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Plates, beams and shells with a non-uniform and micro-uniform regular structure are widely used in aviation and
rocket and space technology. In calculating the strength of elastic composite structures using the finite element method
(FEM) it is important to know the error of the approximate solution for finding where you need to build a sequence of
approximate solutions that is connected with the procedure of crushing discrete models. Implementation of the proce-
dure for grinding (within the micro-pass) discrete models of composite structures (bodies) requires large computer re-
sources, especially for discrete models with a microinhomogeneous structure. In this paper, we propose a method of
equivalent strength conditions (MESC) for calculating elastic bodies static strength with inhomogeneous and microin-
homogeneous regular structures, which is implemented via FEM using multigrid finite elements. The calculation of
composite bodies’ strength according to MESC is limited to the calculation of elastic isotropic homogeneous bodies
strength using equivalent strength conditions, which are determined based on the strength conditions set for composite
bodies. The MESC is based on the following statement. For all composite bodies V,, which are such a homogeneous

isotropic body V® and the number of D, if the safety factor n, of the body VP satisfies the equivalent conditions of
strength pn,(1+38,) < n, (1—6§) <pn,(1-3,), the safety factor n, of the body V, meets the defined criteria for

strength n, < ny <n,, where n;, n, specified, the safety factor n, (n,) complies with the accurate (approximate) solu-
tion of elasticity theory problem is built for body V|, (body yb ) 8, <(nmy—m)/(n,+mn); 8, is the upper d, error

estimation of the maximum equivalent body stress ye, corresponding to approximate solution. When constructing
equivalent strength conditions, i. e when finding the equivalence p coefficient, a system of discrete models is used, di-

mensions of which are smaller than the dimensions of the basic composite bodies models. The implementation of MESC
requires small computer resources and does not use procedures for grinding composite discrete models. Strength calcu-
lations for bodies with a microinhomogeneous structure using MESC show its high efficiency. The main procedures for
implementing the MESC are briefly described.

Keywords: elasticity, composites, equivalent strength conditions, multigrid finite elements, plates, beams, shells.

METO/I DKBUBAJIEHTHBIX YEJJIOBI/Iﬁ INPOYHOCTH B PACYETAX
TEJI C HEOJHOPOJHOMU PEI'YJIAPHOU CTPYKTYPOU
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Inacmunvl, 6anku u 060104KU ¢ HEOOHOPOOHOU, MUKPOHEOOHOPOOHOU PecyNAPHOU CIPYKMYPOU WUUPOKO NPUMEHS-
JOMCsl 8 ABUAYUOHHOU U PAKEMHO-KOCMUYECKOU mMeXHUKe. B pacuemax Ha npoYHOCmb YRpYeux KOMHOZUMHbIX KOHCHI-
PYKYULl ¢ NOMOWbIO Memood KoHeuHvix daemenmos (MKD) eascno 3namv nocpeunocms npubaudCenHHo20 peuleHus,
018 HAXOHCOEHUSL KOMOPOU He0OX00UMO ROCPOUMb NOCAEO008AMENbHOCHb NPUOTUICEHHBIX PEULeHUll, YMO CEA3aHO
¢ npumenenuem npoyedypbl UsMenbyeHUsi OUCKpemHblx Mooenel. Peanuzayus npoyedypel usmenvuenus (6 pamxkax Mux-
POnooxo0a) OUCKpemHbIX MOOeiell KOMROZUMHBIX KOHCMPYKYuil (men) mpebyem bonvuux pecypcogé IBM, ocobenno
07151 OUCKpEemHbIX MoOeel ¢ MUKDOHEOOHOPOOHOU cmpyKmypoul. B dannotl pabome npeonodicern Memoo 3K8UBALEHIMHbIX
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yenosuti npounocmu (MOVII) ona pacuema Ha cmamuyecKylo nPOYHOCHb YIPYeUX mei ¢ HeOOHOPOOHOU U MUKPOHEOO-
HOPOOHOU pe2ylApHOL CMPYKMYypou, KOmopulil peanuzyemcs ¢ nomowppio MKD ¢ npumenenuem MHO20CemOUYHbIX
KOHEUHbIX 21emMenmos. Pacuem na npounocmo xomnoszumuwix men no MOVII ceodumcs Kk pacuemy Ha npouHOCHb
VAPY2UX U30MPONHBIX OOHOPOOHBIX MENl C NPUMEHEHUEM IKGUBATICHMHBIX YCII0GULL NPOYHOCIU, KOMOPble ONPedeisiion-
€5l HA OCHOBE YCNI0BULE NPOYHOCMU 3A0AHHBIX OJis KOMNO3umHblx mel. B ocnose MOVII nescum credyrowee ymeepoicoe-

