH,, (fig. 6), where

b,=6hn, L,=24x6hn, H,=2x6hn, (8)
i.e. FM R, consists from regular cells G,, fig. 5, n=2,...8. At n<8 we have: b, <b,
L, <L, H,<H,at n=8: by=b, Ly=L, Hg=H, i.e. characteristic dimensions FM R
coinside with dimentions BM CB V,,. As FM and BM CB V,, are presented with the same fi-

nal elements (FE) (see point 2), then Rg =R,. At y=0 FM R, isrigidly fixed, on the surface
z=H,, 05L,<y<L, hasaload g, =q, =0,000375.

z T I q- X
/

q-

V
x L ‘/l'

L n g P

Puc. 6. IlepemenHble xapaktepHsle pasmepst ®M R, Ganxu V),
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Fig. 6. Variable characteristic dimensions of the FM R, beam V,

In calculations, we use a two-grid FE (2gFE) Vd(z), having dimensions 6hx6hx6h (fig. 7), i.
e. consisting of one regular cell G, (fig. 5). On the basis of model R, we build a two-grid

model R?, which consists from 2gFE V{?.

Ly
k4z /
i ]
34 |6
" oh
9] i, x

[

Puc. 7. Menkas u kpynsas cetku 2cKO Vd(z)

Fig. 7. Small and large grids 2gFE V@

In fig. 7 2gFE Vd(z) is located in the local Cartesian coordinate system Oxyz . When con-
structing a 2gFE Vd(z) we use two nested grids: a small grid hy with a step h dimension
7x7x7 and a large grid — H, with dimension 2x3x2. Along the axes Ox,0z the grid H,
has a step 6h, along the axis Oy -a step 3h. At fig. 7 the grids h, and H, are shown and
nodes of a large grid are marked with dots, 12 nodes. Fine grid h, is generated by the base
partition R, 2gFE V{?, which is composed from 1gFE V' of the 1-st order cube shape with
side h (in which three-dimensional SSS is realised) and takes into account the heterogeneous
structure 2gFE Vd(z). The procedure for constructing the stiffness matrix and the vector of
nodal forces 2gFE V{? is described in detail in the work [27].

The calculation results are given in the table 1, where o, — is model maximum equivalent
voltage R?, found according to the 4th theory of strength, N u b? — dimension and width of
the tape SE MMFE of the model R?, n=2,...,7, relative error §,(%) is determined by the for-
mula

8,(%) =100%x|c’ — o) ;| /oy, n=2,.,7. 9)

Analysis of the results shows a uniform monotonic convergence of stresses c° and errors

3,(%), n=2,...,7.

Table 1
Calculation results for models Ry —R?
n | Ry o 5, (%) Ny by n | RS cn 3, (%) Np be
2 Ry 1.801 - 4320 105 5 RS 2.373 7.33 47520 420
3 Ry 1.993 9.61 12096 186 6 Re 2.525 6.03 78624 573
4 Ry 2.199 9.36 25920 291 7 RY 2.661 5.12 120960 751
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As R; =Ry, then the voltage sy FM Ry, is equal to of =2,785, we consider the exact so-
lution, i.e. o, =2,785 (see item 2, Statement 3 item 1). In calculations for the strength of elas-

tic bodies according to MFDM, the corrected strength conditions are used (taking into account
the error of approximate solutions), which are presented in the following theorem.
Theorem. Let for the safety factor n, of an elastic body V, the strength conditions are

given
n<n,<n,, (10)
where n,, n, —are set, n, >1; ny=o; /oy, oy — ultimate stress of the body V,; o, — the
maximum equivalent stress of the body V,, which corresponds to the exact solution of the
problem of the theory of elasticity, built for the body V, .
Let the safety factor n, of the body V,, corresponding to the approximate solution of the
problem of the theory of elasticity, satisfie the corrected strength conditions
L P n, < 2
1-0, 1+9,
Then the safety factor n, of the body V,, corresponding to the exact solution of the prob-

lem of the theory of elasticity, satisfies the specified strength conditions (10), where
n, =or /o, o, —Maximum equivalent body stress V,,, corresponding to an approximate so-

lution of the problem of elasticity theory, constructed for the body V,, and found with such
an error §,, that

(11)

15, <8, <C, =12~ (12)

where §, — upper estimate of the relative error, §,, &
determined by the formula &, = (o, — o)/ o,.

Note, that if the body V,, consists of plastic materials, then o — is the yield strength. From
(12) follows, that if n, —n, few, then o, must be determined with a small error &, .

The proof of the theorem is given in the article [4].
For the given n, =18 u n, =3,4 according to (12) we have C, =0,31. Calculations show that

if 8,(%)<10 %, then the tension error o, of model R; is not more than 15 %. Tensions
og =2,525 and og =2,373 differ at 55(%)=6,028 % (look table 1), then the tension error og is
not more than 15 %, i. e. we have 5, <0,15. Note, that og =2,525 differes from the exact voltage
6, =2,785 on 9,33 %. Let’s accept that 5, =0,15, o, =cg . Condition (12) for §, is satisfied,
i.e. we have §, =0,15<C, =0,31. Using &, =0,15, n, =18 and n, =3,4 in (11) we get

— is given, error §, for tension o, is

¢4

212<n,<2,96. (13)
Using o, =2,525, o; =6, we find the safety factor n, for CB V, according to the formula
n, =or /o, =6/2,525=2,38. (14)

As the found coefficient n, satisfies the corrected strength conditions (13), then, according
to the above formulated theorem, the safety factor n, CB V,, corresponding to the exact solu-
tion of the elasticity problem found for CB V,, satisfies the specified strength conditions (6),
i.e. 1,8<n,<34. Indeed, n,=o0y/0,=6/2,785=215, safety factor n, =215 CB V, satis-
fies the specified strength conditions (6), i.e. we have 18<215<34.
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In strength calculations CB V, according to MFDM, we use the discrete model Rg, which
Noxb, 16426368 x14556
NOxb®  78624x573
memory, i.e., almost in 5,3x10° times less, than BM R, CB V,, what shows the high effi-
ciency of the realization of the MFDM using the FM with three variable characteristic sizes.

requires k = =5307,30 times less than the amount of computer

Conclusion

The method of fictitious discrete models (MFDM) is proposed for calculating the static
strength of elastic bodies with an inhomogeneous, micro-inhomogeneous regular structure.
The proposed method is reduced to the construction and calculation of the strength of ficti-
tious discrete models (FM), the dimensions of which are less than the dimensions of the basic
discrete models (BM) of composite bodies (CB), and is realised using the multigrid finite el-
ement method (MMFE) and corrected conditions strength, which take into account the error
of approximate solutions. Here, FMs are represented by two main types. The first type is
scaled FM; the second type is FM with variable characteristic dimensions. In this paper, FM
of the second type is considered in detail. Calculations show that the implementation of
MMFE for FM with variable characteristic dimensions leads to a large saving of computer
resources, what makes it possible to use MFDM for bodies with a microinhomogeneous regu-
lar structure. Calculations for the strength of CB using MFDM require less computer memory
than a similar calculation using BM CB, and do not contain the procedure for grinding CB.
The given example of calculating the strength of a composite beam according to MFDM us-
ing FM with three variable characteristic dimensions shows its high efficiency.
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