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The paper considers a new class of models under conditions of incomplete information. We are talking about multi-
dimensional discrete-continuous processes for the case where the components of the vector of output variables are
stochastically dependent. The nature of this dependence is a priori unknown, but for some channels the a priori infor-
mation corresponds to both nonparametric and parametric type of the initial data in the process under study. Such
a situation leads to a system of nonlinear equations, some of which will be unknown, while others are known accurate
to the vector of parameters.

The main purpose of the model is to determine the forecast of output variables with known input, and for implicit
nonlinear equations it is only known that one or another component of the output depends on other variables that de-
termine the state of the object.

Thus, a rather nontrivial situation arises when solving a system of implicit nonlinear equations under conditions
where in one channel of a multidimensional system equations themselves are not in the usual sense, while in others they
are known up to parameters. Therefore, an object model cannot be constructed using the methods of the existing identi-
fication theory as a result of a lack of a priori information. If it was possible to parameterize the system of nonlinear
equations, then with a known input this system should be solved, since it is known and the parameterization stage is
over. However, in this case it is still necessary to evaluate parameters. The main content of this article is the solution of
the identification problem in the presence of a partially-parameterized discrete-continuous process, despite the fact that
the parameterization stage cannot be overcome without additional a priori information on the process under study.

In this regard, the scheme for solving the system of nonlinear equations can be represented as a certain sequential
algorithmic chain. First, on the basis of the available training sample, including all components of the input and output
variables observation, a residual vector is formed. After that, an estimate of the object output with known values of the
input variables is constructed based on the estimates of Nadarai-Watson. Thus, for given values of the input variables
of such a process, it is proposed to carry out a procedure for evaluating the forecast of output variables in accordance
with the developed algorithmic chain.

Numerous computational experiments, studying the proposed models of partially-parameterized discrete-continuous
processes have shown their rather high efficiency. The article presents the results of computational experiments illustrating
the effectiveness of the proposed technology for predicting values of output variables from known input variables.

Keywords: partially parameterized discrete-continuous process, identification, nonparametric estimates, KT-
models.
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B pabome paccmampusaemcs Hosbill Kiacc mooeneil 8 YCAo8uax HenoaHou ungopmayuu. Peus udem o muozomep-

HbIX ducxpemHo-Henpepbmelx npoyeccax ons caydast, K020a KOMNOHEHMbl e6eKmopa BbIXOOHBIX nepemMeHHvlx cmoxac-
mu4ecKu 3a6ucumsl, npuiem xapakmep MOt 3a8UCUMOCTIU anpuopu Heu3eecmeH, Ho N0 HeKomopviM Kanaiam anpu-
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OpHAs UHGOpMAYUsL COOMBEMCMEYen 00HOBPEMEHHO KAK Henapamempuieckomy, mak U Nnapamempuyeckomy muny
UCXOOHBIX OaHHbIX 00 uccaedyemom npoyecce. Ilo0obnas cumyayus npusooum K cucmeme HeTUHEUHbIX YDAGHeHUl,
O0OHU U3 KOMOPBIX OYOYym HeUu38eCmubl, a Opyeue U3BeCHHbl ¢ MOYHOCHIbIO 00 6eKMOPA NAPAMEMPOS.

Iasnoe HasHawenue Mooenu COCMOUm 8 ONPedeeHUl NPOSHO3A BLIXOOHbIX NEPEMEHHBIX NPU U3BECHIHBIX 6XOOHbIX,
npudem OJisi HESIGHbIX HEIUHETIHBIX YPAGHEHUT U36ECHIHO TUULb MO, YMO Md UIU UHASI KOMROHEHMA 8blX00d 3A6UCUN OM
Opyaux nepemennbix, Onpeoessiomux cCocmosHue 00vbexma.

