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Today, there are many approaches to developing parallel programs. It is considered that it is more efficient to write
such programs for a particular computing system. The article proposes to ignore the features of a particular computing
system and outline plans for the development of a certain automated system that allows trying to improve code
efficiency by developing programs with unlimited parallelism, as well as explore the possibility of developing more
efficient programs using the restrictions imposed on maximum parallelism. This approach was demonstrated on the
example of the analysis of various matrix multiplication algorithms. As a mathematical apparatus, the study considered
various approaches to the description of algorithms to increase their implementation, including an approach based on
unlimited parallelism and, also, an approach based on various restrictions on parallelism is proposed. In the course of
the work, sequential and parallel methods of matrix multiplication were studied in detail, including tape and block al-
gorithms. As a result of the study, various matrix multiplication methods (sequential, with left and right recursion, par-
allel methods) were studied and more effective ones were found in terms of the resources used and the restrictions im-
posed on parallelism. A sequential method and a cascade summation scheme were analyzed and proposed as possible
ways of convolving the results of solving the problem obtained after the decomposition stage. Also, a number of pro-
grams with different levels of parallelism were developed and implemented in the functional-stream parallel program-
ming language. In the future, such transformations can be carried out formally, relying on a knowledge base and a lan-
guage that allows equivalent transformations of the original program in accordance with the axioms and algebra of
transformations laid down in it, as well as replacing functions that are equivalent in results and have different levels of
parallelization. These studies can be used to increase the efficiency of developed programs in terms of resource use in
many branches of science, including in the field of software development for the needs of astronomy and rocket science.
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Ceeo0ns cywpecmgyem MHO20 nOOX0008 K paspabomke napaiieivhvlx npoepamm. Cuumaemcs bonee s¢hgpexmus-
HbIM HAnUcaHue Makux npocpamm noo onpeoenennyio gviuuciumensvuylo cucmemy (BC). B cmamve npednazaemcs
abcmpazuposamuvcs om ocobennocmeti mou uau unou BC u namemumy nianvl no paspadomie HeKol a8mMoMAmu3upo-
BAHHOU CUCHEMbL, NO3BOISIOUE CIMPEMUMbCSL K NOBLIUEHUIO IDOEKMUBHOCU KOOA 3d CYem CO30AHUs NPOSPAMM
C HeOZPaHUYeHHbIM NAPAIEIUIMOM, d MAKIICE UCCLed08amMb 603MONCHOCIb pa3pabomku boiee IhhHexmusHvlx npo-
2PAMM C HOMOWBIO OZPAHUYEHUU, HAKIAObLIGAEMBIX HA MAKCUMANbHBIL napaiierusm. B kauecmee npumepa npusooumcs
AHATU3 PA3TUYHBIX ANOPUMMOE YMHOJICEHUs. Mampuy. B kauecmee mamemamuueckoeo annapama 6 ucciedo8aHuu
PACCMAmMpUaIUcy pasiudHble H0OX00bl K ONUCAHUIO AI2OPUMMO8, 8 MOM YUCLe, HOOX00, OCHOBAHHBIL HA HEOZPaHU-
yennom napannenusme. I[lpednazaemcsi no0xoo, 8 0CHO8E KOMOPO20 AeHCAM PA3IULHBLE 02PAHUYEHUSL, HAKIAObl8AeMble
Ha napannenusm. B xode pabomvl noOpobHO U3yHANUCH NOCIEO08AMENbHBIE U NAPATIETbHbIE MEMOObl YMHONCEHUS
Mampuy, 6 mMOM Yucie, 1eHmoyHble U O104Hble areopummsl. B pezyismame npoeedennozo ucciedosanus ObLiu U3yueHbl
paziuunvle Memoovl YMHOJICEHUs Mampuy (nociedo8ameinvhvle, C €60l U NPagoll peKypcuell, napaiieivbhvle) u Hatlde-