b
Hue. ﬂﬂ}l BCAKO2O KOMNO3UNHO20 meija VO cyujecmeyrom maxkoe u3omponHoe OOHOPOOHOE meno V° u uucno p, ¥mo

b
ecau Koad)qbuuueﬂm sanaca n, meia V ydoeﬂemeopﬂem IKBUBAIEHNMHbIM  YCIOBUAM  NPOYHOCMU 6uoa

pm(1+6,)<n,(1- Si) < pn,(1-98,), mo koappuyuenm sanaca n, mena V, yoosenemeopsem 3a0AHHLIM YCIOBUAM

npounocmu ny <ny <n,, 20e n,, n, 3a0ausvl, Kodgguyuenm 3anaca n, (n,) omeeuaem MoOYHOMY (NPUOTUICCHHOMY)
b
peutenuio 3a0ayu meopuu ynpyeocmu, nocmpoenHomy oas meia Vy (mena V°), 8, <(n, —m)/(ny, +n;), 8, — 6epx-

b
HASL OYEeHKa nozcpeutnocmu 8b MAKCUMAIBHO20 IKEUBATEHMHO20 HANPANCEHUS meila Ve, omeevaroujeco npu6ﬂuofceH-

Homy pewenuto. Ipu nocmpoenuu sK8UBANEHMHBIX YCIOBULL NPOYHOCMU, . €. NPU HAXOHCOeHUU KOIPhuyuenma sx6u-
BANICHMHOCMU P, UCHOIb3Yemcs cucmema OUCKPemHblX Mooenell, pa3MepHOCHU KOMOpbIX MeHblle pasmepHocmel

bazo6vix mooenei komnosumuwvlx mei. Peanuzayus MOYVII mpebyem manvix pecypcoé DBM u ne ucnonvsyem npoyedy-
Dbl USMENbYEHUSL KOMNO3UMHBIX OUcKpemHulx mooeneti. C nOMOWbIO paciemos NoKa3ano, 4mo IKGUBANIEHMHbIE YCI06Us
NPOYHOCMU, NHOCMPOEHHbIE OISl KOHKDEMHO20 HASPYHCEHUS. KOMNOZUMHO20 MeNd, MOJICHO UCNONb308amb 0 onpede-
JIEHHO20 8U0a e20 Hazpycenutl. Pacuemosl Ha npoyHOCmb mejl ¢ MUKPOHEOOHOPOOHOU cmpyKmypot ¢ nomouibro MOVII

NOKA3bI8AIOM 8bICOKYIO €20 3 ghexmuenocmp. Kpamio uznodicenvt ocHogHble npoyedypuvl peanusayuu MOVII

Kniouesvie cnosa: ynpy2ocmb, KOMNRO3UMmMbsl, IK6UBAJIEHMHbLE YCIA06USA NPOYHOCMU, MHO20CEMOYHblEe KOHEUHble Jjle-

MeHNbL, NJIACMUHDbL, 6am<u, 06010UKU.

Introduction. Structure strength calculation is one of
the most important stages in the outline design of a struc-
ture based on a structure project feasibility study. As a
rule, calculations for static strength, elastic structure
(body) of a certain class (for example, elements or aircraft
and rocket-space structures) are carried out according to
safety requirements [1-3], and limited to the equivalent
structure stress determination. In this case for the body

the given strength conditions are n; <n, <n,, where n,,

n, are given, n, is the body safety factor, V,,

ny =6y /06,, oy is the yield stress [1], o, is the maxi-
mum equivalent stress corresponding to the exact solution
of the elasticity problem (constructed for the body ;). If

the safety factor n, satisfies the given strength condi-
tions, then it is suggested that the body V), does not col-

