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Dynamic problems are the least studied area of plasticity theory. These problems arise in various fields of engineer-
ing and science, but the complexity of the original differential equations do not allow to develop accurate solutions
and correctly solve numerical boundary value problems. This is even more typical of dynamic equations of anisotropic
plasticity. Anisotropy reduces the group of symmetries allowed by the equations, and therefore narrows the number of
invariant solutions. One-dimensional dynamic plasticity problems are well studied, but two-dimensional problems
cause insurmountable mathematical difficulties due to the nonlinearity of the basic equations, even in the isotropic
case. The study of the symmetries of the plasticity equations allowed us to find some exact solutions. The most known
solution was found by B. D. Annin, who described the unsteady compression of a plastic layer made of isotropic mate-
rial by rigid plates. Annin's solution is linear in two spatial variables, however, it includes arbitrary functions of time.
Symmetries are also used in the proposed work. Point symmetries are first calculated for dynamic plasticity equations
in the anisotropic case and are presented in the paper. The Lie algebra generated by the found symmetries appeared
to be infinite-dimensional. This circumstance made it possible to apply the method of constructing new classes of non-
stationary solutions. Symmetry can transform the exact solution of stationary dynamic equations in non-stationary solu-
tions. The framed solutions include arbitrary functions and arbitrary constants. The outline of the article is as follows:
according to the method of Lie group of point symmetries allowed by the equations of anisotropic plasticity is calcu-
lated. Two classes of new stationary invariant solutions are framed. These stationary solutions, by means of transfor-
mations generated by point symmetries, are transformed into new non-stationary solutions. In conclusion, a new self-
similar solution of unsteady equations of anisotropic plasticity is framed; Annin's solution is generalized for the anisot-
ropic case. The framed solutions can be used to describe the compression of plastic material between rigid plates,
as well as to test programs, designed to solve anisotropic plastic problems.

Keywords: anisotropic plasticity, dynamics, symmetries, exact solutions.
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Hunamuueckue 3a0auu — 5mo Haumenee usyyenHds ob1acme meopuu niacmuyHocmu. Juuamuieckue 3a0a4uu 603-
HUKAIOM 8 CAMbIX PA3HBIX 00IACMAX MEXHUKU U HAYKU, HO CIOICHOCMb UCXOOHLIX OUphepeHyuanvibix ypagHeHul
He Nno360.15em CMpoums MoyHble Peuenus U KOPPeKmHo YUCIEeHHO peuams Kpaeevle 3adaiu. Imo ewe 6 Oonbuiel
cmenenu Kacaemcs, OUHaMU4eckux ypagHeHutl aHu30mpontol niacmuyHocmu. AHusomponus ymenvuiaem spynny cum-
Mempuil, 0ONyCKAemylo YPasHeHUaMU, a, C1e006aMeNbHO, U Cyxcaem KOIU4ecmeo UHeapuanmuuix pewenuti. Hennoxo
uccneoo8ansvl 00OHOMepHble OUHAMUYECKUe 3a0a4u NIACMUYHOCIU, HO Yice O8YMepHble 3a0ayul 8bl3bl6al0m Henpeooo-
quUMble MameMamuiecKue CRONCHOCMU U3-3d HENUHEUHOCMU OCHOBHBIX YPAGHEeHull, 0ajxce 6 U30MPONHOM CIyyae.
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HquopMamuKa, eblduciumenlbHas mexunuKka u ynpaejienue

