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In practice problems, which consist in the search of the best (optimal) solution according to the different irredun-

dant and contradictory (conflicting) criteria, called multi-objective problems, are of frequent occurrence. One of the 

most commonly used methods for solving this kind of problems consists in combination of all criteria into the single one 

by using some linear relation. However, despite the simplicity of this method, solving problems with its help may cause 

other problems related to the determination of the mentioned linear combination, namely related to the determination of 

the weight coefficients for each criterion. The incorrect selection of these coefficients may lead to non-optimal solutions 

(according to the Pareto theory). In this regard, recently various population-based algorithms have been proposed for 

solving the described problems, which are the modifications of these population-based algorithms for solving single-

objective optimization problems. This article describes the developed modifications of the Differential Evolution algo-

rithm (DE) for solving multi-objective unconstrained optimization problems based on the well-known NSGA (Non-

dominated Sorting Genetic Algorithm) and MOEA/D (Multiobjective Evolutionary Algorithm Based on Decomposition) 

schemes, which use the Pareto theory. The investigation into the efficiency of the Differential Evolution algorithm for 

solving multi-objective optimization problems in relation to the chosen mutation operator of the original DE algorithm 

and to the multi-objective scheme was conducted. The developed modifications were tested by using some well-known 

multi-objective real-valued optimization problems with 30 variables, such as ZDT1, ZDT2, ZDT3, etc. The practical 

problem of spacecraft control contour variant choice was solved as well.  The experimental results show that better 

results were achieved by the Differential Evolution algorithm with the simplest mutation operators combined with the 

NSGA scheme. Thus, the applicability of the described modification for solving practical multi-objective optimization 

problems was demonstrated. 
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В практической деятельности часто встречаются задачи, заключающиеся в поиске лучшего (оптимально-

го) решения при наличии различных несводимых друг к другу и противоречивых (конфликтующих) критериев 

оптимальности, называемые задачами многокритериальной оптимизации. Один из наиболее распространен-

ных методов решения подобного рода задач заключается в объединении всех критериев в один, используя  

некоторое линейное соотношение. Несмотря на простоту метода, при решении задач таким способом могут 

возникнуть проблемы с определением самого линейного соотношения, а именно весовых коэффициентов каж-
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дого критерия, неправильный подбор которых может привести к неоптимальным (в смысле теории Парето 

доминирования) решениям. В связи с этим в настоящее время предложены различные популяционные алгорит-

мы для решения описанных задач, которые в свою очередь являются модификациями этих же популяционных 

алгоритмов для решения задач однокритериальной оптимизации. В данной статье описаны разработанные 

модификации алгоритма дифференциальной эволюции (Differential Evolution, DE) для решения задач многокри-

териальной безусловной оптимизации на базе широко известных схем NSGA (Non-dominated Sorting Genetic 

Algorithm) и MOEA/D (Multiobjective Evolutionary Algorithm Based on Decomposition), использующих теорию Па-

рето доминирования. Исследование эффективности алгоритма дифференциальной эволюции для решения за-

дач многокритериальной оптимизации проводилось в зависимости от выбора оператора мутации исходного 

алгоритма дифференциальной эволюции и схемы учета множества целевых функций. Разработанные модифи-

кации были протестированы с помощью известных задач многокритериальной безусловной оптимизации  

вещественнозначных функций с 30 независимыми переменными, например, ZDT1, ZDT2, ZDT3 и т. д., также 

была решена практическая задача выбора эффективного варианта аппаратно-программного комплекса  

для систем управления космическими аппаратами. В результате экспериментов было установлено, что алго-

ритм дифференциальной эволюции демонстрирует лучшие результаты при использовании наиболее простых 

операторов мутации в сочетании со схемой учета целевых функций NSGA, таким образом, показана целесооб-

разность его применения с данными параметрами для решения практических задач. 

 

Ключевые слова: оптимизация, дифференциальная эволюция, теория Парето доминирования, MOEA/D, 

NSGA, мутация. 

 

Introduction. Complex technical and organizational 

systems control requires constant decision making taking 

into consideration various criteria and limited resources. 

Such kind of problems (multi-objective optimization 

problems) can be found in different areas, including aero-

space industry (for example, [1–3]). For some of them it 

is possible to find solutions, which would be optimal with 

respect to all criteria. However, the opposite situation, 

namely when the criteria conflict with each other, occurs 

more frequently. In that case there is s a need to determine 

a set of solutions (best possible variants), where each  

one of them can be considered as a compromise between 

all criteria. 

