Cubupcrkuii scypnan nayku u mexnonozuu. Tom 20, Ne 2

UDC 629.7.05
Doi: 10.31772/2587-6066-2019-20-2-166-173

For citation: Lomaev Yu. S., Ivanov 1. A., Tolstykh A. V., Islentev E. V. [Applying software-mathematical models
of onboard equipment to develop onboard software]. Siberian Journal of Science and Technology. 2019, Vol. 20, No. 2,
P. 166-173. Doi: 10.31772/2587-6066-2019-20-2-166-173

Jost murupoBanus: Jlomaes 1O. C., MBanos U. A., Toncteix A. B. Ucnentses E. B. IlpuMmenenne nporpaMMHO-
MaTEeMAaTUYCCKUX MOJIEIC OOPTOBOM ammapatypbl npu pa3padboTke OOPTOBOro mporpaMMHoro odecredenus // Cubup-
CKHiA XypHaI HayKu U TexHomorui. 2019. T. 20, Ne 2. C. 166—-173. Doi: 10.31772/2587-6066-2019-20-2-166-173

APPLYING SOFTWARE-MATHEMATICAL MODELS OF ONBOARD
EQUIPMENT TO DEVELOP ONBOARD SOFTWARE

Yu. S. Lomaev, 1. A. Ivanov, A. V. Tolstykh, E. V. Islent'ev

JSC “Academician M. F. Reshetnev “Information Satellite Systems”
52, Lenina St., Zheleznogorsk, Krasnoyarsk region, 662972, Russian Federation
E-mail: lomaif@rambler.ru

This paper deals with the testing of the functioning logic of spacecraft subsystems at the stage of developing system
onboard software. The increasing complexity of the structure and operation logic of spacecraft due to the increased
requirements in terms of providing consumers with information services (navigation, satellite monitoring of transport,
geodesy, communications etc.) demands maintaining the reliability of uninterrupted operation, the implementation of
automated parrying of emergency situations during the operation of spacecraft onboard equipment. In order to meet
these requirements, it is necessary to test the interaction of onboard equipment and onboard integrated computing
complex software that implements the target-oriented operation of spacecraft onboard systems. In such a case, meeting
the requirements for reliability increase of onboard software should not lead to the increase of the manufacturing pe-
riod of spacecraft.

In this work we propose the approach for testing information and logical interaction between onboard equipment
and software of a spacecraft onboard integrated computing complex with the use of a laboratory testing sample unit
and a software-mathematical model. We described the basic concepts of conducting two-stage testing of onboard soft-
ware, involving autonomous and system testing on the ground testing complex. The proposed approach is applied as
part of the onboard software development cycle in accordance with the standards of the JSC “Academician M.F. Re-
shetnev “Information Satellite Systems”.

The approach proposed in this work helps reduce the number of errors during onboard software development and
testing of information and logical interaction between onboard equipment and a spacecraft as a whole in every opera-
tion mode.

Keywords: spacecraft, onboard equipment, onboard software, software-mathematical model, laboratory testing,
ground testing complex.

NPUMEHEHHUE ITIPOI'PAMMHO-MATEMATUYECKHAX MOJIEJIE BOPTOBOM ATIITAPATYPBI
IIPU PABPABOTKE BOPTOBOI'O ITIPOT'PAMMHOI'O OBECIIEYEHUA

I0. C. Jlomaes, 1. A. MBanos, A. B. Toncteix E. B. Mcnentses

AO «HpOopMaITMOHHEIE CITyTHUKOBBIE CUCTEMBI» HUMEHH akanemMuka M. @. PenreTHeBa»
Poccuiickas ®enepanust, 662972, r. XKeneznoropck KpacHosipckoro kpas, yi. Jleauna, 52
E-mail: lomaif@rambler.ru