Takum obpazom, 603HUKAEm 00B0IbHO HEMPUSUATbHASL CUMYAYUsT PEULeHUsT CUCEMbl HESIBHbIX HeTUHENHbIX YPas-
HeHUll 8 YCI0BUSIX, KO20d NO OOHUM KAHAIAM MHO2OMEPHOU CUCIMEMbL CAMUX YPAGHEHUTI 8 ODLIYHOM CMbICILe Hem, d NO
Opyaum OHU U3BECTHBL ¢ MOYHOCMbIO 00 napamempos. Cnedo8amenbHo, Mooelb 00beKma He Modicem Obimb noCmpoe-
HA ¢ NOMOWbIO MEeMOO08 Cyujecmayroujell meopuu UOeHmupurayuu 6 pe3yivbmame HeOOCMAamKa anpuopHol uHghopma-
yuu. Ecnu 61 MOJICHO ObLIO NAPAMemMpU308aMb CUCIEMY HETUHENHbIX YPAGHEHULL, MO NPU U3BECMHOM 6X00e Cled08al0
Obl pewiums dmy cucmemy, HOCKOIbKY OHA 6 OAHHOM CyHae U3BECMHA, pa3 SMan napamempusayuu npeoooieH, npag-
0a, 6 smom ciyuae HeoOX00UMO ewje 8bINOIHUMb OYeHKY napamempog. OCHOBHbIM codeplcanuem Hacmosueli cmamou
s6151emcsl peulerue 3a0ayu UOeHMUGUKAYUL NPU HATUYUY YACMUYHO-NAPAMEMPU308AHHO20 OUCKPEMHO-HENPePbleHO20
npoyecca, npu MomM IMAaAn napamMempu3ayuu He Modjicem Obimb npeodoier 6e3 00NOIHUMENbHOU anpuopHoU UHGop-
Mmayuu 06 ucciedyemom npoyecce.

B smoti ceaszu cxema pewienusi cucmembl HeIUHEUHBIX YPAGHEHUL MOdCem Oblmb NPEOCmagieHad 8 8Ude HeKOMOpPOoU
nociredosamenvhou areopummuyeckou yenouxu. Crauana Ha OCHOBAHUU UMelowjelcs odbyyaiowel 6blOOPKU, KO-
yaiowell HabI0OeHUsl 6CeX KOMNOHEHN 8XOOHBIX U BbIXOOHLIX NEPEMEHHbIX, (PopMupyemcs gekmop Hees3ok. A yoice
nocie 2Mmo2o OYeHKd BbIX00d 00beKma Npu U3GECHHBIX 3HAYEHUSX BXOOHbIX NEPEMEHHbIX CMPOUMCS HA OCHOBAHUU
oyernox Haoapas — Bamcona. Takum o6pazom, npu 3a0aHHbIX 3HAYEHUAX BXOOHBIX NEPEeMEHHbIX MAKo20 npoyecca
npeonazaemcs OCyWecmaums npoyeoypy OYeHUBaHUs NPOSHO3A 6bIXOOHBIX NEPEMEHHBIX 8 COOMBEMCMEUU ¢ pazpabo-
MAHHOU ANOPUMMUYECKOU YenOYKOU.

Mnozouucnennvie 8blyUCIUMENbHBIE IKCHEPUMEHMbL HO  UCCIe008AHUIO Npedlazdemblx Mooenell 4acmudHo-
napamempu308aHHbIX OUCKPEMHO-HENPEPLIGHBIX NPOYECcco8 NOKA3AU OOCMAMOUHO 6bICOKYIO UX IPhexmusnocmo.
B cmamue npugoosimesi pe3yibmamul blHUCTUMENbHBIX IKCHEPUMEHMOS, ULIOCMPUPYIOUUX 3phexmuenocms npedia-
2aemMoil MeXHONO2UlU NPOSHO3A 3HAYEHUL BLIXOOHBIX NEPEMEHHBIX HO U3BECHHBIM 6XOOHbLM.

Kniouegvie cnosa: wacmuuno-napamempu3o8anHulli OUCKPEMHO-HENPEPbIEHbLIL NPOYECC, UOeHMUDUKAYUs, Henapa-
Mmempuueckue oyenxu, KT-mooenu.

Introduction. In numerous occasions for many tech- A special feature of KT-processes is that equations of
nological, manufacturing, and multidimensional processes  relations between input and output variables with accu-
of a discrete-continuous nature, researchers are put racy to the vector of parameters are known for some
in conditions where it is necessary to build a model channels of the multidimensional system, but are not
of the process under study. These processes are dynamic  known for the other channels, causing the fact that the
in nature, but controlled at discrete intervals, including mathematical description of the object is presented in the
different ones, which results in dynamic processes to be ~ form of some analogue of the system with partially pa-
seen as inertia-free with a time delay. For example, when  rameterized F, (u, x,oc) =0, j= I,n and unknown func-
grinding any materials (clinker, coal), the time constant ’ —
is 5-10 minutes, and the control of the output variable, tions with the view F; (u,x) =0, j=1Ln. Thus, the prob-