28



HquopMamuKa, eblduciumenlbHas mexunuKka u ynpaejienue

Hbl O01ee IPpekmueHble U3 HUX ¢ MOYKU 3PEeHUSl UCNOTIb3YEeMbIX PECYPCO8 U OSPAHUYEHULL, HAKIAObl8AeMbIX HA Napa-
aenusm. Bolnu npoananuzupogansl u npeonodiceHvl nocie008amenbHblil Memoo U KACKAOHAs CXeMa CYMMUPOBAHUS KAK
B03MOICHBLE CHOCODBL CEEPMKU PE3YIbIMANMOE PeuleHUst 3a0ayu, NOYYEeHHbIX nocie smana dexomnosuyuu. Taxoice Obil
paspaboman u pearu308an psi0 RPOSPAMM C PA3IUYHBIM YPOSHEM NAPATIENUIMA HA (DYHKYUOHATLHO-NOMOKOBOM 513bIKe
NapaiienbHO20 RPOSPAMMUPOSanus. B nepcnexmuge nooobHbie npeodpa308aHUst MONCHO HPOBOOUMb (POPMATLHO, ONU-
pasace Ha 06a3y 3HAHUL U A3bIK, OONYCKAIOWULL IKEUBANEHMHbIE NPeoOPA308aAHU UCXOOHOU NPOZPAMMbBL 8 COOMEEmCH-
BUL C 3ATONCEHHLIMU 6 HE20 AKCUOMAMU U ANee6poll npeodpa3o6anuil, d MaKice 3aAMeHOl IKGUBATLCHIMHBIX NO Pe3Yiib-
mamam QyuKyutl, 061a0AI0WUX PA3HLIM YPOGHeM pacnapaiienuéanus. /lanHvle Uccie008aHUsE MONCHO NPUMEHSIND
0J11 nogvbluleHUsl dPPexmusHoCmuU paspadamvleaemMvlx NPOSPAMM C MOYKU 3PEHUSL UCTIOTb308AHUSL PeCYPCO8 60 MHOSUX
ompacinx HAyKu, 6 mom yucie, u 6 cgpepe paspabomru 110 0151 HyxHCO ACMPOHOMUU U PAKEMOCMPOECHUSL.

Knrouesvie crosa: H@OZpaHH‘leHHblljl napaieiiusm, Mampuinoe yMHOIICerue, napajlejlbHoe npocpammuposaniue.

Introduction. There are many different approaches various options were proposed for the subsequent summa-
for developing parallel programs. In parallel tion of the obtained results of solving subproblems in or-
programming, special programming techniques are often  der to increase the efficiency of resource use in a consis-
used. And in most cases it is considered more efficient to  tent way and in a cascading manner.
write program code for a specific calculated system. Since These studies can be applied in various fields of sci-
the development of computer technology is proceeding at  ence, including the development of software in rocket
a rapid pace today, programmers have to rewrite code for  science, which will further improve the missile control
a newly developed system. The main problem of the tran-  system.
sition from traditional to parallel programming is that it is Main part. Algorithm for solving the problem.
simply impossible to develop a universal executor with ~ Statement of the problem. In fact, the statement of the
which it would be possible to achieve the same effective  problem is as follows. Two matrices are multiplied:
way of writing parallel programs [1-3]. In addition to the A [M] [L] - B [L] [N] => C [M] [N], where the number of
style of writing programs in a particular system, it is also ~ row multiplications by columns is S=M - N.

necessary to take into account the amount of resources In each combination of row multiplication by column,

used and their computing power. Therefore, to implement L pairs of elements are involved.

effective parallel computing, you have to constantly re- Therefore, the total number of simultaneously possible

build the structure of the program. multiplications P =M - N - L, that is, it is set by the corre-
The issue of creating tools to ensure portability of par-  sponding parallelepiped [5; 6].

allel programs has been studied for a long time. And all Next, the multiplied elements for each combination of

attempts to develop such systems were associated with  rows and columns begin to add up. In this case, it is pos-

writing programs for a generalized architecture [4]. sible to use the usual sequential addition method or in a
It is proposed to focus not on the features of a particu-  cascade scheme.

lar computing system, but to use some kind of abstract Matrix multiplication. Matrix operations are quite

system that allows trying to improve the efficiency of the  time-consuming to implement, so they represent a classic
code by developing programs with unlimited parallelism. area of application for parallel computing.