Paboma noceswena ompabomxe 102uKku (HYHKYUOHUPOBAHUS NOOCUCEM KOCMUYECKO20 ANNaApama Ha smane pas-
pabomku 60pmMoB020 NPOSPAMMHO20 0DeCnedeHls CUCmeMbl. YCIodCHeHUe CIMPYKMYPbl U T0UKU (DYHKYUOHUDOBAHUSL
KOCMUYECKUX annapamos @ C6sA3u ¢ NogbluleHueM mpebosanul 6 uacmu obecneuenus nompebumenel UHGOPMAYUOH-
HbIMU YCIy2amu (Hasueayuu, CRYmMHUKO8020 MOHUMOPUHeAd MPAHCROPMA, 2e00e3ul, Cé3u U m.0.) mpebyem noodep-
HCAHUSL HAOEHCHOCMU U 6ecnepeboliH020 QYHKYUOHUPOBAHUS, Deanu3ayuu agmomMamu3upoOSaHHO20 NApUpOSaHUsL
HewmamHolx cumyayuii npu pabome 60pmMobIX annapamyp KOCMUYeckux annapamos. s 0ocmudicenus nocmasieH-
HbIX mMpebosanuli HeodXoo0uMa OmaaoKa 63auMooelicmsus OOpmMoGol annapamypvl U HNPOSPAMMHO20 0DecneyeHus
6OPMOBO20 UHMEZPUPOBAHHO20 LIYUCIUTNETILHO20 KOMNIEKCA, PEAIU3yIouie20 Yyeieeoe yHKYUOHUposanue 6opmosblx
cucmem kocmuuecko2o annapama. Ipu smom evinoanenue mpeboganuil o YEeIudeHuio Ha0EXCHOCmU BOPMOB020 NPo-
2PAMMHO20 0becneueHus He QOINCHO NPUBOOUNb K YECIUHEHUIO CPOKOE US20MOGLCHUSL KOCMUYECKO20 annapamd.

166

Hnghopmamuxa, eeruuciumenvhas mexHuxka u ynpagienue

B nacmosweii pabome npeonoscern nooxoo 051 Oompabomxu UHGOPMAYUOHHO-I02UHECKO20 B3AUMOOelicmeust bop-
MOBOU annapamypsbl U NPOSPAMMHO20 O0Oecneyenuss 6opmoeo20 UHMESPUPOBAHHOZO GbIMUCIUMENLHO20 KOMIIEKCA
KOCMUYECKO20 annapama ¢ npumeHenuem iaoopamopHo-ompadbomouHo2o u3oenus u npoepamMmHO-MamemMamuiecKou
mooenu. Onucanvl 0CHOBHbIE UOeU NPOBedeHUsi 08YXYPOBHEB020 MECMUPOBANUs HOPMOBO20 NPOSPAMMHO20 Obecneye-
HUSL, GKIIOUAIOWe20 6 cebsi A8MOHOMHOE U CUCMEMHOE MeCMUPOBAHUe HA HA3EMHOM OMAAOOYHOM KOMALEKce. YKazan-
HblIl HOOX0O NPUMEHEH 6 PAMKAX Peanu3ayuu Yukia paspabomxu 60pmoeo2o npoSpamMmHO20 obecheyeHus, npoeooUMO20
coenacrno cmanoapmam AO «Uupopmayuonnsie cnymuurosvie cucmemuly umenu akademuxa M. @. Pewemnesay.

Ilpeonooicennviii 6 pabome noOXo0 cnocobcmayem COKpaujeruio omubox npu papabomxe 60pmoso2o NPocpPamMm-
H020 0becnedenus u npogepke UHGOPMAYUOHHO-TOSUYECKO20 83aUMOOelicaUs GOPMOBOL annapamypuvl U KOCMUYECKO-

20 annapama 6 Yyejlom 60 8cex pexrcumax qbyHKuuonupoeaH

us.

Kniouesvie cnosa: xocmuueckuii annapam, 6opmogas annapamypa, 60pmosoe npocpammHoe obecneuenue, npo-
PAMMHO-MAMEMAMUYECKASL MOOEb, 1ADOPAMOPHO-0MPAOOMOYHbIE UCHLIMAHUS, HA3EMHBI OMAAOOYHBI KOMNIEKC.

Introduction. Currently, spacecraft have a crucial role
in providing consumers with communications, television
broadcasting and navigation services. Depending on the
purpose, spacecraft contain a specific set of onboard
equipment. The problems solved by individual instru-
ments determine the functioning and logic of the opera-
tion of individual systems and a spacecraft as a whole. To
ensure a reliable uninterrupted operation [1] and auto-
mated management of emergency situations arising from
the operation of onboard equipment, it is necessary to
adjust the interaction with the software of the onboard
integrated computing system of spacecraft [2; 3].

The development of onboard software. A spacecraft
includes a number of target and auxiliary equipment
(spacecraft systems), which is determined according to
the purpose of a spacecraft. For all onboard equipment,
specialists develop software as part of the onboard soft-
ware, as well as software as a part of equipment ensuring
the interaction of this equipment with the onboard control
complex of a spacecraft.