lapse during operation. It should be noted that construc-
tion of analytical solutions of the three-dimensional prob-
lem of elasticity theory for composite bodies is associated
with great difficulties. If the maximum equivalent stresses
of the bodies is approximate, then in this case the cor-
rected strength conditions are used [4], which pass the
stress error. In the analysis of the stress-strain state (SSS),
the finite element method (FEM) is widely used [5; 6].
Basic discrete models of bodies, accounting for their in-
homogeneous and micro-inhomogeneous structures
within the micro-approach [7], have a very high dimen-
sion. Implementation of FEM for such discrete models is
very difficult, since it requires large computer resources.
In addition, to determine the error in the solution, a se-
quence of approximate solutions constructed using re-
finement (within the micro approach) of discrete models
is used. The grinding procedure is difficult to implement;
it leads to a sharp increase in the discrete models size,
making implementation of FEM challenging. To deter-
mine the SSS of composite bodies, the method of multi-
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grid finite elements (MFEM) [8-14] is effectively ap-
plied, which generates discrete models, dimensions of

which are 10° +10° times less than the base models di-
mensions. It should be noted that FEM is a special case of
MFEM. If when solving boundary value problems by
FEM, multigrid finite elements (MgFE) are used [8-22],
then MFEM is implemented in this case.

In this work, for calculating the strength of solid com-
posite bodies using equivalent strengths, the method of
equivalent strength (MESC) is proposed, which means
calculating the strength of isotropic homogeneous bodies
using equivalent strengths [23]. In this paper in contrast to
[24], a theorem is formulated and proved, which underlies
the MESC. In addition, the following should be noted:
equivalent strength conditions are based on specified
strength conditions using the equivalence coefficient p. In
fact, the construction of equivalent strength islimited to
determining the coefficient p, which is determined for a
given composite body loading. However, it is important
to note that the equivalent strength conditions constructed
using the coefficient p can be used in composite body
strength calculations for a certain type of its loading.

To find the coefficient p, a system of homogeneous
and composite discrete models is used, dimensions of
which are less than the dimensions of composite bodies
models. The analysis of SSS in discrete models is carried
out using the MFEM, which generates discrete models of
small dimension. The advantages of the MESC are that its
implementation requires small computer resources and
does not use the procedure for refining discrete models of
composite bodies. The use of MESC in strength calcula-
tions of bodies with a micro-inhomogeneous regular
structure shows its effectiveness.

1. Equivalent strength conditions and equivalent
strength structures. Suppose two elastic structures V]

and V, have the same shape, geometrical dimensions,
fixings and static loading, but differ in elasticity modulus.
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Suppose strength conditions n,, n, are given for the
safety factors, respectively of structures V|, V,

1 1
n,<m <ny, (1)
2 2
n, <ny, <np, 2)
12 4. 1.2 1 2 e
where n,,n; >1; n,,n;,n,,n, — are given; safety fac-

tors n; (n,) complie with the precise solution of elastic-
ity theory, built for structures V; (V).
For structures 7}, ¥, the following two definitions are

introduced:
Definition 1. Fulfillment of conditions (2) for the coef-
ficient n, implies fulfillment of conditions (1) for the

coefficient », and vice versa, if the fulfillment of condi-
tions (1) for the coefficient »; implies the fulfillment of
conditions (2) for the coefficient n,, then the strength

conditions (1), (2) will be called equivalent strength con-
ditions for structures V,, ¥}, respectively.

Definition 2. Suppose the structures V;, V,, for which

respectively condition (2), (1) is equivalent to strength
conditions do not collapse under the same operating con-
ditions. Then the structures 7}, V, will be called strength

equivalent.
In practice, the equivalence in strength of structures
Vi, V> means that V, structure can be used instead of a

working structure V|, and vice versa. It should be noted

that of the two structures equivalent in strength, it is ad-
visable to use such a structure that is more technologically
advanced in manufacturing, meets the specified technical
requirements and more cost effective for manufacturing
and operation.

2. Provisions of the method of equivalent strength
conditions MESC are used to calculate the strength
of structures (bodies) that satisfy the following:

Provision 1. Linearly elastic three-dimensional iso-
tropic homogeneous bodies and bodies with an inhomo-
geneous, micro-inhomogeneous regular structure, which
consist of plastic materials, have smooth boundaries and
static loading are considered. The body loading functions
are smooth functions. Solid boundaries do not degenerate
into points.

Provision 2. Composite bodies consist of isotropic
homogeneous bodies of different modulus, connections
between which are ideal, that is, on common boundaries
of homogeneous bodies of different modulus, the func-
tions of displacements and stresses are continuous.