There are various ways to determine the mentioned set 

of solutions, but the most popular among them is the 

Pareto dominance theory [4]. Generally speaking, a multi-

objective optimization problem includes a set of D pa-

rameters (variables), a set of K objective functions of 

these variables, and a set of M constraints. It is necessary 

to find a solution, that is optimal according to all K crite-

ria, while solving a multi-objective optimization problem; 

and the problem is formulated as follows: 

( ) ( ) ( ) ( )( )1 2, ,..., Ky f x f x f x f x opt= = → ,        (1) 

( )
( )

0, 1, ,

0, 1, ,

j

j

g x j r

h x j r M

 ≤ =


= = +
                   (2) 

where ( )1 2, ,..., Dx x x x=  is possible solution. 

Let us consider the multi-objective unconstrained op-

timization problems. Generally, there are no additional 

requirements of functions ( )if x , i = 1, …, K, that would 

be convenient for optimization (for example, convexity, 

differentiability, etc.). Functions can be defined algo-

rithmically; variables can be continuous, discontinuous, 

binary and even mixed. This fact significantly reduces the 

class of optimization algorithms, which could be applied 

to solving such problems. 

In this study modifications of the Differential Evolu-

tions (DE) algorithm [5] for solving multi-objective opti-

mization problems based on the well-known schemes 

such as MOEA/D (Multiobjective Evolutionary Algo-

rithm Based on Decomposition) [6] and NSGA (Non-

dominated Sorting Genetic Algorithm) [7], that use the 

Pareto theory, are introduced. Moreover, efficiency of 

these modifications was examined in accordance with the 

chosen DE’s mutation operator [8]. 

Differential Evolution. Differential evolution or DE 

is a population-based meta-heuristic approach initially 

developed for solving multidimensional optimization 

problems. It was firstly introduced by K. Price and  

R. Storn in 1995 [5] for solving single-objective optimiza-

tion problems. The DE algorithm is a direct optimization 

method, thus it only needs values of the objective func-

tion; it uses some of ideas the proposed for the genetic 

algorithms such as mutation as well. 

The DE starts with the random initialization of the 

population that contains N individuals, to be more specific 

the set of N vectors is randomly generated. Each individ-

ual is represented by its coordinates in the search space 

with D dimensions. Then a new generation is created in 

the following way. For each individual t
ix  three different 

vectors from the old generation are randomly chosen, 

after that a new mutant vector t
iv  is generated by using 

the mutation operator. 

Nowadays there are various mutation schemes for the 

differential evolution algorithm [8]. In this study five 

most popular mutation strategies were used (rand, best, 

current_to_best, best2, rand2): 

( )1, 2, 3,
t t t t
j R j R j R jv x F x x= + − ;                   (3) 

( ), 1, 2,
t t t t
j best j R j R jv x F x x= + − ;                   (4) 

( ) ( ), , , 1, 2,
t t t t t t
j i j best j i j R j R jv x F x x F x x= + − + − ;        (5) 

( ) ( ), 1, 2, 3, 4,
t t t t t t
j best j R j R j R j R jv x F x x F x x= + − + − ;     (6) 

( ) ( )1, 2, 3, 4, 5,
t t t t t t
j R j R j R j R j R jv x F x x F x x= + − + − .     (7) 
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In these formulas indexes R1, R2, R3, R4 and R5 are 

numbers randomly chosen from the range [1, N], all of 

them differ from the index i and each other; F is the scal-

ing factor, namely the maximum possible distance by 

which the search area can be expanded in one variable; 
t
bestx – the best position found by the population during t 

iterations. 

The next step is the crossover, which is performed  

for the mutant vector. During the crossover its coordinates 

(or at least a part of them) can be replaced with some 

probability (CR) by the coordinates of the parent vector. 

A new obtained vector is called a trial vector. If the value 

of the objective function calculated for the trial vector is 

better than the value of the objective function calculated 

for the parent vector, then the parent vector should be 

replaced by the trial vector in a new generation, otherwise 

it stays the same. 

Modifications of the DE algorithm for solving 
multi-objective optimization problems. In this study 

two well-known schemes for the multi-objective optimi-

zation problems were used: Multiobjective Evolutionary 

Algorithm Based on Decomposition (MOEA/D) [6]  

and Non-dominated Sorting Genetic Algorithm  

(NSGA) [7]. 