Onboard software is a combination of the software of
onboard systems operating in single hardware and soft-
ware environment of the onboard integrated computing
system of a spacecraft [4]. Each component of the on-
board software is a functional part of its onboard system
and, together with its hardware, solves the problems as-
signed to this onboard system.

There are many approaches to software development
related to its design. The development, autonomous and
system testing of onboard software are key stages of the
lifecycle of a spacecraft [5], which provide the interaction
and logic of functioning data and instruments within its
systems.

Let us consider the standard cycle of the development
of onboard software:

1) defining the requirements to system software;

2) developing the architectural design of system
software;

3) developing and autonomous testing of system
software;

4) system testing of system software in system
modes;

5) testing system software in spacecraft modes;

6) fit testing of software and onboard equipment as
part of a spacecraft at the stage of electrical and radio
tests and flight tests;

7) maintaining system software at the stage of normal
operation.

167

If necessary, we return to the previous stages in the
standard cycle of developing onboard software. In case of
the successful completion of these stages we use the de-
veloped onboard software for work with spacecraft
equipment and maintain the onboard software operation
with the equipment in the spacecraft until the end of its
active life. The onboard software architecture has the fol-
lowing form in general terms (fig. 1).

While developing the onboard software, it is necessary
to conduct detailed testing of the interaction of software
that is part of a spacecraft system and onboard equipment
in order to detect errors before conducting integration
tests of software and equipment as part of a spacecraft.
Frequently, when errors are detected, changing the soft-
ware of onboard equipment is no longer possible, since it
may contain one-time programmable memories, or error
correction may take much time, which leads to an in-
crease in the duration of spacecraft testing. In this case,
when abnormal situations occur, there is a possibility of
correcting software failures of the onboard equipment
from an onboard control complex by modifying its soft-
ware.

The use of a mathematical software model. One of
the ways to test software in the development of onboard
software is to simulate the logic of the equipment by cre-
ating its software and mathematical model.

Software and mathematical model is a complex of the
implemented logic of equipment operation in the form of
a program code, through which we receive and transmit
information when interacting with the onboard software.

When creating a software model of equipment, it is
not necessary to have a high specification of the descrip-
tion of its internal structure and logic of functioning, but
only to imitate those features of the equipment that are
important from the point of view of its interaction with
the external environment.

Fig. 2 shows the scheme of testing onboard software
and software-mathematical model.

In the onboard software the logic of the interaction of
equipment and the onboard control complex is imple-
mented. The input information is the initial data, which
contain the requirements for the development of onboard
software.

The output information comprises the results of the
stand-alone testing of the onboard software through de-
bugging packages. The debug package is a pseudo-code
for checking whether it is possible to achieve the

Cubupcrkuii scypnan nayku u mexnonozuu. Tom 20, Ne 2

execution of a certain branch of the logic of onboard
software.

As a result of package debugging, we determine the
execution time, the size of the stack used, the coverage
of the logic of the executable program code.

The essence of the debugging of information interac-
tion between the software-mathematical model and the
onboard control complex is to check the reception and
transmission of various types of information messages,
such as control commands, telemetry information, on-
board time, software arrays, receipts, etc. Information
exchange between the equipment and the BUD is per-
formed via a multiplex exchange channel according to
GOST R 52070-2003 (I'OCT P 52070-2003) [6] in ac-
cordance with the protocol of information and logic inter-
action with this equipment, developed by the equipment
manufacturer and agreed with the developer of the on-
board software.

In case of the successful normal operation of the inter-
action between the onboard control complex and the
software-mathematical model, we check the occurrence of
abnormal situations in information exchange: hardware
malfunctions, failures of the multiplex exchange channel,
errors in information messages, temperature failures, fail-
ures in signal power, current strength, voltage and other
malfunctions.

System testing on the ground debugging complex.
The result of the procedures described above is the inte-
gration of the onboard software and the software-
mathematical model with the aim of conducting system
testing on the ground debugging complex [7; 8].
A ground testing complex is the integrated environment
for testing the onboard software and the software-
mathematical model instruments within a spacecraft. The
testing of the interaction occurs by checking the execution
of the program logic using sequence diagrams [9].

Integral controls

Software environment

Software control

T

environment

T
I I

Input data of
onboard control
complex software

Onboard control
complex software

So

subsystem 1

Software of
subsystem N

ftware of

Fig. 1. Onboard software architecture

Puc. 1. Apxurekrypa 60pTOBOr0 MPOrPaMMHOTO 00eCIICUCHHS

Initial data for onboard software

Onboard software

Onboard software after autonomous
testing

.

