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Decision trees (DT) belong to the most effective classification methods. The main advantage of decision trees is a
simple and user-friendly interpretation of the results obtained. But despite its well-known advantages the method has
some disadvantages as well. One of them is that DT training on high-dimensional data is very time-consuming.
The paper considers the way to reduce the DT learning process duration without losses of classification accuracy.
There are different algorithms of DT training; the main of them being ID3 and CART algorithms. The paper proposes
a modification of DT learning algorithms by means of the information criterion optimization for some selected attribute.
The use of this modification allows avoiding optimization by means of enumeration search over the entire data set. The
Separation Measure method is used to select the attribute. The method selects the attribute whose class-based averages
are most distant from each other. Optimization of the selected attribute is carried out using the method of differential
evolution, which is one of the evolutionary modeling methods designed to solve problems of multidimensional optimiza-
tion. Self-configuring at the population level based on the probabilities of using mutation operator’s variants was ap-
plied for differential evolution.

The classification problems were solved to compare standard DT learning algorithms with the modified ones. Algo-
rithm efficiency refers to the percentage of correctly classified test sample objects. Statistical analysis based on Stu-
dent's t-test was carried out to compare the efficiency of the algorithms.

The analysis showed that the use of the proposed modification of the DT learning algorithm makes it possible
to significantly speed up the training process without losses in the classification effectiveness.

Keywords: decision tree, classification, optimization, Separation Measure, differential evolution, Population-Level
Dynamic Probabilities, Success History Adaptation.
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Jlepesvs npunsamus pewenunt (JJIIP) senstomes oOHum u3 Haubosee 3PhekmusHvlx Memoodos KiaccupurayuiL.
OCHOBHBIM NPEUMYWecmeom O0epedbes NPUHAMUS peweHull AGemcs NPOCmas U NOHAMHASL NOb308AMENIO UHMED-
npemayus NOay4eHHbIX pe3yabmamos. Ho, necmomps na ussecmmuvie npeumywecmea nooxood, ox umeem u Hedocmam-
Ku. OOHUM U3 21ABHBIX HEOOCMAMKO8 A61sAemcs mo, umo odoyuenue JIIP na oanHblx Oonbulol pasmepHocmu mpebyem
3HAYUMENbHBIX 3ampam epemenu. B dannoil cmamve paccmampusaemcs cnocob ymenvuienus gpemenu ooyuenus JIIP
be3 nomepu mounocmu kiaccugurayuu. Cywecmayiom paznuynvie areopummol 00yyenus JIIP, ocHogHblMu U3 KOMo-
puix aenaromes aneopummel ID3 u CART. B cmamuve npednosicena moougurayus arzopummos odoyuenus AIIP ¢ nomo-
Wbl0 ONMUMUZAYUY KPUMEPUST UHPOPMAMUBHOCIU NO HEKOMOpoMY eblopannomy ampubymy. [Ipumenenue oannoi
MoOouguxayuu noseonsem usdexrcamv ONMUMUIAYUU NOJHLIM NepedopoM no cemy Habopy Oauubix. /i evibopa
ampubyma ucnoavsyemcs memoo Separation Measure. B dannom memoode 8vloupaemca mom ampubym, y KOmopozo
8b100pOUHbIE CpeOHUe No Kiaccam Hauboree omoaneHvl opye om opyea. Onmumuzayus no eblOPanHoMy ampudbymy
OCYUeCmeIsiemcst ¢ NHOMOWbIO Memooa OUDOepeHyuarbHoll I6010YUU, 0OHO20 U3 MEMOO08 IGOTIOYUOHHO20 MOOEU-
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POBaHUsL, NPEOHAZHAYEHHO20 OJil peuleruss 3a0auu MHO2OMEPHOU onmumusayuu. /i oug@epenyuanvrol 380moyuu
NPUMEHEHA CAMOHACMPOUKA HA YPOGHE NONYNAYUU HA OCHOBE 6EPOSIMHOCMEN NPUMEHEHUs GUO08 MYMAayUU.

s cpasnenus cmandapmuvix anzopummos ooyuenus JJIIP ¢ mooupuyuposannvimu arcopummamu Obliu peuienvl
saoauu knaccupuxayuu. Ilood >¢hhexmusnocmolo aneopummos NOHUMAEMCA NPOYEHIN NPABUILHO KLACCUDUYUPOBAH-
HbIX 00BeKkmos mecmosoi evlbopku. Jna cpasuenus dphexmusnocmu areopummos npoeeoer CMamucmuieckull

ananus c npumenenuem t-kpumepus CmorooeHma.