Modification of the DE algorithm based on the 

scheme NSGA works as follows. First of all, in addition 

to the population of individuals an external archive is 

generated, in which optimal according to the Pareto the-

ory solutions are saved. This archive is updated at each 

iteration. 

Besides, on every iteration during the crossover the 

additional second archive of size 2N, in which initially all 

individuals from the population are stored, is created. As 

was mentioned before, during crossover trial vectors, that 

can replace parent individuals in population, are gener-

ated. If the parent individual from the second additional 

archive is non-dominant with respect to the respective 

trial vector then the latter is discarded and the parent indi-

vidual stays the same, and vice versa, if the trial vector is 

non-dominant then it replaces the parent vector in the 

second archive. However, if the parent and trial vectors 

are not comparable then they both are stored in the second 

additional archive. It should be noted that the trial vectors, 

which are stored in the mentioned archive, later partici-

pate in the crossover, and for them the mutant vectors are 

generated by using individuals saved in the same archive. 

On the next step the second additional archive is trun-

cated to the size N by using the sorting of individuals ac-

cording to the degree of their non-dominance proposed 

for the NSGA scheme [7]. Individuals are sorted in the 

mentioned archive as follows. For each individual its 

rank, which is denoted as “rank”, is determined. If an 

individual is non-dominant with respect to all other indi-

viduals from that archive then its rank = 0. After that the 

individual, which is non-dominant with respect to all 

other individuals from archive except the one with the  

rank = 0, is determined. Therefore, its rank is assigned  

to 1. If there are more than one such an individual, then 

the same rank is assigned to each of them. The process 

continues until all individuals in the population are 

ranked. 

Next, the ranked individuals are selected according to 

the Crowding-distance metric (I) described in [9]. For 

each objective function the solutions with the smallest and 

largest values of this metric are determined. It is assumed 

that the metric value for these solutions from the second 

additional archive reaches its maximum. For other solu-

tions from the archive the distance (metric value) is calcu-

lated as follows: 

[ ] [ ] [ ]
max min

1

1 1K
k k

k k k

f i f i
I i

f f=

+ − −
=

−
∑ .                      (8) 

Here parameters max
kf  and min

kf  are the maximum 

and the minimum values of the k-th objective function, 

[ ]1kf i +  and [ ]1kf i −  are values of the k-th objective 

function for the (i + 1)-th and (i – 1)-th individuals re-

spectively. 

After that, the i-th individual is compared with the rest 

(i = 1, ..., 2N) until it is better than any individual accord-

ing to the rank or to the value of the metric (the higher, 

the better). In this case, it is saved in a truncated archive, 

the comparison is stopped and the next individual is con-

sidered. These actions are repeated until the number of 

individuals in the truncated archive is equal to N. 

The external archive, in which non-dominated solu-

tions are stored, is updated by the individuals stored in the 

additional archive. The population that consists of indi-

viduals from the truncated archive passes to the next gen-

eration. 

Now let us consider the modification of the DE algo-

rithm, developed on the basis of the MOEA/D scheme 

[6]. As for the previous modification, initially an external 

archive for the non-dominated solutions according to the 

Pareto theory is generated; moreover, this archive is up-

dated at each iteration. Further, the population of N indi-

viduals is initialized randomly. 

For each i-th (i = 1, ..., N) individual, the vector Li 

consisting of weight coefficients for the corresponding 

objective functions (one coefficient per objective func-

tion) is generated. The coefficients are generated ran-

domly within the range [0, 1] and vector Li is normalized. 

Next, the reference vector ( )1 2, ,..., Kz z z z= , where zj 

is the best currently found value of the j-th (j = 1, …, K) 

objective function  fj, is determined. In addition, for each 

i-th individual, a set of indexes B(i) is created,  

it consists of T indexes of the nearest to Li neighbors, to 

be more specific the distances between the vectors Li and 

Lj ( j = 1, …, N and j ≠ i) are calculated using the Euclid-

ean metric, and then T indexes of the nearest neighbors 

are selected. 

Thus, for each i-th individual, where i = 1, …, N, the 

set of indexes B(i) = {i(1), …, i(T)} is defined such  

as Li(1), …, Li(T) are the T closest vectors to the vector Li. 