Software-mathematical model

Ground
Initial data Information reception and transmission Information reception and transmission testing
with abnormal situations complex
[[F e ———— .
[] L]
! 1 Software-
Initial data for } V mathematical
software- ' 1 model after
mathematical : : autonomous
model 1 | Standard logic testing Abnormal logic testing | 1 testing
. Software- :
1 mathematical :
: model with i
1 standard logic 1
L} 1
L} L}
[] L]
] L]

Fig. 2. Testing of onboard software and of a software-mathematical model

Puc. 2. OtpaboTka 6OpPTOBOrO MPOrpaMMHOT0 0OECIIeUeHHUS
U IPOrpaMMHO-MaTEMaTHYECKOIT MOJIeIH

168

HHgbopMamuKa, BblHUCIUMENbHAS MEeXHUKA U ynpaejlenue

A sequence diagram is a pseudo-code for system test-
ing, based on a graphical formalized language describing
the procedures and test options, allowing automating a
testing process.

The result of this stage is the onboard software of the
equipment, ready for testing in the spacecraft mode on the
ground testing complex.

In addition, the ground testing complex has the ability
to specify various initial data of the spacecraft operation,
both in general and each spacecraft system in particular;
that allows testing the onboard software for the whole set
of its functionality. Fig. 3 shows the ground testing com-
plex architecture.

Sample application for laboratory testing. Another
way to test the onboard software is to use a laboratory
testing sample [10; 11]. A laboratory testing sample is a
special sample of equipment for testing, which is a proto-
type of standard equipment in terms of functionality and
basic technical characteristics, on which we develop soft-
ware and technical solutions. Such a product is cheaper
than standard equipment and it is manufactured faster,
therefore there is a possibility of the onboard software
testing before the completion of the production of a stan-
dard sample. Fig. 4 shows the scheme for testing the in-
teraction of onboard software with the laboratory testing
sample.

Software environment

Software modelling
environment
A
| | |]
Orbital motion Onboard digital Onboard control Control commands
model computing complex database, telemetry,
complex model equipment models sequence diagram

Spacecra

ft

subsystem models

Fig. 3. Ground testing complex architecture

Puc. 3. ApXHTeKTypa HA3€MHOT'O OTJIaf0OYHOT'O KOMITJIEKCA

Initial data for onboard
software

>

Onboard software

Laboratory testing sample unit

A
Hardware Information reception Information reception and Interaction
documentation and transmission transmission with abnormal adjustment
situations

- I A p

1 1

1 1

i 1 y !

Initial data '

for creation' .

technology « | Standard logic Abnormal logic s

™ testing testing :

: = Laboratory G- .

1 testing sample :

: unit with 1

' standard logic .

: '

]]

Fig. 4. Testing the interaction between onboard software and a laboratory testing sample unit

Puc. 4. OtpaboTka B3auMoaeiicTBHsI OOPTOBOTO MPOrpaMMHOro obecriedeH s ¢ 00pa3om
UL 1a00PaTOPHO-0TPAOOTOUHBIX MCHIBITAHUI

169

Cubupcrkuii scypnan nayku u mexnonozuu. Tom 20, Ne 2

Spacecraft onboard
software documentation

|

. L] A L]
* Onboard software Requirements : z Requirements Software-
. , . mathematical »
. I . - _\‘_ model =
. Architectural = * | Initial data for 5
. design of software | ® * | software model :

] I = L !
. Data . . Data "
- ! n L . B n
= Onboard software| ™ * | Software model 55 :

— . . -
= Data t development development Sy u
* adjustments — . - adjustments 2
5 Program e Program .
] L L] - b ==

. Onboard software | * . |Software model .
: {autnﬂnmnus testing : . |autonomous testing .
. T - i .
5 Debug packages » Drivers, - | -
. s d“ s adjustments = "
. oard software - =
» system testing = [= =
LI B | n " mE EER N - L] o B ®m BN = . |] L] " n L " B N EN B B R B B BB .-

Testing

Drivers | interaction
logic
Y
___________ oL |Laboratory testing
L sample unit
Logic Executable code for
.;he.;kf onboard software, Executable code

;
‘ Syatem testing with
| ground testing

sequence diagram

for software
model

Y complex
Desien finishing Onboard software executable codes
test sample System testing in for all equipment
. — |spacecraft modes
Preliminary test
I sample Iquﬁpmmt onboard software
Software

tnaintenance

Spacecraft
operation

Onboard software maintenance

¥

Fig. 5. The general scheme of the development of onboard software with the application
of a software-mathematical model, and laboratory testing sample unit

Puc. 5. O6mas cxema paspabotku BITIO ¢ ucnonszosannem [IMM, o6pasua JIOU

The input information is the logic of the functioning
of the sample, which is governed by the requirements for
the creation of an experimental product. The output in-
formation is the executable code of the onboard software
for testing with the ground testing complex.