Provision 3. Displacements, deformations and stresses
of heterogeneous isotropic homogeneous bodies corre-
spond to the Cauchy relations and Hooke's law of the
three-dimensional linear problem of elasticity theory [25].
Equivalent stresses for bodies are determined according to
the 4th theory of strength [1].

Provision 4. The maximum equivalent stress of the
basic discrete model of a composite body (which consists
of a first-order FE of the cube shape, takes into account
the inhomogeneous structure of the composite body and
generates a three-dimensional uniform mesh) shows a
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small difference with the exact solution. It should be
noted that due to the convergence of the FEM, such basic
discrete models for composite bodies always exist.

Provision 5. For the typical dimensions of a composite
body and its regular cell, the condition d/B<<1 is
fulfilled, where d is the maximum typical size of the regu-
lar cell of the composite body, B is the minimum typical
size of the composite body.

It should be noted that positions 4, 5, as a rule, are ful-
filled for bodies with micro-inhomogeneous regular struc-
ture.

3. The main theorem of the method of equivalent
strength conditions. Without losing shared judgments,
we consider bodies with an inhomogeneous regular
fibrous structure, which are widely used in practice. The
MESC is based on the following theorem:

Theorem. Suppose the strength conditions of the
form 3 are given to the safety factor of a composite
body n, (fibrous structure).

m<nyg<n,, 3)
where n,, n, — are given, n, >1, n,=0,/0,, of —
fiber yield stress, o, — the maximum equivalent stress

of the body ¥, which corresponds to the exact solution

of the problem of the elasticity theory, constructed for the
body V.

Then there is such an isotropic homogeneous body V”
and such a number p >0 (equivalence coefficient) that
if the body V” safety factor n, satisfies the corrected
equivalent strength conditions

pm_ pny
<n, < , 4
1-5, " 1+3, @

then, safety factor n, of the structure #, meets the

strength requirements (3), where n, =6, /06, , 6, — the
maximum equivalent stress of the body ¥'?, which corre-
sponds to the approximate solution of the theory of elas-
ticity problem, constructed for the body V',

n, —n

o, < , 5

oy ®)
8, — upper bound on relative error, §,pressure G,
of body ¥, [8,| <3, .

Deduction.
First, let us prove the existence of equivalent strength
conditions for linearly elastic composite bodies. Suppose

an elastic homogeneous isotropic body V'’ and a compos-
ite body ¥, have the same shape, size, fixation and load-
ing, but differ in elastic moduli. Suppose the elastic
moduli of the body 7’ and fiber be the same. The safety
factors n,, ny respectively bodies V,, V”are found
by the formulas

c

ny=—"1, (6)
Sy
c

ng = _g ) (7)
Gp
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where o, — fiber yield strength [1-3]; o) — maximum

equivalent body stress ¥’ corresponding to the exact
solution of the elasticity theory problem.
Suppose coefficient n, meets the requirements (3).

Applying (6) to (3) we obtain

m<T<n,. ®)
S
There is a number p >0,
o
p==- ©)

Gy

Considering (9) in (8), we obtain

c
pmy <=L < p, (10)
Sy
Applying (7) in (10), we obtain
pn Sngﬁpn2. (11)

So, the safety factor n,? of an isotropic homogeneous
body V? satisfies conditions (11). Conversely, suppose
body V'’ safety factor ng satisfy the strength conditions
(11). Applying (7) in (11) considering (9), we obtain

POr

pn < < pn, . Whence, taking into account (6), fol-

0
lows the fulfillment of the strength conditions for the

safety factor n, of the composite body ¥, (3). It is

shown that each coefficient n,? € (pny, pn,) corresponds
to a single coefficient n, € (n,,n,) found by formula (6),
and vice versa. Further limiting cases are considered.
Suppose nl(,) = pn, . Using relation (7) in the latter equa-
tion we obtain pc; /G, = pn;. Whence, taking into ac-
count (6) it follows n, = n, . Similarly, one can show that
if n,? = pn,, then n, =n,. Suppose n, =n,. Using (6),
(9) in the latter equation, we obtain o / 62 = pn, . Now
then, taking into account (7), it follows that ng =pn,.

Similarly, one can show that if 1, =n,, then ny = pn,.