Ananus noxasan, 4mo npu UCHONL308AHUU NPEOSIOHCEHHOU MOOUPUKAYUL AleOpUMMAa 00yueHUsi Oepesbed NpUuHs-
Musl peuleHutl MOJICHO 3HAYUMENbHO YCKOPUMb NPOYecc 00yUeHusl, He NOMeEPsi8 Npu IMoM 8 IPHekmusHocmu Kiaccu-

Quxayuu.

Kniouesvle crosa: depegvss npunamust pewrenuil, kiaccugurayusi, onmumuzayus, Separation Measure, ougpepen-
yuanvuas 26onoyus, Population-Level Dynamic Probabilities, Success History Adaptation.

Introduction. The solution of classification problems
is one of the most important areas of intelligent data
analysis technologies. There are many different decision
making support methods to solve these problems. Deci-
sion trees have shown good performance in this area. De-
cision trees is a method based on the application of vari-
ous functions for dividing the initial data set, in particular,
simple threshold rules [1]. The main advantage of the
method is relatively easy interpretability of the results.
DT disadvantages include the fact that trees are extremely
difficult to optimize because of their discrete structure.
Another main disadvantage is the length of DT training
process. This article considers a way to reduce training
time without losing classification accuracy.

Decision trees. A decision tree is a binary tree in
which a function is assigned to each inner node and a
forecast is assigned to each leaf node [1]. In most cases
one-dimensional predicates are used which compare the
value of one of the attributes with a threshold, but there
are also multidimensional predicates [2]. Multidimen-
sional predicates make it possible to construct even more
complex dividing surfaces, but they are rarely used in
practice, in particular because they increase the tendency
of decision trees to retrain.

DP learning algorithms, like any other machine learn-
ing algorithms, have their own settings and parameters,
the variation of which provides a variety of these algo-
rithms. The specific method for constructing the DT is
determined by:

1. Types of predicates at the vertices.

2. Quality functional Q (X, J, 5).

3. Stop criterion.

4. Missing values processing method.

5. “Pruning” method.

The first three parameters are obligatory for DT learn-
ing methods, and the last two are present in some algo-
rithms only. We have already mentioned the types of
predicates, so let us move on to consider the quality func-
tional QO (X, J, 5).

Quality functional. When constructing DT it is neces-
sary to set the quality functional on the basis of which the
sampling is performed at each node. We denote the set of
objects that have fallen into some node as R,, and the
objects that fall into the left and right subtrees, respec-
tively, for a given predicate as R; and R,. The following
functional is used:
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Here H(R) is an information criterion that evaluates
the quality of the target variable distribution among ob-
jects of the set R. The smaller the diversity of the target
variable is, the less the value of the information criterion
should be and, accordingly, its value is minimized. The
quality functional Q (R,, j, s) where j is the attribute
number and s is the threshold value is maximized at the
same time. Later on when considering specific algorithms
[3] we will indicate what specific information criteria are
used for classification.

Stop criterion. One can come up with a lot of stop cri-
teria. We list some restrictions and criteria:

1. Limiting the maximum depth of a decision tree.

2. Limiting the minimum number of objects in a leaf.

3. Limiting the maximum number of leaves in a deci-
sion tree.

4. Stopping if all objects in the leaf belong to the same
class.

5. The requirement that the quality functional during
splitting should be improved by at least s percent.

Decision tree learning algorithms. Two main
decision tree learning algorithms are ID3 and CART
were implemented and compared with each other in this
paper [4]. These algorithms complete their work if obser-
vations of one class are left in a leaf or if a restriction on
the decision tree depth is imposed. In this paper a depth
limit was not imposed.