Increasing the level of abstraction, it is possible to build Sequential Matrix Multiplication Algorithm
various combinations, compressing parallelism, and there- If there are two square matrices A and B, then
fore, the transition from unlimited parallelism to limited. C = A - B is the result of their multiplication,

As a mathematical apparatus, the research considered
various approaches to the description of algorithms to n
increase their implementation, including an approach G = Z =ay - by, )
based on unlimited parallelism. Also, the approach based =
on various restrictions on parallelism is proposed. In the ~Wwherei=1,...,n,j=1, ..., m.
course of the work, sequential and parallel methods of This algorithm for multiplying two matrices A and B
matrix multip]ication were studied in detaﬂ’ including is iterative and is oriented towards sequential calculation
band and block algorithms. After decomposition in the  of rows of matrix C (fig. 1).
framework of solving the matrix multiplication problem,

Fig. 1. First iteration of matrix multiplication in a sequential approach

Puc. 1. IlepBas utepanus yMHOXKEHHs MaTPUI] IPH M1OCIEI0BATEIbHOM MTOIXOE
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When performing one iteration of the outer loop, one
row of the resulting matrix is calculated [7].

In the sequential matrix multiplication algorithm, ele-
ment-wise multiplication of all elements of the matrix
occurs. The information graph in this case will be quite
voluminous and therefore its analysis is difficult. In addi-
tion, this method of multiplication becomes ineffective if
the size of the matrix exceeds the size of the processor
cache. A search is needed for more efficient algorithms
for solving this problem [8; 9].

From formula (1) it is clear that the calculation of each
Cjj is independent and simultaneously, and it can be per-
formed in parallel. This algorithm is with mass parallel-
ism, since it contains a huge number of operations that
can be performed simultaneously and independently of
each other [9].

The choice of matrix separation method leads to the
determination of a specific parallel computing method;
the existence of different data distribution schemes gener-
ates a number of parallel matrix computing algorithms.

If we ignore the use of specific resources to solve the
problem, then we can achieve increased program effi-
ciency, gradually compressing initially unlimited parallel-
ism.

The process of multiplication in this case will begin
with the decomposition of the task into subtasks. That is,
to solve problem (1), we consider the main combinations
of multipliable matrix elements in i, j, k.

Variants are possible when the resulting rows, col-
umns or groups of matrix columns are computed in paral-
lel. For example, if you execute the loop body in i for
each counter value in parallel, then the rows of the matrix
product will be counted in parallel. If we interchange the
cycles in i and j (which is quite possible due to the inde-
pendence of the operations of nested cycles in i and j) and
execute the body of the cycle in parallel for each counter
value, we get a version of the program that contains col-
umns in parallel. In addition, each element of the resulting
matrix can also be counted in parallel [9].

Reduction steps when multiplying matrices and
moving to parallel algorithms. As noted above, from the
definition of the operation of multiplying the matrices A
and B it follows that the elements of the resulting matrix
C can be found independently of each other. The product
of matrices can be considered as n® independent scalar
products, or as n independent products of a matrix by a
vector. In both cases, different algorithms are used [10].

In the first approach, for organizing parallel computa-
tions, the main subtask uses the procedure of determining
one element of the resulting matrix C, and for all neces-
sary calculations, each task must contain at least one row
of matrix A and a column of matrix B. The total number
of subtasks here is n”. In the second approach, to perform
all the necessary calculations for the base subtask, one of
the rows of matrix A and all columns of matrix B must be
available. The number of subtasks isn [11].

To increase the efficiency of the matrix multiplication
algorithm, it is logical to assume that if matrix multiplica-
tion is not performed element-wise, but line by line, this
will make the algorithm more efficient in terms of paral-
lelism. In this case, the general problem of matrix multi-
plication will be reduced to dividing it into subtasks. Fur-
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ther, these subtasks will be combined to obtain a common
necessary solution to the original problem.

Taking into account the foregoing, this algorithm can
be considered as a process of solving independent
subproblems of multiplying matrix A by columns of ma-
trix B. At the same time, the information graph is simpli-
fied, in contrast to the case with a sequential multiplica-
tion algorithm. It all comes down to building a matrix
multiplication graph. The introduction of macro opera-
tions is carried out in stages with a return level of detail of
the operations or decomposition used [12].