Hence it follows that conditions (11), according to Defini-
tion 1, are equivalent strength conditions for a body V.

Suppose for the body ¥’ the maximum equivalent
stress has been defined as o,, corresponding to the
approximate solution of the elasticity theory problem,
such that

n,—n
|8b |S8a<ca: H
n1+n2

(12)

where n,, n, —are given; n, >1, n, >n;, 5, — relative
stress error o, 1. €.

0
Gp —Op
0 b
Gp

5, = (13)

where 8, — upper bound for error §,,.
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From (13) it follows that o, =(1+95,) 02. Hence ob-
tain
ny) =(1+8,)m, . (14)
Let us note that in (12) C, <1. Suppose §, is such
that 8, = |5, |. Then due to (12) obtain

0<8,= [8,] <5, <1. (15)

Assuming in (14) consecutively 06, =-0,, &, =9,
apply coefficients

nj =(1=8y)m,, ny=~1+35)n,, (16)
Then due to (14), (16) obtain
ng =nj or nd =nj. (17)
Apply coefficients nld , ng according to formulas
n! =(1-8,)m,, ny=(1+8,)n,. (18)

Dueto 0<9, <1, n, >0, from (18) it follows that

(19)

Equivalent strength conditions that take into account
stress error, i. €., corrected equivalent strength conditions
(4) are presented in the form

pny(1+8,) <ny(1-82) < pny(1-3,) ,

d~ d
n, 2n .

(20)
where n, =0, /0, , o, —fiber yield strength.

Suppose for coefficient n, strength conditions are met
(20), 1. e. suppose pm <(1-08,)n,, (1+8,)n, < pn,.
Hence for the coefficient n?, n¢, taking into account
(18), (19) inequation is done

pn Sn]d < ng < pn,. 21
Comparing (16), (18) with respect to (15), equations
n' <n’, ny <n¢ follow. Hence, considering that accord-

ing to (16) n <nj, we obtain

nd <nf <nj<nd. (22)
Then, due to (21), (22) inequations are done
pny <nf <ny < pn,. (23)

From (23) taking into account (17), i. e. from meeting
for the body V'’ safety factor n p (corresponding to the

approximate solution) of the corrected equivalent strength
conditions (20), that is (4), it follows that strength condi-

tions (11 ) for the safety factor ng of the body yb (corre-
sponding to the exact solution) are met, therefore, satisfy-
ing the given strength conditions (3) for the safety factor
n, of the composite body ¥, (corresponding to the exact
solution). Constraints on the parameter 8, are found from
the assumption of strength conditions existence (4), i. e.

suppose inequation pm(1+3,) < pn,(1-3,) is done.
Whence it follows that
5,<C, = Hom (24)
n +n,
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It should be noted that, since n, >n, 21, then from
(24) it follows that 0 < C, <1.If §, = C, , then the range
for varying values of the coefficient n, is zero, which is
difficult to perform in practice. Now then 8, <C,_ , it is
possible to meet the equivalent strength conditions (11)
for the coefficient n,? applying corrected equivalent
strength conditions (4) and the approximate solution that
generates an error J, for the stress o, that |5, | <J,.
Note that meeting conditions (11) implies the fulfillment
of the specified strength conditions (3). The theorem is
proved.

Note that it follows from the theorem that if the safety
factor n, of the body V' satisfies the corrected equiva-
lent strength conditions (4), then this means that the error
d, of the maximum equivalent stress &, of the body V' b
is not greater than 5 ,1.e. |9, <9, .

4. Procedures for implementing the method of
equivalent strength conditions. Implementation of the
MESC is reduced to construction of equivalent strength
conditions (4) applying the MFEM, that is, to determina-
tion of the equivalence coefficient p, and to determination
of the maximum equivalent stress o, for the body ¥’

with an error |6, | <0, , n, =0, /0, . The coefficient p

o
is determined by the formula (9), i. e.
c
p=—p. (25)
Oy
Without losing shared judgments, for convenience and
clarity of presentation, we will consider the basic proce-
dures for the implementation of MESC using the example
of calculating the strength of a composite beam (body) V,
with  dimensions HxLxH , where H =128,
L =1536h, h — is given, Fig. 1. The body ¥, is rein-
forced with continuous longitudinal fibers of constant
cross-section with dimensions /sx /4. The fibers have the
same modulus of elasticity. When y =0 the body is fixed

and has loading ¢, (x,y) on the surface z=H . The in-
homogeneous structure of the body V|, is represented by
regular cells G, with 82x8hx8h size, fig. 2, the sections
of 16 fibers are painted over. It is believed [26] that if the
fiber thickness is less than 0.5 mm, then such fibers form
a micro-inhomogeneous structure. Suppose L =600 mm ,
H =50 MM, then /£ =0.3906 mm . In this case, the body
V, has a micro-inhomogeneous regular structure.