H3yuenue cummempuil ypagneHull nIaCMuyHOCMU NO360AUL0 NOCHPOUMb HEeKOmopble mounvle peutenus. b. JI. Annun
nocmpoun Hauboee U3BeCMHOe peuleHie, ONUCLIBAIOuee CIOHCAMUEe HCeCMKUMU NAUMAMU NIACIUYECKO20 CL0S U3 U30-
mponno2o mamepuana. Pewenue Annuna iunetino no 08yM npOCMPAHCMEEHHbIM NEPEMEHHBIM, U 8 He20 8X00sSN Npo-
u360bHble PyHKYUU 6pemenu. B npednacaemoii pabome makdice uUCnoiwb3ylomest cummempuu. B cmamve enepevie
BbIUUCTEHbL MOYEUHble CUMMeMPUL 0TIl OUHAMUYECKUX YPAGHEHUT NIACIUYHOCIU 8 AHU30MPONHOM caydae. Aneebpa
Jlu, nopooicoaemas HAUOESHHbIMU CUMMEMPUAMY, OKA3AAACL OECKOHEUHOMEPHOU. DMmo 006Cmosmenbcmeo 0aio 603-
MOJICHOCTD NPUMEHUNb MEMOOUKY NOCMPOEHUsL HOBbIX KIACCO8 HeCMAYUOHaphblx peuteHuti. Cummempuu no3eousiom
npeobpazoeams Mo4Hble PeueHUs CMAYUOHAPHBIX OUHAMUYECKUX YPAGHEHUL 8 HeCMAayUOHapHble peuteHust. B nocmpoennvie
peuienusi 6x008m nPoU3BoabHble PYHKYUU U NPOU3BOIbHBIE NOCMOsIHHbIe. B cmambe no memoouxe Jlu-Oscsinnnurxosa
BLIYUUCTACICSL 2PYNNA MOYEYHBIX CUMMemPUll, OONYCKAeMas YpasHeHuamu aHuzompontol naacmudnocmu. Cmposmes
084 K1ACCa HOBbIX CMAYUOHAPHBIX UHBAPUAHMHBIX peuleHull. Dmu CmayuoHapHvie peulenus, ¢ NOMOwbIo npeobpaso-
BAHUL, NOPOAHCOAEMBIX MOUEYHBIMU CUMMEMPUAMU, NPEOOPA3VIOMCS 8 HOBblE HeCMAYUOHAPHble peuenus. B zaxnioue-
HUU pabomuvl NOCMPOEHO HOBOE ABMOMOOEIbHOE peuleHue HeCMAYUOHAPHBIX YPAGHEHUL AHUZOMPONHOU NAACHUYHO-
cmu, a pewenue Annuna 0600weno Ha anuzomponmwl ciyuail. IIpueedennvle pewienuss MONICHO UCHONb308ANb
0711 ONUCANUSL COHCAMUST NIACIMUYECKO20 MAMEPUALA MeNHCOY HCECMKUMU NAUMAMYU, 4 MAKdIce s MeCMUpo8aHust npo-

epamm, npednaa’yaquHblx 0151 UCCe00BAHUSL AHU30MPONHBIX NAACMUYECKUX 3a0au.

Knrouesvie crosa: AHU30OMPONHAS NA1ACMUYHOCMDb, duHaMuKa, cummempuu, modHvle peuleHusl.

Introduction. The theory of plasticity is covered in
numerous studies, which is caused by the importance and
relevance of the tasks under consideration. These tasks
arise in the design of machines and mechanisms, in the
technological processes using plastic deformations, in the
process of armor drilling with a missile. Modern and clas-
sical articles or monographs [1-5] deal mainly with static
problems and isotropic materials, the reason of which is
not the lack of dynamic tasks importance to applications,
but because there are no methods developed to solve dy-
namic problems. For the first time the spatial solution of
dynamic equations was framed by B. D. Annin [6] in
1978. This solution was linear across two spatial variables
and contained several arbitrary time-dependent functions.
It was found by B. D. Annin on the basis of point symme-
try group research, allowed by the equation system of
dynamic plasticity theory. Later, based on the equation
group properties, exact solutions of some flat dynamic
problems were framed [6]. Since then, prior to the work
[7], there seems to be no new solutions. Here the authors
refer to the unique overview [3], where systems of
nonlinear equations of solid media mechanics and their
exact solutions are collected. The study of the symmetry
group showed that the new method can be applied to ani-
sotropic dynamic plasticity equations — to convert stable
solutions of ideal plasticity into unstable ones, as it was
done in [7].