Band algorithm. Consider band algorithms in which
the matrices A and B are divided into continuous se-
quences of rows or columns (fig. 2). To carry out this
procedure, each subtask contains row A of the matrix and
access to columns B. One processor is allocated a number
of rows and columns. A simple solution to this problem is
to duplicate matrix B in all subtasks. Here the following
way of organizing parallel computations for 3-3 matrices
is possible [13]:

Such fine-grained tasks can be enlarged if the matrix
size is greater than the number of computing elements or
processors. In this case, the original matrix A and the re-
sulting matrix C are divided into horizontal stripes. In this
case, the size of such bands should be chosen equal
to k = n/p (if n is a multiple of p), which allows us to en-
sure distribution of the computational load across the
computational elements uniformity [13].

The selected basic subtasks are characterized by an
equal amount of transmitted data and the same computa-
tional complexity. In the case when the size of the matri-
ces is greater than the number of computational elements
(processors and/or cores) p, the basic subproblems can be
enlarged by combining several adjacent rows of the ma-
trix within one subproblem. In this case, the resulting ma-
trix C and the original matrix A are divided into a series
of horizontal stripes [13].

This band algorithm has good localization, and in ad-
dition, there is no interaction between data streams. But it
should be noted that if we enlarge the subtasks, then we
can move on to other matrix-multiplication algorithms
that are more efficient in terms of parallelism — to block
algorithms.

Transition to block algorithms. In such algorithms,
the original matrices A, B and the resulting matrix C are
represented as sets of blocks.

In this case, not only the resulting matrix, but also the
matrix-arguments of matrix multiplication are divided
between the threads of the parallel program into some
rectangular blocks. This approach allows achieving good
data localization and increased cache utilization.

Also there are well known parallel matrix multiplica-
tion algorithms based on block data division, oriented to
multiprocessor computing systems with distributed mem-
ory. When developing algorithms focused on the use of
parallel computing systems with distributed memory, it is
necessary to take into account that placing all the required
data in each subtask (in this case, placing the required sets
of columns of matrix B and rows of matrix A in subtasks)
will inevitably lead to duplication and significant growth
of amount of memory used. As a result, some restrictions
are imposed on the system, that is, the calculations must
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be organized in such a way that at each current point in
time the subtasks contain only part of the data necessary
for the calculations, and access to the rest of the data is
ensured by sending messages. Algorithms that implement
the described approach include the Fox algorithm and the
Cannon algorithm [14] (fig. 3).

The difference between these algorithms is the se-
quence of transfer of matrix blocks between the proces-
sors of any computing system.

It should be noted that after the decomposition step
with the allocation of subtasks and the search for an
effective parallel algorithm, it is necessary to summa-
rize the obtained solutions from the subtasks to get the
general result of solving the matrix multiplication
problem.

From the point of view of parallelism, one can apply
in this case not only sequential summation, but also more
efficient parallel methods, for example, addition accord-
ing to a cascade scheme (fig. 4).

Fig. 2. The example of the organization of calculations in a matrix
multiplication algorithm based on dividing matrices into rows

Puc. 2. [Ipumep opraHuzanyuu BIYUCICHUN B aIlTOPUTME MATPUYHOIO
YMHO>XEHHS, OCHOBAHHOI'O Ha Pa3Je/ICHUU MaTPUL] HA CTPOKU
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Fig. 3. Block matrix organization scheme

Puc. 3. Cxema opranu3anuu 0JIOYHOTO YMHOXKEHHS I0JIOC MaTPHIIBI
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Fig. 4. Graphs of sequential (left) and cascade summation algorithms (right) [15]

Puc. 4. I'padb!l anropuTMOB 10CIIEI0BATEIBHOTO (CI€Ba) M KACKaIHOTO
cymmupoBanusi (cripasa) [15]

Conclusion. After the analysis of the above algo-
rithms, it is planned to use the results to find the capabili-
ties of equivalent transformations of various algorithms
and to develop an automated system that allows its user to
choose one or another algorithm to solve their problem in
order to achieve the fastest and most effective solution
with point of view of resources use.

Using algorithms that describe the maximum parallel-
ism of the problem being solved, the developer offers
additional methods for analyzing and deriving various
algorithms with limited parallelism, which can be consid-
ered as use cases.

Consideration of all the algorithms studied in this pa-
per, as well as their implementation in a functional data-
flow parallel language that allows performing operations
with maximum parallelism, opens up prospects for the
further development and improvement of methods and
approaches to enhance program efficiency.
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