The main difference between these algorithms lies in
information criteria. The ID3 algorithm uses the entropy
criterion [3]:

K
H(R) = _Z Dy 10g Px
k=1
where p; is the fraction of objects of class k that have
fallen into the node R, K is the number of classes.
The CART algorithm uses the Gini criterion [3]:

HR) =) p,(1-p,).

Optimization of the presented information criteria in
standard decision tree learning algorithms is carried out
by enumeration search over the initial data set. Since it is
necessary to calculate the values of the information crite-
rion for all attribute values for all observations of the
training sample, a significant amount of time is required
for this process. The learning process of the decision tree
can be represented as a diagram in fig. 1.

Learning process optimization. The paper proposes
the optimization of the information criterion for some
selected attribute in order to reduce the algorithm operat-
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ing time. The use of this modification allows avoiding
optimization by means of enumeration search over the
entire data set.

Separation Measure. Let us consider some attribute x;
in the case of two classes. Let x* be the average value
of the attribute for the objects of the first class, x be the
average value of the objects of the second class, and x°
be the average value between x' and x. We suppose
that x* > x7, then n" is the number of observations for
which x; > x", and #~ is the number of observations for
which x; < x". We calculate the value d = n'n, which
determines the separation ability. On the basis of the ob-
tained values it is necessary to maximize the separation
ability by choosing the attribute with the largest value
of d. In other words, we will choose the attribute for
which the class-based averages are the most distant from
each other [5].

Differential evolution. In this paper the differential
evolution method is used to optimize the information cri-
terion for the selected attribute. The differential evolution
method is one of the methods of evolutionary modeling
designed to solve the multidimensional optimization
problem [6]. The method uses the ideas of genetic algo-
rithms, but unlike them it does not require working with
variables in binary code [7].

start

Creating the first
vertex

¥

Brute force
mfonmation criterion

Let us consider the algorithm. A set of random vectors
which are possible solutions to the optimization problem
is initialized. The set is called a population. The number
of vectors in the population on each generation is the
same and is one of the methods setting parameters.

At each iteration of the evolutionary process the algo-
rithm generates a new generation of a population of vec-
tors, randomly combining vectors of the previous genera-
tion among themselves according to certain rules. Unlike
genetic algorithms, in differential evolution there is a dif-
ferent sequence of the evolutionary process stages — first a
mutation is made, then a crossover and, last but not least,
a selection.

Selection and crossover cannot be of different types in
differential evolution, but there are many different types
of mutations. In particular, 7 different types of mutations
were used [8] in the implemented method of differential
evolution. The choice of the mutation type is carried out
by the Population-Level Dynamic Probabilities method of
self-configuring [9; 10]. Self-configuring is carried out at
the population level on the basis of the probabilities of
using mutation types. A selection is made in accordance
with a specific probability distribution. The probability of
using some type of mutation varies for the whole popula-
tion.
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Fig. 1. Decision tree learning algorithm
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Probabilities are adapted on the basis of information
about the successful or unsuccessful use of a mutation
according to the formulas:

(I=npyy)
scale

0.2
Par =—>
n

n
scale = Z T,
i=1
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used,;

where 7 is the number of mutation types, used; is the
number of applications of the i-type of mutation, success;
is the number of successful applications of the i-type of
mutation, i. e. when the fitness of the offspring exceeded
the average fitness of the parent population.

In the differential evolution method, in addition to the
mutation strategy there are two more important factors
that need to be adjusted: F'is a parameter that determines
the strength of the mutation, i.e. the amplitude of distur-
bances introduced into the vector by external noise; Cr is
a parameter indicating the probability of crossing. Adap-
tation of parameters is carried out according to the Suc-
cess History Adaptation algorithm [11]:

315

sl
old, +—
ry)

s
new, = ——>< |
r 2
where newr is the new value of the parameter F, and oldy
is the old one, respectively.

n
sl= ZWi ~(s14ccess_Fl-)2 ,

i=1

n
§2= ZWI- -success _F; ,
i=l
_ FitDif

D FitDif;
j=1

where n is the number of the parameter F' successful ap-
plications, i. e. when the fitness of the offspring exceeds
the average fitness of the parental individuals; success F
is the value of the successfully applied parameter F;
FitDif is a change in the fitness value for each successful
parameter.