It should be noted that since the filling factor of the
composite body V| is small (equal to 0.25), it is difficult
to determine the effective elastic moduli for the body V.

The case when the filling coefficient is close to one was
considered in [23].

Suppose the strength conditions (3) are given for the
safety factor n, of the composite body V. The basic

discrete V,, body model R, consists of finite elements

(FE) of the 1st order of a cube shape with a side 4 [6], in
which a three-dimensional SSS is realized, accounting for
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the inhomogeneous structure of the beam and generates a
basic uniform mesh with a step % with dimension
129x1537x129 .

4 q.

“/ H=128%

a
>

J/,‘

‘/['{:]28 h

X L=1536h

Fig. 1. The characteristic sizes of the beam (body) ¥,

Puc. 1. XapaktepHsie pa3mepst Oaiku (tena) V)

/'. iy

A 1
0%
A1

kaz

Ny

VY

8N

VY
-
“

@] 84

Fig. 2. Regular cell (body) G,
Puc. 2. Perynsiprast stueiika (teno) G

Fig. 2 shows the basic grid G, of a regular dimension
cell 9x9x9; i,j,k=1..9. The model R, has
N, =76681728 nodal unknown FEM, system tape width
of FEM equations is b, =50316. The basic model R,

takes into account the micro-inhomogeneous structure of
the body ¥, with high dimension, therefore we can as-

sume that this model satisfies position 4. However, it is
difficult to apply the discrete model R, in calculations,

since the implementation of the FEM for the R, model

requires essential computer resources.
According to the MESC, introduced is an isotropic

homogeneous body ¥’ such that the bodies V', V, have

the same shape, dimensions, specified fixing and loading,
but differ in elastic moduli. The elastic moduli of the

body v’ are equal to the elastic moduli of the body ¥
fiber. For the body ¥* we define a discrete model 7,

which consists of an FE 7" of the 1st order of a cube

shape with a side £, [6] and has a uniform mesh with a

step 4, with dimension n(" xn{" x n{"

),where
n™ =8n+1, n{"” =12x8n+1,

ng”) :8n+1’ n:l, 2, 3, (26)
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The steps of the fine mesh of the model Vn0 along the
Ox, Oy, Oz R = H /(8n),
h;") =L/(96n), h" =H/(8n). Since L=12H, then

axeses equal

h, =h" =h{" =h" . Due to (26) we obtain %, =p,k,
where B, — scale factor, B, =16/n, n=12,3,.... Under
n=1..,15 we have B, >1,1.e. h, >h.Under n >16

we have B, >1, Bs =1, 4 =h. Discrete model ¥’

of a finite number of bodies of the same shape G’ with
dimensions 8k, x8h, x8h,, n=1,2,3,.... The body and
the regular cell G, have the same shape (cube shape),
but differ in characteristic dimensions.

Let us introduce a composite body G,? (cube shaped)

with dimensions 84, x8h, x8h, . Suppose the composite
body G° consist of FE V" cube-shaped with the side

h, . The composite body G' is of fibrous structure, the

same number of fibers (16 longitudinal fibers with a
square cross section A, xh,, the distance between the

fibers equals 4, ) and the same mutual arrangement as in
the regular cell G, (the cell G, has 16 with dimensions
hxh, the distance between them equals 7/, fig. 2).
n=12,3,.... Inhomogeneous structure in the composite
body G is taken into account using FE V") . Fibers and

matrices of the bodies G., G, have the same elastic

moduli. The bodies G°

n>?

G, in fact differ only in scale,
they can formally be written as G° =(B,)’G,. Under
n=16 we obtain B =1,i.e. G =G,.

Using the bodies G instead of the bodies G in the
discrete model 7 we obtain a composite discrete model
R,(,) , n=12,3,..., which accounts for inhomogeneous
structure. Composite body Gf,) is, in fact, a regular cell
for the model R,S , n=1,2,3,.... Discrete model R,? has
the same uniform grid with step %, and dimensions V.