As part of the development of software interaction
with the equipment, we conduct testing to check the

170

standard and abnormal logic of the laboratory testing
sample.

The result is a corrected logic of the equipment,
which we take into account at further stages of the de-
velopment of onboard software. Fig. 5 shows the pro-
posed software development scheme for onboard space-
craft systems [12; 13].

Hnghopmamuxa, eeruuciumenvhas mexHuxka u ynpagienue

The particularities of wusing a software-
mathematical model and a laboratory testing sample.
We develop the onboard software and the software-
mathematical model in parallel, and we pair them with the
help of software drivers.

The peculiarity of using the software-mathematical
model is to simulate the logic of the equipment in both
regular and abnormal situations in which there are pre-
dictable failures in information exchange between it and
the onboard control complex [14; 15]. We perform testing
of the docking of the onboard software and the software-
mathematical model during the delivery of the software to
the ground testing complex, which allows us to prevent
errors in the logic of the functioning of the onboard soft-
ware at subsequent stages.

The use of the laboratory testing sample contributes to
the accurate reflection of the procedures for recording and
reading information from the point of view of the logic of
operation of the device.

Testing on the laboratory testing sample gives a com-
plete picture of the logic of the equipment, the physical
component of the equipment, the processor, the runtime
and the number of operations for a given time, which al-
lows us to work out the hardware software and onboard
software. In this case, there is information about real-time
execution of operations, making it possible to adjust the
system resources in advance (allocated memory, execu-
tion time, pauses during operation, etc.).

The use of the laboratory testing sample allows to re-
duce the time for making changes to the code of the on-
board software, since the introduction of changes at the
system testing stage in spacecraft modes requires consis-
tency in working with the developers of other systems.
The laboratory testing sample serves as a prototype for
design finishing test sample and preliminary test sample,
we take into account the adjustments for the laboratory
testing sample on the indicated samples.

The advantages of the described methods in the
development of onboard software. The use of the pro-
posed methodology for the development of system soft-
ware, including direct interaction with the laboratory test-
ing sample and the use of the software-mathematical
model, contributes to the reduction of time and parity of
errors in the development cycle, autonomous and system
testing of software.

The benefits of using a software-mathematical model
is to organize the development of regular and emergency
situations in the flight control center, to provide training
for operation personnel, which contributes to rapid re-
sponse when such situations occur during the operation of
products.

Conclusion. The need to develop and use a software-
mathematical model to test the onboard software of
spacecraft is determined by several factors. Firstly, with
the help of the software-mathematical model at the NOC,
we sreated and tested the sequence diagrams, which are
later used in testing and final adjusting actual onboard
equipment and spacecraft systems, which can signifi-
cantly reduce the time required for software testing and
final adjustment. Secondly, the development stages of
software and hardware run in parallel, therefore the possi-

171

bility of developing software with real hardware is not
available. Consequently, there is a need for its software
simulation. The use of a software-mathematical model
when testing onboard software allows us to produce better
and more complete development of the logic of the opera-
tion of the equipment and various emergency situations.
Thirdly, it is necessary to envisage the possibility of mak-
ing changes in the onboard software after launching the
spacecraft, changes can be preliminarily worked out on
software models of spacecraft systems before they are
installed in the onboard integrated computing complex;
that helps prevent emergency situations and increases the
overall reliability of spacecraft.

The modified methodology for the development
of onboard software is used in the development of soft-
ware of systems in the process of the creation of the
“Glonass-K” spacecraft.

References

1. Tyugashev A. A, Iljin I. A., Ermakov 1. E. [Ways
of increasing software reliability and quality in space
industry]. Upravlenie bolshimi sistemami. 2012, No. 39,
P. 288-299 (In Russ.).

2. Tzapko G. P., Martynov Ya. A. [Unified informa-
tion environment for creating and supporting onboard
software of navigation and communication satellites].
Doklady TUSURa. 2015, No. 3(37), P. 97-102 (In Russ.).