The procedure is similar for the parameter Cr. Pa-
rameters are adapted on the basis of information on the
success of their application.

Fig. 2 presents a modified diagram of the decision tree
learning algorithm.
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The solution of classification problems. 4 tasks usu-
ally applied to analyze the effectiveness of classification
algorithms [12] were used to compare the well-known DT
learning algorithms with the modified algorithm:

1) Determining the type of soil from a satellite image.

2) Determining the type of a car.

3) Recognition of the type of an object by its segment.

4) Recognition of the urban landscape.

Comparison of algorithms is presented in the form of
diagrams in fig. 3—6. It should be noted that the results
averaged over 100 starts are presented for a modified
learning algorithm with the differential evolution method,
which is predetermined by the stochastic nature of the
algorithm. Since the training time for standard and modi-

fied algorithms is significantly different, it is not possible
to display them on diagrams. Therefore, for clarity in the
diagrams the training time of standard algorithms is taken
as a unit, and the training time of a modified algorithm is
represented as a fraction of the training time of a standard
algorithm. The horizontal axis in the diagrams shows the
numbers of tasks.

Fig. 3, 4 illustrate a significant reduction in the time
spent on the learning process. The following are diagrams
comparing the efficiency of the algorithms classification.
Efficiency refers to the percentage of correctly classified
test sample objects.

Fig. 5, 6 show that the results of the classification
efficiency do not differ significantly.
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Fig. 3. Comparison of ID3 algorithms training time

Puc. 3. CpaBHenue BpemeHu o0yuenus anroputmon ID3
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Table 1
Experimental values of Student’s t-test (average values)
D3 CART
Task 1 0.263 0.77

Task 2 0.378 0.121

Task 3 1.017 0.963

Task 4 0.27 0.381
Table 2

Experimental values of Student’s t-test (best values)

D3 CART

Task 1 0.633 1.648

Task 2 2.635 1.506

Task 3 1.953 1.991

Task 4 2.389 3.097
Statistical analysis. Statistical analysis for a future it is supposed to automate the process of forming

statistically reliable comparison of the efficiency of the
standard and modified algorithms [13] was carried out in
the present paper.

The hypothesis of the equality of mathematical
expectations was put forward, an alternative hypothesis
assumes inequality of mathematical expectations, the
critical area is two-way. Cross-validation of each data set
was performed, the algorithms were trained and tested
several times on different parts of the samples in order
to test the hypothesis. Student's t-test was used for
comparison. According to Student’s distribution table,
t: = 2.101 was determined with a significance level of
o = 0.05 [14; 15]. Tab. 1 shows the observed values of
Student’s t-test for the considered taks. Each cell
corresponds to ;s when comparing standard and
modified algorithms.

All observed values of Student’s t-test from tab. 1
did not fall into the critical region, i. €. #, < ., therefore
the hypothesis of mathematical expectations equality is
accepted. Tab. 2 shows the observed values of Student’s
t-test when comparing trees obtained by the standard
algorithm with the best trees obtained by the modified
algorithm.

In tab. 2 not all observed values of Student’s test ex-
ceed the critical indicator, therefore, not all the best trees
found by the modified algorithm have statistically signifi-
cant differences from the trees obtained by the standard
algorithm. However, in tab. 2 bold indicates values that
exceed the critical indicator; for tasks 2 and 4 the modi-
fied ID3 algorithm can find decision trees that cope with
classification much better. Similarly, for task 4 the modi-
fied CART algorithm allows finding the best decision
trees.

Conclusion. In accordance with the statistical analysis
the following conclusion can be drawn: when using the
proposed modification of the decision tree learning algo-
rithm, the training process can be significantly accelerated
without losing classification efficiency. In addition, it is
worth noting that although on average the algorithms
work the same way, modified algorithms sometimes allow
finding decision trees that better cope with the task. In the
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decision trees by evolutionary algorithms in order to in-
crease the efficiency of this method.
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