such as the fineness of grinding, is measured every two  |em of identification is reduced to the problem of solving
hours. In this case, the investigated process can be pre-  ihe system of nonlinear equations of a partially-para-
sented as inertia-free with delay [1]. meterized discrete-continuous process with respect to vector
Similar processes are often found in mining or proc- components, and known values of input variables u. Specific
essing industries, such as metallurgy (steel smelting), jdentification tasks will diverge by different amount of a
power industry (coal burning), construction (cement pro- priori information on different channels, and by the fea-
duction), oil refining (diesel purification) [2], and social  tyres of ongoing processes. What is important here is that
sciences, including education (student learning) [3]. we have to face a system of different equations in terms
However, the most interesting and important thing is  of mathematics, the solution of which will require devel-
that while researching different processes there is a class  opment of special methods. In this case, it is advisable to
of processes that is classified as T-processes [1]. Similar  yse methods of non-parametric statistics [5; 6].
processes have stochastic dependence of output variables KT-processes. Currently, the role of inertia-free sys-
and require alternative methods of identification and con-  tems with delay identification is increasing [7; 8]. This is
trol, slightly different from conventional ones. The main  because some of the most important dynamic object out-
thing here is that identification of such objects should be  put variables are measured at long intervals of time, far
carried out applying non-traditional for the existing theory  exceeding the time constant of the object.
of identification methods [4]. It is also interesting for the Let’s consider a general scheme of a discrete-
cases where a priori information corresponds to both non-  continuous process that functions under conditions of
parametric and parametric types of raw data on the proc-  diverse a priori information, including non-parametric
ess under investigation. Such processes are classified as  uncertainty, which is consistent with identification theory
KT processes [1]. in a broad sense.
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A feature of multidimensional object identification is
that the process being investigated is described by a sys-
tem with implicit stochastic equations.

Fy(u(t=7), x(1), &(t))=0, j=Ln, (1)
Where on some channels F,(-) are unknown, and on

other channels are known, t — on different channels of
multidimensional system [1]. Further, for simplicity <
will be omitted.

In general view, the investigated multidimensional
system implementing the KT process can be shown
in fig. 1.

In fig. 1 the following symbols are set: u = (u,...,u,, ) —

m-dimensional vector of input variables, x = (xl,...,xn) -

n-dimensional vector of output variables, i(t) — random

interference influencing the process, vertical arrows indi-
cate stochastic dependence of output variables, arc arrows
show internal connection between variables, which is
characteristic of a specific investigated process. Clearly,
the nature of some relations remains unknown to the re-
searcher.

Through various channels of the process under study,
the dependence of the j component of vector x may be
represented as some dependence on certain components

of vector u: x*7 = f, (u<j>), j=1,n. Such functions are

J

determined by the researcher on the basis of available
a priori information and are called a composite vector. A
composite vector is a vector composed of some compo-

: <j> _
nents of the corresponding vector, u™/” =(x,,xs,X;,%;)

in particular. It may also be any other set, for example,

<5> <5> - :
u™” = (uy,uy,ug) where u is a composite vector,
or x> = (u,,u3,x,) . In this case, the system of equations
becomes:

Fvl (u<j>,x<j>,oc):0,
F, (u<-/>,x<-/>,oc) =0,
Jj=Ln, ()
Fn,l (u<j>’x<j>):()’

F (u<j>,x<‘i>)=0.

n

where ﬁj (-) partially parameterized or unknown, o is a

vector of parameters.

KT-models. Multidimensional processes which out-
put variables acquire unknown stochastic relationships
were called T-processes, so their models are respectively
called T-models [1]. K-models are based on the use of
diverse a priori information across different channels of a
multidimensional object.

A KT model combines T-model elements with K-
model elements and is a model in which there is a set of
relationships between input and output variables, where
dependences are known through some channels, for ex-
ample, by focusing on the laws of physics, but unknown
in other channels.