3. Koltashev A. A. [Main principles of system testing
and confirmation of satellite onboard software]. Vestnik
SibGAU. 2010, No. 1(27), P. 4-7 (In Russ.).

4. Antamoshkin A. A., Koltashev A. A. [Technologi-
cal aspects of creating communication satellite onboard
software]. Vestnik SibGAU. 2005, No. 6, P. 93-95
(In Russ.).

5. Koltashev A. A. [Effective technology for control-
ling onboard software lifecycle of communication and
navigation satellites]. Aviakosmicheskoe priborostroenie.
2006, No. 12, P. 20-25 (In Russ.).

6. GOST R 52070-2003. Interfeis magistralniy posle-
dovatelniy sistemy electronnykh moduley [State standard
R 52070-2003. Trunk serial interface for -electronic
modules system]. Moscow, Standartinform Publ., 2003.
24 c.

7. Mostovoi Ya. A. [Simulation mathematical model
of the external environment in the life cycle of the on-
board sowtware for managing the space platform].
Komp yuternaya optika. 2012, No. 3(36), P. 412-418
(In Russ.).

8. Lomaev Yu. S. [Application of onboard software
system testing]. Aktualnye problemy aviatsii i kosmonav-
tiki. 2016, No. 1, P. 531-532 (In Russ.).

9. Shoshmina I. V. [Design of software onboard con-
trol systems with verification support]. Modelirovanie i
analiz informatsionnyh system. 2010, No. 4, P. 125-136
(In Russ.).

10. Lomaev Yu. S., Ivanov I. A. [Usage of laboratory
testing sample unit for reducing time costs for onboard
software development and testing]. Shornik tezisov IV
nauchno-technicheskoy konferentsii molodyh spetsialistov
“Razrabotka, proizvodstvo, ispytaniya i ekspluatatsiya

Cubupcrkuii scypnan nayku u mexnonozuu. Tom 20, Ne 2

kosmicheskih apparatov i sistem” [Theses compilation
of IV science-technical conference of young specialists
“Development, manufacturing, testing and operation of
spacecrafts and systems”]. JSC “ISS”, Zheleznogorsk,
2017, P. 99-101 (In Russ.).

11. Lomaev Yu. S., Ivanov 1. A. [Usage of laboratory
testing sample unit for optimization of onboard software
development]. Shornik tezisov IV Vserossiyskoy nauchno-
technicheskoy konferentsii “Sistemy svyazi i radionavi-
gatsii” [Theses compilation of IV All-Russian science-
technical conference “Communication and radionaviga-
tion systems”]. JSC “NPP Radiosvyaz”, Krasnoyarsk,
2017, P. 339-342 (In Russ.).

12. Lomaev Yu. S., Tolstykh A. V., Zvonar V. D.
[Modification of onboard software development stages].
VIII ezhegodnaya nauchno-technicheskaya konferentsiya
molodyh uchenyh i spetsialistov FGUP TSNIIMASH [VIII
annual science-technical conference of FGUP TSNII-
MASH young scientists and specialists]. Moscow,
3—6 April 2018, P. 41-43 (In Russ.).

13. Lomaev Yu. S., Tolstykh A. V. [Software testing
approach modification for onboard software develop-
ment]. Tezisy dokladov X Obscherossiyskoy molodezhnoy
nauchno-tekhnicheskoy konferentsii “Molodezh.
Tekhnika. Kosmos” [Report theses of X All-Russian
youth science-technical conference “Youth. Technics.
Space.”]. Saint-Petersburg, 18-20 April 2018, P. 30-31
(In Russ.).

14. Lomaev Yu. S., Tolstykh A. V. [Usage of soft-
ware-mathematical model for onboard software complex
development]. Aktualnye problemy aviatsii i kosmonav-
tiki”. 2018, Vol. 1, P. 119-120 (In Russ.).

15. Ivanov 1. A., Antropov N. R., Deryshev R. A.
[Usage of program models for testing spacecraft onboard
software]. Trudy X Obsherossiyskoy molodezhnoy
nauchno-tekhnicheskoy konferentsii “Molodezh.
Tekhnika. Kosmos” [Report theses of X All-Russian
youth science-technical conference “Youth. Technics.
Space.”]. Saint-Petersburg, 18-20 April 2018, Vol. 2,
P. 69-73 (In Russ.).

bu6auorpaguyeckue ccblIKM

1. Trorames A. A, Unsun U. A., Epmaxos U. E. ITy-
TH TIOBBIIICHUS HAJICKHOCTU M KA4eCTBA MPOrPAMMHOTO
oOecricucHHsT B KOCMHYECKO# oTpacinu // YmpaBiieHHE
6onpmmMu cuctemamu. 2012, Ne 39, C. 288-299.