Then, during the mutation for the described schemes  

(3)–(7) indexes R1, R2, R3, R4, R5 for the i-th individual 

are randomly chosen from the set B(i). 

At the crossover step the trial vector U is generated, 

after that the vector z is updated. Finally, according to the 

rule described in [6] the individual in the population is 

updated (it is replaced by the trial vector U). 
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Experimental results. The investigation into the effi-

ciency of the DE algorithm with different mutation strate-

gies and schemes for the multi-objective optimization 

problems was conducted by using the following test prob-

lems: ZDT1, ZDT2, ZDT3, ZDT6, Schaffer’s Min-Min 

(SCH) and DTLZ2 [10]. The following parameters were 

used for testing: 

1) S – the maximum number of optimal according to 

the Pareto theory solutions, which were saved during the 

algorithm’s work; it was set to 100; 

2) N – the population size, it was equal to 100; 

3) MaxGen – the maximum number of iterations equal 

to 250; 

4) F = 0.4; 

5) CR = 0.3 for modification of the DE approach 

based on the MOEA/D scheme; 

6) CR = 0.6 for modification of the DE approach 

based on the NSGA scheme; 

7) T = 20; 

8) D = 30. 

Each problem was solved by all modifications  

10 times and after each program run the following values 

were calculated: the Ef error (i. e. the difference between 

the obtained and real Pareto fronts) and the spread ∆  

(i. e. the extend of spread achieved among the obtained 

solutions).  

The Ef error was calculated by using the following 

formula (9): 

( )22

1

NS
e t e t

f j j

j

E PF PF PF PF
=

= − = −∑ ,            (9) 

where PF
e
 is the found Pareto front, PF

t
 is the actual 

Pareto front, NS is the number of points in the external 

archive. The value of the spread ∆ was determined using 

the following formula: 

( )

1

1

1

NS

f l i

i

f l

d d d d

d d NS d

−

=

+ + −

∆ =
+ + −

∑
,                     (10) 

where di is the minimal Euclidean distance between  

the i-th solution from the obtained Pareto front and other 

solutions from that front [11] (NS – number of solutions 

in the external archive), and d  is the average distance. 

Parameters df and dl are Euclidean distances between  

the extreme solutions of the real and obtained Pareto 

fronts. 

Results obtained by the modification of the DE algo-

rithm based on the MOEA/D scheme with different muta-

tion strategies and averaged by the number of program 

runs are presented in tab. 1. 

Thus, it was established that modification of the DE 

approach based on the MOEA/D scheme demonstrated 

the best results while using the mutation strategy best. 

Tab. 2 shows how many times this algorithm configura-

tion outperformed others according to four criteria:  

Best – the best obtained values of Ef and ∆ respectively, 

Worst – the worst values, Mean – the mean values  

for Ef and ∆, SD is the standard deviation for the obtained 

results. 

Results obtained by the modification of the DE algo-

rithm based on the NSGA scheme with different mutation 

strategies are presented in tab. 3.  
 
 

Table 1 

Results obtained by the DE+MOEA/D algorithm with different mutation schemes 
 

Problem rand best current_to_best best2 rand2 

Ef 0.00384 0.00054 6.59454 0.00119 0.0062 
ZDT1 

∆ 0.16367 0.11775 0.489 0.13324 0.16509 

Ef 0.00053 0.00041 5.92685 0.00055 0.00199 
ZDT2 

∆ 0.09408 0.11174 0.70551 0.105 0.11352 

Ef 0.15176 0.08976 4.84475 0.0003 0.00249 
ZDT3 

∆ 0.19449 0.16297 0.43173 0.09944 0.15936 

Ef 2.08E-07 2.05E-07 0.47384 2.03E-07 0.00391 
ZDT6 

∆ 0.04915 0.44263 0.63503 0.04259 0.02977 

Ef 6.85E-07 7.19E-07 0.00019 0.01249 7.19E-07 
SCH 

∆ 0.40399 0.30593 0.36606 0.32616 0.35382 

Ef 0.00024 0.00022 2.62E-05 0.00056 0.00038 
DTLZ2 

∆ 0.05619 0.06844 0.0706 0.10307 0.07852 

 
 

 
Table 2 

The results of the comparison of the mutation schemes for the DE+MOEA/D modification 
 