Under n=16 the discrete models 7,2, R, and R, have
the same shape, characteristic size and dimensions. Since
G =G,, then under n=16 models R, and R, coin-

cide, i. e. R} =R, . Thus, the discrete models V", R’
possess the same shape , characteristic size and dimen-
sions, the same fixing and loading, like a body (beam)
V,, but differ only in elastic moduli »=1,2,3,.... It is
important to note the following:

1. Dimensions of discrete models ¥, R’ under

n=1,..,15, due to (26), are less than the dimensions of
the basic discrete model R, of a composite body V.

2. When constructing composite discrete models
{R0}15

.o, the procedure of grinding composite discrete

models is not applied.
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To reduce the dimensions of the models ¥, R?

MgFE are used [8-22]. Since the models R, V2 have

the same high dimension as the basic discrete body model
R, , which has 76681728 nodal unknown FEM, we be-

lieve that the maximum equivalent stress o\ (stress o)
of the model R (model V;%) differs a little from the

0 0
exact stress o, (o,). Therefore, we assume o, =0y,

0_ b
Gp =Oj6-

We find the equivalence coefficient p by formula
(25) accounting for the latter 2 equations, i. e.

p=0) /0. 27)

Taking into account in the formula p, =c"/c’,
where 6 (c?) is the maximum equivalent stress of the
model R (model), which at n —16 we have 6" — o}y,

GZ —>csf6, due to (27) we have p, > p at n—>16.
Suppose p, quickly converge to p. Let the value
8, =l p, — Pn1|/p, be small, where then we accept hat
p = p,- Applying the found coefficient p and parameter

d, (98, specified and satisfies condition (5)) n; and n,

specified in representation (4), we determine the corrected
equivalent strength conditions, which accounts for the

stress error. Suppose cﬁ quickly converge to 02. Let the
small value 8 =|c” —c’ |/c” and |8”| <3, where

8" is the relative voltage error, o &

N is given,

o

8, <C, n=2,3,...,. Then we accept that 6, =c", i. e.,

n?°
the maximum equivalent body VP stress o, 1s found.

Suppose the found safety factor n, (where n, =o,/0,,

i.e n,=05/ Gﬁ ) of an isotropic homogeneous body V°

(corresponding to an approximate solution) satisfy the
constructed equivalent strength conditions (4). Then the
safety factor n, of the composite body ¥}, (which corre-

sponds to the exact solution) satisfies the given strength
conditions (3).

When calculating the composite bodies strength ac-
cording to MESC, it is advisable to use MgFE [24]. In
this case, the implementation of MESC requires small
computer resources.

5. Application of the corrected equivalent strength
conditions in the calculations of composite bodies with
a certain type of loading. The calculations given below
show that the corrected equivalent strength conditions (4),
constructed for a specific body loading, can be used in the
strength calculations of a composite body ¥, (fig. 1), for
which a certain type of loading is specified.

In [24], an example of a cantilever beam V, (fig. 1)
strength analysis according to MESC using three-mesh
FE is considered in detail. The beam is reinforced with
longitudinal fibers. The regular cell of the beam is shown
in fig. 2. Under y=0, u=v=w=0, 1i. e in the xOz



HHd)opMamuKa, eblduciumenlbHas mexunuKka u ynpaejienue

plane the beam is fixed. For the safety factor n, of the
beam, the given strength conditions have the form
1.3<n,<3.2. (28)
In the calculations of the beam the following data
were used:
h=0.3906; c,=5; E, =10, E, =1,

v,=v,=03, ¢, =0.0018, (29)

where E,, E, (v., v,) — Young's moduli (Poisson's
ratios) of the binder and fibers, respectively, o, is the
yield stress g, of the fiber, the load acts on the surface
z=H,05L<y<L, fig. 1.