2. Hamnko I'. TI., MapteiHoB f. A. Exunast ungopma-
LUOHHAsI Cpella CO3JaHMs U COMPOBOXKICHUS OOPTOBOTO
MIPOTPAMMHOTO 00eCHeueHHsI CITyTHUKOB HABUTALUU H
cBsi3u // JJoxmanet TYCVYPa. 2015. Ne 3(37). C. 97-102.

3. Kounrame A. A. OCHOBHBIC IPUHITUIIBI CHCTEMHO-
IO TeCTUPOBAHMS W TIOATBEPKICHUSI OOPTOBOTO MPOTpaMM-
Horo obOecrnieueHus ciyTHUKOB // Bectank CuOl'AY. 2010.
Ne 1(27). C. 4-7.

4. AnramomkuH A. A., Konrames A. A. TexHonoru-
YECKHE AaCMeKThl CO3/aHus OOPTOBOrO MPOrPaAMMHOTO
oOecricucHuss CIyTHUKOB cBsi3u // BectHuk Cubl'AVY.
2005. Ne 6. C. 93-95.

5. Konrames A. A. DddexktuBHas TEXHOJIOTUS
YOpaBJICHUS IMKIOM JXH3HH OOpPTOBOTO MPOrPaMMHOTO

172

obecriedeHrsi CTyTHUKOB CBSI3M M HABUTAIMH // ABHaKOC-
Muueckoe npudopoctpoenue. 2006. Ne 12. C. 20-25.

6. TOCT P 52070-2003. Unrepdeiic marucrpaib-
HBIA TIOCJICJIOBATCILHBIA CHCTEMBI JJICKTPOHHBIX MOJY-
neit. M. : UTIK UznatenbctBo crangaptos, 2003. 24 c.

7. MocroBoii f. A. UmuTanionHas MmareMaTudyeckas
MOJIC)Ib BHEITHEH CPEbl B)KM3HEHHOM IIHKJIE OOPTOBOTO
MIPOTPAaMMHOTO OOECTICUeHHSI YIPABICHUS KOCMHYECKOU
miatdopmoii // KommbrotepHas ontuka. 2012. Ne 3(36).
C.412-418.

8. Jlomaer 10. C. IlpuMeHEeHHE CHCTEMHOTO TECTH-
poBanus OOpTOBOrO TpOTpaMMHOTO obecrieueHus: //
AKkTyanpHble TPOOJIEMBI aBHAIIMA ¥ KOCMOHABTHUKH :
c0. Te3. Bcepocc. Hayu.-mpaktuu. koH(]. 2016. Ne 1.
C. 531-532.

9. IHommuna U. B. TIpoekTupoBaHue MporpaMMHBIX
OOPTOBBIX CHUCTEM YIPABJICHUS C TOIICPKKOW Bepudu-
Kanuu // MopnenupoBaHue W aHaiuu3 MH(OPMALMOHHBIX
cucteM. 2010. Ne 4. C. 125-136.

10. Jlomaes 1O. C., Banos U. A. Ilpumenenue mabo-
pPaTopHO-0TPaOOTOYHOTO W3JIENHS UISL COKPAICHHS
BpEMEHHBIX 3aTpaT Ha pa3paboTKy U TeCTHpoBaHHE OOp-
TOBOTO TporpamMHOro odecrieueHus // PazpaboTka, mpo-
M3BOJICTBO, HWCHBITAHUS M OKCIUTyaTalusi KOCMHYECKUX
amnmaparoB u cucteM : c0. Te3. IV Hayd.-TexH. KoH(. MO-
noneix cnenuamuctoB / «AO «MCCy». XKenesHnoropck,
2017. C. 99-101.

11. Jlomaes 1O. C., BanoB U. A. [Ipumenenue 1abo-
paTopHO-0TpaboTOUYHOrO0 00pa3la i ONTHMHU3ALUU
pa3paboTku OOPTOBOrO MPOTPaMMHOIrO obecreucHus //
CucteMsbl CBSI3U U paguoHaBuraiyi : ¢0. te3. [V Beepoce.
Hayd.-TexH. ko). / AO «HIIIT «Pagnocssswy. KpacHo-
spck, 2017. C. 339-342.