Group properties can be applied for different pur-
poses. They are most often used to frame invariant solu-
tions. These are solutions that do not change under
continuous transformations allowed, according to Lie, by
the given system of differential equations. The invariant
solutions of plasticity equations and their framing meth-
ods, for example, can be found in more detail in [6] and in
the literature references. The works of authors [8-15]
show how it is possible to “deform” exact solutions and to
reduce one exact solution into another exact solution in
the case of flat stationary equations of ideal plasticity by
means of point symmetry. In the present paper we use a
group of point symmetry to transform new stable solu-
tions into new unstable ones for three-dimensional non-
stationary plasticity equations, which was first done to
solve plasticity equations in the isotropic case in [7].
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Problem setting. Assume that x=x,, y=x,, z=x; —

orthogonal Cartesian coordinate system, u=v,,

v=v,, w=v,; —components of the strain velocity vector,
e, — strain rate tensor components, o, — stress tensor

components. Stress tensor components and velocity
vector components satisfy motion equations

alvi +vjajvi :azclla isj:1> 23 3. (1)

Duplicate indexes are expected to sum. Stress strain
tensor and pine strain rate tensor

Gy—Syp:keU:K(ajvi+6ivj)/2, 2)
where 8, — Kronecker's symbol, A— some non-negative
function, 3p=o0,.

The medium is assumed to be uncompressible, so
there is an incompressibility equation

8y, =0 3)

The equation system (1)—(3) is completed by the
Mises plasticity condition

2 2 2
ay (o1, —p) +an(oy—p) +"33((733_11’) +
2 2 2
+ 2(a12012 +a;01; + a23023) =1, “

where a; — current anisotropy parameters.

1. Group properties of dynamic plasticity theory
equations. Let's calculate the group of point symmetries
allowed by equations (1)—(4). We will do this according
to the known method of Lie-Ovsyannikov, which has
been already applied to equations of plasticity in [6]. The
point symmetry group is generated by the following op-
erators:

Xy=0,M =10, +x0,, S=0(1)d,,,
0 m )
T = f; (00, _fi(t)av,- —X fi(t)ap’
on not to add together i.
Functions ¢(¢), f;(¢) are arbitrary from the class

C”, thus operators (5) give rise to an infinitesimal Lie
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algebra. The point at the top indicates a derivative of the
variable ¢.

A remarkable property of point symmetries is that
they transfer the solution of the system (1)—(4) back into
the exact solutions of the same system. Let the original

coordinates be #,x;,v,, p then they are converted to new
coordinates ¢',x/, v

sNis Vi

ing to operators (5):

p' using transformations correspond-

t'=t(ay +expa,),x' = (expal +a;,,f; (t)),
i 3. m (6)
V=V +a,, f,-(f)sp':l”z.f}(f)%z-
i=1

Here a, — are group parameters that continuously
change in some proximity of zero. Then we use these
transformations to frame new solutions of the system
(D).

2. Stable system solutions (1)—(4). Since the system
(1)~(4) accept the operator X, =0,, invariant system
solutions can be searched, which are independent of vari-
able 7. These solutions are determined from the system

vjajv,- = 8[6,-]-,

o —SU-p = key- = k(ajv,- +6,-vj)/2, -
7
2 2
0v; =07all(611 -p) +ay (522 _P) +
2 2 2 2
+ ay (o33 - p) Jr2(“12612 +4,3013 +a23023) =1

The system (7) is simpler than the initial equation sys-
tem as it possesses less independent variables. However,
the solution, except the trivial ones, is not available
to the knowledge of the authors [1-6].

A) Let us search for the invariant system solution (7)
with reference to two-dimensional subalgebra generated
by operators 0, + 40,0, + B0, This solution will have

the following appearance
u= u(x),v = v(x),w: w(x),p =Ay+Bz+ p(x). (®)

Here A, B arbitrary constants, functions u, v, w, p are
determined from the system (7). Substituting ratios (7)
into (8), we obtain

u=const, 0,0,, =0, ©)
ud,v=0,6, + A4, ud . w=0,6,;+B.

From (9) we obtain A system of ordinary differential
equations to determine function v, w

2d.v

ud v=d, > >+ 4
Vap(d )" +a;(d,w)

ud, w=d, szxw S+B,  (10)
Nap(d ) +a;3(d,w)

Gy; =0, =033 = p =const.

Let us introduce the new required functions according
to the formulas

@, d, v = hsing, \Ja;;d . w =hcos.