The main feature of modeling such a process in condi-

tions of non-parametric uncertainty is the fact that the
type of functions F/(u<j>,x<f>):0, j=Ln is known

for one certain channel and unknown for another. Natu-
rally, the model system can be presented as follows:

- <G> <> oA .
E(u 77 x™ ,(x)zO,
- <j> <j> 2\_n.
Fz(u ,X ,OL)—O,
F

<j> _<j> = =\_n.
n—1(” ,X77X u)—O,

e (59> vy 5 )=
Fn(u X ,xs,u_s,)—O.

where X_,i; — time vectors (a data set, obtained by s-time

point), in particular X = (X0 X, ) =

=(xl1,xlz,...,xlS,...,xZI,x22,...,xzj.,...,xnl,x,ﬁ,...,xns), but
in this case some £, (-), j=1,n remain unknown. There-

fore, let’s consider the task of constructing KT models
under non-parametric uncertainty that is under conditions
where the system (3) is known for some channels and is
not accurately known for others.

So let the input of the object receive input variable
values, which are certainly measured. The presence of a

learning sample x;,u;,, i=1,s is necessary. In this case,

estimation of the components of the output variable vec-
tor at known values, as already mentioned above, causes
the need to solve the system of equations (3).

&(e)
i, (7) . f x (1 )_;
n,(7) ; T X, (f)'_
u, (I) E > E v Y (f)=

Fig. 1. Multidimensional system

Puc. 1. MHOrOMepHas cucrema
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In case the dependence of the output component on
the component of the vector of input variables is not
known, it is natural to use non-parametric estimation
methods [9; 10].

The problem is that with a given value of the input
variable vector u=u', it is necessary to solve the
system (3) with respect to the output variable vector x.
For some channels of the multidimensional system, where
equations accuracy within parameters is known, coeffi-
cients are found, for example, by the method of stochastic
approximations [11]. For other channels where relations
are unknown, the following algorithm chain [1] must
be applied. First, inconsistencies are calculated by
formula:

:F L_na

Sij . (u<j>,x<j> (i)’xs’ﬁg)’ ] (4)

where F(u<’>,x<’>(i),)?s,ﬁs) is accepted as non-

parametric estimates of Nadarai-Watson regression [12]:
e ()= (“<j>’xj (l))
SopTo[* 1]
i=l1 suk

(i)

where j=1,n, ,<m> — composite vector dimensions

uy —u,[i]

csuk

F,

&

—u,[i]

)

=x;(i)-

s <n>

2]

i=1 k=1

u, . Bell curve function ® and blur parame-

ter ¢, ~comply with some convergence condition, so

obtain the following:

D) <oo; c;! I (D(cs_l(u—ui))du=l; (6)
Qx)
lim, ,, c,'® u—u;)|=06(u—u,),
()=o)
lim;_, c, =0, lim _,_ sc, =oo.

Next step is estimation of conditional mathematical
expectation:

®)

As estimate (8) we accept non-parametric estimate of
Nadarai-Watson regression [12]:

X; :M{x|u<j>,£:0}, jzl,_n.

s <n> [ ] <m> € 2[1]
S el 2O o[ 2
A =l su ky=1 SE
J s <n> <m> >
e S
i=1 k=1 Cou ky=1 Cse

=Ln,
where bell curve (D() may be accepted in the form of

triangular kernel (10) and (11), complying with the condi-
tions (6), (7).
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1_|“k1 —uy, [i]| |ukl —uy, [i]| »
Up, — Uy [l] _ Cau ' Cou ’
CD[ | Cou | ]_ |”kl — Uy [i]| (o
0, >
CSM
. 0-¢,, [i]|, o-et]
(I)[Skz[l]]: Cse Cye an
Cee |0 g, [i]| §
T2

S€

Algorithms (5), (8) and (9) are an algorithm chain
necessary to calculate the prediction of the components of
the output vector under the known input components [1].

While carrying out this procedure, we obtain values of
output variables x at input influences on the object u=1u',
which is the main purpose of the desired model that can
further be used in different control systems [9], including
organizational systems [3].

The accuracy of the simulation is estimated by the fol-
lowing formula:

[ -, ()

_ =1
g=it

S
2l =5

i=1

(12)

where x; — object observation, x,(u;) — object output

forecast, x — average value for every vector compo-
nent X .

Computational experiment. An object with five
input variables u =(u,u,,us,u,,us), and three output

variables x =(x;,x,,x;), was taken for the computational

experiment. For this object, a sample of input and output
variables was formed based on the system of equations
of two parametric and one non-parametric channel.
As a result, a learning sample was obtained i, X, , where

§2778 2
i, X, are time vectors. If the task was to be solved for a

real object, the learning sample would be formed as a
result of measurements carried out by the available con-
trol means. In the case of stochastic dependence between
output variables, it is natural to describe the process, for
example, by the following system of equations:

Fxl(xl,x3,u1,u2,u5):O;

(13)

Fop (%1%, 14,u5) = 0;
F (xl,x2,x3,u2,u3,u5)=0.