12. Jlomaes 1O. C., Toncteix A. B., 3BoHaps B. JI.
Moaudukamnust 3TanoB pa3paboTku OOPTOBOTO IMPO-
rpamMHoro obecneuenusi / Te3. noknanos VIII exeron-
HOW HAayd.-TeXH. KOH(. MOJIOABIX YUYCHBIX M CIICI[HAIHU-
croB ®T'VII HHMMMAIIL. Mocksa, 3—6 anpens 2018 r.
C. 41-43.

13. Jlomaes 0. C., Toncteix A. B. Moaudukanus
MOJIXO/IOB MPOBEACHUS TECTHPOBAHUS MPOrPAMMHOTO
obecriedeHust Mpu pa3padoTke OOPTOBOTO MPOTPAMMHOTO
oOecrreuenns // Momonexs. Texauka. KocMoc : T€3. DOK-
magoB X OOmepocc. MOJOJASKHON Hayd.-TeXH. KOHQ.
CII6, 18-20 ampemns 2018 r. C. 30-31.

14. Jlomaes 0. C., Toacteix A. B. [Ipumenenue npo-
rpaMMHO-MaTeMaTHIECKOW MOJIEIH TpH pa3paboTke Oop-
TOBOI'O MPOTPAMMHOTO KOMILICKCa // AKTyalbHBIC TMPO-
OJIeMBI aBUAIIMKM U KOCMOHABTUKHU : MaTepuaisl 111 Mex-
JIyHap. HAYy4Y.-PAKTUY. KOH(}. TBOPYCCKOH MOJIOJCIKHU.
Kpacnosipck, 9—13 ampenst 2018 r. T. 1. C. 119-120.

15. UBanoB U. A., Autponos H. P., [eprimieB P. A.
[IpumeHeHre TMPOrpaMMHBIX MoOAENeH s OTpabOTKH
OOpPTOBOTO TPOTPAMMHOTO O00ECIICYSHHS] KOCMHYECKUX
armaparoB // Momonexs. Texuumka. Kocmoc : 1p. X
O6miepocc. MOIOASKHON Hayd.-TexH. koHd. CII6, 2018.
T.2.C. 69-73.

© Lomaev Yu. S., Ivanov I. A.,
Tolstykh A. V., Islentev E. V., 2019

HHgIJopmamuKa, BblHUCIUMENbHAS MEeXHUKA U ynpaejlenue

JlomaeB IOpuii CepreeBuu — mmxeHep BTopol kateropur; AO «MHDOpMaMOHHBIE CITyTHHKOBBIC CHCTEMBI
nMmenn akagemuka M. @. PemerneBa». E-mail: lomaif@rambler.ru.

HNBanoB Uiabsi AHAPeeBUY — KaHIUAAT TEXHUIECKUX HAYK, HHXEeHep BTOpoi kareropuu; AO «HpopManmoHHbIe
CITyTHUKOBEIC CUCTEMBI» UMEHH akanemuka M. @. PemmerneBay. E-mail: ilyaiv92@gmail.com.

ToacTeix AHactacusi Bragnmuposna — texauk; AO «HQpOpPMAIMOHHBIC CITYTHUKOBBIC CHCTEMBI» HMCHH aKaJie-
muka M. @. PemerneBay». E-mail: avtolstykhl@gmail.com.

HcaentneB EBrennii BragumupoBny — HavansHuk cexkropa; AO «VH]opMannoHHBIE CITyTHUKOBBIC CHCTEMBI»
uMmeHH akagemuka M. @. PererneBay. E-mail: islentev(@iss-reshetnev.ru.

Lomaev Yuri Sergeevich — an engineer of the second category; JSC “Academician M. F. Reshetnev “Information
Satellite Systems”. E-mail: lomaif@rambler.ru.

Ivanov Ilia Andreievich — Cand. Sc., an engineer of the second category; JSC “Academician M. F. Reshetnev
“Information Satellite Systems”. E-mail: ilyaiv92@gmail.com.

Tolstykh Anastasia Vladimirovna — technician; JSC “Academician M. F. Reshetnev “Information Satellite
Systems”. E-mail: avtolstykhl@gmail.com.

Islentev Eugene Vladimirovich — Cand. Sc., a head of sector; JSC “Academician M. F. Reshetnev “Information
Satellite Systems”. E-mail: islentev@iss-reshetnev.ru.