Ef ∆ 
Scheme 

Worst Best Mean SD Worst Best Mean SD 

rand 0 1 1 0 1 0 2 1 

best 3 4 2 3 1 3 4 1 

current_to_best 1 1 1 1 0 1 0 0 

best2 2 0 2 2 3 2 1 3 

rand2 0 0 0 0 1 0 0 1 
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Thus, it was established that the strategy best demon-

strated the best results comparing to others in 10 cases, 

while the strategy rand in 14 cases. However, for this 

modification strategy rand outperforms the strategy best 

because it showed the better results according to the sec-

ond criterion (spread of solutions along the front) more 

frequently. Tab. 4 shows how many times this algorithm 

configuration outperformed others according to four crite-

ria: Best - the best obtained values of Ef and ∆ respec-

tively, Worst – the worst values, Mean – the mean values 

for Ef and ∆, SD is the standard deviation for the obtained 

results. 

Examples of the Pareto fronts obtained by the devel-

oped modifications of the DE algorithm with determined 

on the previous step best mutation strategies for the listed 

test problems are demonstrated in fig. 1–6. 

The developed modifications of the DE algorithm  

(DE + NSGA and DE + MOEA/D) are compared with the 

other methods for solving multi-objective optimization 

problems: MOPSO [12], NSGA-II [13], SPEA [14]  

and PAES [15]. Moreover, the comparison was made 

according to the previously used criteria (error and varia-

tion).  

Tab. 5 shows the mean values for the criteria obtained 

by the listed algorithms. The results of the NSGA-II and 

SPEA, PAES algorithms are taken from the literature 

[15], and the results of the MOPSO algorithm were ob-

tained independently.  

 
Table 3 

Results obtained by the DE+NSGA algorithm with different mutation schemes 
 

Problem rand best current_to_best best2 rand2 

Ef 0.00733 0.00884 0.00577 0.02993 0.03549 
ZDT1 

∆ 0.0775 0.07231 0.28125 0.07318 0.06684 

Ef 0.00627 0.00311 0.31043 0.0197 0.03744 
ZDT2 

∆ 0.10933 0.603442 0.75164 0.11818 0.12551 

Ef 0.00491 0.00628 0.00277 0.0259 0.44998 
ZDT3 

∆ 0.06465 0.07346 0.59455 0.0817 0.16594 

Ef 0.00058 2.90E-07 0.00212 3.25E-07 0.00324 
ZDT6 

∆ 0.05462 0.03373 0.05722 0.0548 0.06761 

Ef 4.93E-05 5.69E-06 5.66E-07 0.00041 7.7E-07 
SCH 

∆ 0.10595 0.17782 0.18019 0.11755 0.10743 

Ef 11.1832 6.6664 12.164 4.91719 0.01469 
DTLZ2 

∆ 0.417295 0.27964 0.542015 0.20289 0.05895 

 
 

 
Table 4 

The results of the comparison of mutation schemes for the DE+NSGA modification 
 

Ef ∆ 
Scheme 

Worst Best Mean SD Worst Best Mean SD 

rand 2 1 1 2 2 1 3 2 

best 1 1 2 1 1 1 1 2 

current_to_best 1 4 2 0 0 0 0 0 

best2 1 0 0 1 2 3 0 1 

rand2 1 0 1 2 1 1 2 1 

 
 

          
Based on scheme NSGA Based on scheme MOEA/D 

 

 

Fig. 1. Examples of the Pareto front obtained for the ZDT1 problem 

 

Рис. 1. Примеры фронта Парето, полученные для задачи ZDT1 
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a)  based on scheme NSGA b) based on scheme MOEA/D 

 

 

Fig. 2. Examples of the Pareto front obtained for the ZDT2 problem 

 

Рис. 2. Примеры фронта Парето, полученные для задачи ZDT2 

 

 

 

 

 

  
a)  based on scheme NSGA b) based on scheme MOEA/D 

 

 

Fig. 3. Examples of the Pareto front obtained for the ZDT3 problem 

 

Рис. 3. Примеры фронта Парето, полученные для задачи ZDT3 

 

 

 

 

 

  
Based on scheme NSGA Based on scheme MOEA/D 

 

 

 

Fig. 4. Examples of the Pareto front obtained for the ZDT6 problem 

 

Рис. 4. Примеры фронта Парето, полученные для задачи ZDT6 
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Based on scheme NSGA Based on scheme MOEA/D 