Once a sample of observations has been obtained, it is
possible to proceed with the task under study — to find the
forecast of the values of the output variables x under the
known input u. For the case where there was an equation
dependency across the two channels, the coefficients were
found applying the stochastic approximation method.

To begin with, the inconsistencies are calculated ac-
cording to the procedure described above. Let us present
the inconsistencies in the form of a system:
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N B i i L.
sl(z)zﬂ(xl,x3,ul,u2,u5),

N (i1,
82(1)=F2(x1,x2,u4,u5), (14)
. r TR A R B A
83(1):F3(xl,x2,x3,u2,u3,u )
where ¢;,/=1.3 - inconsistencies, for which corre-

sponding components of the output vector cannot be ob-
tained from parametrical equations.

Forecast for system (13) is performed according to
formula (9) for each component of object output.

Input variables of newly generated input variables, i.
e. not included in learning sample, are supplied to object
input.

The tunable parameter will be the blur parameter,
which in this case will be taken to be 0.4 (the value was

determined as a result of numerous experiments to reduce
the quadratic error between the output of the model and
the object) [13; 14], the blur parameter will be taken the
same when counted in formulas (5) and (9), sample size
s =2000, interference &=0.07. By component, we pro-

vide graphs for the object outputs x;,x, and x;.

In fig. 2—4 ‘X’ shows the values of the variable output
and the point of the model output. The figures demon-
strate a comparison of the test sample output vector com-
ponents true values and their predicted values obtained
using algorithm (5)—(9). The figures show 20 sampling
points due to the simplicity of results presentation, i. e.
each one-hundred sampling point. The figures show that
the model describes the object quite well at the interfer-
ence of 7 % acting on the components of the output vari-
ables.

xl(r) A
:El(l‘) o . 6 Object Q
Model
i R —0¢
O X =
X R
4 X O
& = O X
2T Q |
% X 5, R X .
\1.5/ 10 iS éO -

Fig. 2. Forecast values of the output variable x; with interference 7 %

Puc. 2. [Ipornosuele 3Ha9€HMs BBIXOAHOM IIEPEMEHHOM X, IIpu nomexe 7 %

xg(f) A
%) o Object Model
Q O —»X —O0
O O X
6 O X % o é
X & o X
- o
! O . X o o R o] O
X o) X X X
r o X
i
0 s To s L >

Fig. 3. Forecast values of the output variable x, with interference 7 %

Puc. 3. Ilpornosueie 3Ha4eHUs BBIXOAHOM NepeMeHHON X, 1pu nomexe 7 %
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(1) o obi o
- Aot ect
%(7) 29 & J—PX Q
X
&
137 X X o 8 é ° .
o) 0 x x
O X 0 Model
—.,O
_ X Q¥
19 % o o)
X
X i
30 ;5 10 15 50 >

Fig. 4. Forecast values of the output variable x; with interference 7 %

Puc. 4. TIporso3Hble 3HaU€HUs BBIXOJHOM IIEPEMEHHON X3 npu nomexe 7 %

In fig. 3, the prediction of the output variable is
slightly worse than for the rest of the output variables, this
may be affected by: the quality of the learning sample, the
dependency of the variables, random interference, blur
parameters, etc.

Conclusion. In the present work, the problem of iden-
tifying partially parameterized retarded multidimensional
objects has been discussed. A number of features which
appear include the fact that the identification task is con-
sidered in conditions of non-parametric uncertainty and,
as a consequence, cannot be presented with precision to a
set of parameters. Such processes can be well used in
various control systems [15]. Based on the available a
priori hypotheses, the system of equations describing the
process is produced using composite vectors x and u.

However, functions F(-)continue to be unknown for

some channels. The article discusses the method of calcu-
lating output variables of an object with known input
variables, which allows to use them in computer systems
of various purposes.

It should also be noted that KT models have found
their application in the actual catalytic hydrodepaffiniza-
tion process (or diesel purification process) and, as a re-
sult of computational experiments, have produced suffi-
ciently satisfactory results [2].

Numerous computational experiments have shown
quite satisfactory KT simulation results. Issues related to
the introduction of different interferences, different vol-
umes of learning samples were studied, as well as objects
of different dimensions were investigated [4].
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