The equivalence factor p for the composite beam ¥ is

determined using the procedure described above. Discrete
models V”, R’

n > n >

n=9, 11,12 are constructed using

3sFE (the construction procedure of which is described in
detail in [24]) on the basis of basic regular partitions, re-
spectively of dimensions: 73x865x73, 89x1057x89

and 97x1153x97 . The coefficients p, are found by the

formula p, =c, /o’ , where o,, o’ are the maximum

equivalent stresses, respectively of the models RS, an s
n=9,11,12. As a result of calculations we get:
Py =3.002, p,, =3.000, p,=2.999. The relative er-

rors for the found coefficients py, p;,, p;, are

81 (%) =100 %x| p;; — py | / pyy =
=100 %x|3.002 —-3.000]/3.000 = 0.066 %,

8,(%) =100 %x | pi, = pyy |/ P12 =
=100 %x |3.000—2.9991/2.999 = 0.033 %.
Since py > p;; > p;, and 9§, is the smallest value, we
consider, equivalent coefficient equals p = p;, =2.999.
Applying to (4) 8, =0.15, n, =13, n, =3.2, we obtain

the corrected equivalent strength conditions expressed in
terms of the equivalence coefficient p

1.5288p <m, <2.7805p . (30)
Applying to (30) p =2.999, we obtain the following
corrected equivalent strength conditions

4.584 < n, <8.339, which in practice, in order to take

into account the error of computer calculations, is used in
the following modified form

4.65<m, <8.25. (31)

Table 1 shows the results of calculations for five load-
ings g, of the beam ¥}, for which the equivalence coef-
ficients p" are found, where x, y, z are the coordi-
nates of the points of the beam surface, on which a con-
n=1,...,5 q: ,

n=1,4,5 provide direct bending of the beam, loads qz2 ,

stant load ¢, is applied. Loads

qg — oblique bending of the beam. The relative error
8, (%) for the equivalence coefficient p,, presented in
table, is determined by the formula
8,(%)=100%x[p—p, |/p,
where p=2.999, n=1,....5.
Analysis of the calculation results shows that the

(32)

equivalence coefficients p", n=1.5 differ from the
equivalence coefficient p =2.999 by small values, which
are 0.35% less (see formula (32), tab. 1). According to
(30), the corrected equivalent strength conditions for the
equivalence coefficient p”, n=1,...,5 have the form

1.5288p" <n, <2.7805p". (33)

Since the coefficients p", n=1,...,5 have minor dif-
ference with p (see formula (32), fig. 1), then equivalent
strength conditions (33) will differ a little from the
equivalent strength conditions (30); moreover, we have

1.5288p" <4.65<n, <825<2.7805p", (34)
where n=1,...,5.

Fulfillment of (34) implies that the equivalence coef-
ficients p", n= 1.5 , in fact, generate corrected equivalent
strength conditions (31).

Consequently, the results of the calculations show that
when calculating the strength of a composite beam V},
under the action of piecewise constant loads ¢, on the
surface z=H , n=1,..,5 it is possible to use the cor-
rected equivalent strength conditions (31) constructed for
a beam V|, with loading ¢, =0.0018 on the surface

0.5L<y<L, z=H 1. e., constructed using the equiva-
lence coefficient p =2.999.

The results of calculations of the beam 7

! ' g z g P 8, (%)

1 0<x<H 0<y<L H 0.0078 2.997 0.066 %

2 0<x<H/2 0<y<L/2 H 0.543 2.991 0.267 %

3 0<x<H/2 0<y<L H 0.125 2.989 0.333 %

4 0<x<H 0,998L<y<L H 2.8000 2.999 0.000 %

5 0<x<H 0<y<L/2 H 0.0145 2.994 0.167 %
0<x<H 0.5L<y<L 0.0034
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Now then, if a piecewise constant load ¢, acts on the
upper surface of the beam V[, which provides direct or

oblique bending of the beam, then when calculating the
strength of the beam V|, you can use the corrected

equivalent strength conditions (31).

Given in [24] example of calculating the strength of a
cantilever beam (having a micro-inhomogeneous regular
fibrous structure) using the MESC shows its high effi-
ciency.

Conclusion. The method of equivalent strength condi-
tions is proposed for calculating the static strength of elas-
tic bodies with an inhomogeneous, micro-inhomogeneous
regular structure under given strength conditions. The
proposed method is implemented applying FEM using
multigrid finite elements and is limited to calculation of
isotropic homogeneous bodies strength using equivalent
strength conditions that account for solution errors. In the
process of implementation, the method of equivalent
strength conditions requires little time or computer re-
sources and is exceptionally effective when calculating
the strength of bodies that have a micro-inhomogeneous
regular fibrous structure.
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