 

 

Fig. 5. Examples of the Pareto front obtained for the SCH problem 

 

Рис. 5. Примеры фронта Парето, полученные для задачи SCH 

 

 

 

 
Based on scheme NSGA Based on scheme MOEA/D 

 

 

Fig. 6. Examples of the Pareto front obtained for the DTLZ2 problem 

 

Рис. 6. Примеры фронта Парето, полученные для задачи DTLZ2 

 

 

Table 5 

The results of the comparison of the algorithms for solving multi-objective optimization problems 
 

ZDT1 ZDT2 ZDT3 ZDT6 SCH 
Algorithm 

Ef ∆ Ef ∆ Ef ∆ Ef ∆ Ef ∆ 

NSGA-II-r 0.0335 0.3903 0.0724 0.4308 0.1145 0.7385 0.2966 0.668 0.0034 0.4779 

NSGA-II-b 0.0009 0.4633 0.0008 0.4351 0.0434 0.5756 7.8068 0.6445 0.0028 0.4493 

SPEA 0.0018 0.7845 0.0013 0.7551 0.0475 0.6729 0.2211 0.8494 0.0034 1.0211 

PAES 0.0821 1.2298 0.1263 1.1659 0.0239 0.7899 0.0855 1.1531 0.0013 1.0633 

MOPSO 0.0605 0.5685 0.0807 0.4045 0.0016 0.415 0.0015 0.1204 8.91E-07 0.6039 
DE+NSGA 0.0073 0.0775 0.0063 0.1093 0.0049 0.0646 0.5706 0.1977 4.93E-05 0.1059 

DE+MOEA/D 0.0005 0.1177 0.0004 0.1117 0.0898 0.163 2.05E-07 0.4426 7.19E-07 0.3059 

 

 

Thus, as a result of the research, it is established that 

the best values of objective functions are achieved by 

modifying the algorithm of differential evolution based on 

the NSGA scheme with the simplest mutation strategy 

called rand. Moreover, the experiments demonstrate that 

the modification of the DE algorithm of the NSGA 

scheme approximates the Pareto front better than the other 

multi-objective optimization algorithms, namely MOPSO, 

PAES, NSGA-II, SPEA, DE + MOEA / D. 

The problem of the choice of spacecraft control 
contour variant. In this study the problem of the choice 

of spacecraft’s control contour variant [16] is consid-

ered. The functioning process of a spacecraft control 

subsystems is modeled with Markov chains, while the 

problem of choosing an effective variant for a space-

craft control system is formulated as a multi-objective 

discrete optimization problem with algorithmically 

given functions. 

The problem statement and the way the problem of 

spacecraft’s control contour variant choice was modeled 

are presented in [16]; in this study only a brief description 

is given. 
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The system for monitoring and control of an orbital 

group of telecommunication satellites includes on-board 

control complexes (BCC) of a spacecraft, a distributed 

system of telemetry, command and ranging (TCR)  

stations and data telecommunication systems in each, 

command measuring systems (CMS) and flight control 

center (FCC). It should be noted that the last three  

subsystems are combined into the ground-based control 

complex (GCC). 

Thus, the ground control complex interacts with the 

onboard control complex using a telecommunication sys-

tem, as well as command measuring systems and data 

transmission systems, which include communication cen-

ters of a flight control center. BCC is the controlling sub-

system of the satellite that ensures real time checking and 

controlling of on-board systems including pay-load 

equipment as well as fulfilling program-temporal control. 

Control functions performed by the automated control 

system can be divided into subsystems called “control 

contours”. Mentioned contours perform various functions, 

for example the following contours can be distinguished: 

a technological contour, a command-program contour,  

a target contour, etc. [16]. 

The main task of the command-program contour is the 

maintenance of the tasks of creating command-

programming information, transmitting it to BCC and 

executing it and control action as well as the realization  

of the temporal program mode of control. Let us consider 

the simplified control system, which consists of three sub-

systems: onboard target equipment, on-board control 

complexes and ground-based control complex. 

If we suppose that BCC can fail and GCC is abso-

lutely reliable, then we can introduce the following nota-

tions: λ1 is the intensity of BCC failures, µ1 is the inten-

sity of temporal program (TP) computation, µ2 is the in-

tensity of the command-programming information (CPI) 

loading into BCC, µ3 is the intensity of temporal program 

execution, µ4 is the intensity of BCC being restored. 

Therefore, all stochastic flows in the system are Poisson, 

and there are five possible states for this contour [16]: 

1) BCC fulfills TP, GCC is free; 

2) BCC is free, GCC computes TP; 

3) BCC is free; GCC computes CPI and loads TP; 

4) BCC is restored with GCC which is waiting for 

continuation of TP computation; 

5) BCC is restored with GCC which is waiting for 

continuation of CPI computation. 

The corresponding Kolmogorov system of equations 

for the final probabilities is the following: 

( )1 1 3 2 3 0P P⋅ λ + µ −µ ⋅ = ,                    (11) 

( )2 1 1 3 1 4 4 0P P P⋅ µ + λ −µ ⋅ −µ ⋅ = ,              (12) 

( )3 1 2 1 2 4 5 0P P P⋅ λ +µ −µ ⋅ −µ ⋅ = ,             (13) 

4 4 1 1 1 2 0P P P⋅µ −λ ⋅ −λ ⋅ = ,                 (14) 

5 4 1 3 0P P⋅µ −λ ⋅ = ,                          (15) 

1 2 3 4 5 1P P P P P+ + + + = .                      (16) 

In these formulas Pi is the probability that the system 

is in the i-th state, where i = 1, …, 5. After solving the 

system (11)–(16), the necessary indexes of control quality 

for the command-programming contour can be calculated: 

1) 1

2 3

P
T

P
=
µ ⋅

– the average duration of the independ-

ent operating of the spacecraft for this contour; 

2) 3 5
1

1 2

P P
t

P

+
=
µ ⋅

 – the average duration of BCC and 

GCC interactions when loading TP for the next interval  

of independent operation of the spacecraft; 

3) 
( )

2 3 4 5
2

1 1 3

P P P P
t

P

+ + +
=

⋅ λ +µ
 – the average time from the 

start of TP computation till the start of TP fulfillment  

by BCC. 

Maximizing the first indicator and minimizing the last 

two indicators leads to the choosing of an effective vari-

ant for a spacecraft control system. Thus, the multi-

objective optimization problem is formulated with three 

objective functions. In this study it was solved by the best 

developed configurations of the DE+NSGA and 

DE+MOEA/D algorithms. The examples of the obtained 

Pareto fronts for the described optimization problem are 

presented in the fig. 7, to be more specific the projection 

of the Pareto front on the plane µ2 – µ4 (µ2 – horizontal 

axis, µ4 – vertical axis). In addition, on the graphs, the 

solid points are the points from the Pareto set, obtained by 

the algorithm, the open points are the true set points (not 

found respectively). 

The problem was solved by each algorithm 10 times, 

for each program run the number of iterations was set to 

30, number of individuals to 20, and for the 

DE+MOEA/D algorithm parameter  was equal to 5. As a 

result of the research, it was established that modification 

of the DE algorithm based on the NSGA scheme 

(DE+NSGA) with the previously found configuration is 

able to solve the described problem of the choice of 

spacecraft control contour variant better. Therefore, the 

workability of that algorithm was verified on real-world 

problem. 

Conclusions. In this paper two developed modifica-

tions of the differential evolution algorithm based on the 

schemes NSGA (DE+NSGA) and MOEA/D 

(DE+MOEA/D) for solving multi-objective optimization 

problems are described. First of all, the efficiency of the 

proposed modifications was examined in accordance with 

the selected mutation strategy: it was established that for 

the DE+NSGA algorithm the most useful is the rand mu-

tation strategy, while for the DE+MOEA/D algorithm it is 

the best strategy.  

Then the results obtained by modifications of the dif-

ferential evolution algorithm with defined mutation 

strategies were compared with the results obtained by 

other well-known population-based algorithms. Finally, it 

was proved that the modification DE+NSGA described in 

this study with the rand mutation strategy outperforms 

alternative algorithms for solving multi-objective optimi-

zation problems. 
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Based on scheme NSGA Based on scheme MOEA/D 

 

 

Fig. 7. Examples of the Pareto set obtained for the problem of the spacecraft control contour variant choice 

 

Рис. 7. Примеры множества Парето, полученные для задачи выбора эффективного варианта управления КА 

 

 
Besides, the problem of the choice of spacecraft con-

trol contour variant was solved and the workability of the 

proposed approaches was demonstrated on the real-world 

problem. 
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