Then, the system (10) will be written as

(11

uhsing=@'cos@+ A, uhcoso=—¢'sinp+B. (12)
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From (12) we obtain
do

- —_ . = dx.
—Acos@ + Bsin@
While integrating the equation we have
0
ln‘tg(p—i— |:x+C,
N 2 |
A

where sinQ = ——————.
\VA? + B?

Hence follows

o=—0+ Zarctg(exp(x+ C)\j A*+B? ),

1 exp(x+C)\/A2 +B? to0 4
—| 240
u 1+exp2(x+C)\/Az—i-B2
+ , ecnucos @ # 0,
b ucosQ (13)
1 ) exp()H—C)\/A2 + B? to0 4
- ctge
u 1+exp2(x+C)\/A2 +B?
+ ——, ecaucos@ =0,
using

Oy, =sinQ/\ja,, o3 =cosQ/\/a;.
We study functions behavior included in formulas

(13).

Assuming that x varies from -oo

exp(x+ O\ 4> + B?

2arctg(exp(x +OW A% + B? ) monotonously increases

to +oo then

from Zero to +00

>

from zero to w. Here in ¢ varies from -6 to -0+ 7.

Hereafter based on formulas (13) it becomes clear how
the tensor tension components change.

This small study makes it possible to interpret the re-
sulting solution as follows. There are two rigid rough
plates x=x, =const,x =x, =const. Plastic material is

pressed between them. Tangential stresses G,,,05 .

B) We will search for invariant system solution (7)
with reference to single-dimensional subalgebra, created

by operators lax +%6y —262. The solution will have
o
the following appearance
u :Ag(owc+By+yz),v:Bg((xx+By+yz),
w=Cg(ax+Py+yz),p=F(ax+Py+yz)

Here A4,B,C,0,B,y are arbitrary parameters, function

14)

g,F are calculated from (6). Let’s substitute the ratios

(14) in (7). Obtained are the following ratios between
functions and constant
ad+BB+yC =0, p=const,
g — arbitrary smooth function. (15)
From (14) and (15) it follows that all the components
of the tension tensor are constant and have the following
appearance:



HquopMamuKa, eblduciumenlbHas mexunuKka u ynpaejienue

oA yC
Oy =P+Ea S5 =P+3a O33 =P+Ea
BA+oaB vA+aC yB+pC
Opp = > O3 = > Op3 = >
2D 2D 2D

D*= (5111(00‘1)2 +ay (BB)Z + a3 (YC)2 +
+ay, | 2(BA+aB) +ay; 1 2(yA+aC)? +%<yB+BC)2).

A similar solution in the absence of convective mem-
bers was framed in [15].

3. Deformation of system non-stationary solution
O-@.

A) Let's consider the stationary solution (8)—(13),
framed in the previous paragraph, and by means of trans-
formations (6) deform it into non-stationary solutions of
the original system (1)—(4).

We have

(p:—9+2arctg(exp(x+a3f1(t)+C)\/A2 +B? ) (16)

In this case, the tangential stresses ©,,,0;; are no

longer constant on the plates, as it was the case in the pre-
vious paragraph, but vary depending on the selected func-
tion included in the function (16). This solution can be
interpreted by the impact of vibration loads on the plates
x=x, =const, x=x, =const. At the same time the

plates change their  shape
x+asfi(t)=x, x+a,f,(t)=x,. Here, if a; — a group

themselves  also

parameter is the one which can be fixed a; =0 then we

get the initial stationary solution.

B) Let's consider the second stationary solution (14)
framed in paragraph 2 B). By means of transformations
(5), similar to the previous solution, we deform it into
non-stationary solutions of the original system (1)—(4).

To do this, we apply a remarkable property
of point symmetry of their ability to convert the system
solution (1)—(4) back into the exact solutions of the same
system.

The system (1)—(4) allows operators

S=¢(1)d,,
0 m 0
T, = fi(0)0, + f,(t)8, —x, f,-(t)g

It means that it does not change under transformation

,i=1,2, 3.

0
X=X a4 fivV =Vt a, i),
, 3 ‘ (17)
p :p_zaHin fi(t

i=1

)+ a,(t).

Here, variables without a prime are original, and vari-
ables with a prime are derived from point transformations
corresponding to the subalgebra generated by the opera-
tors S,7; with a, — group parameters that continuously

change in some proximity of zero.
v, p' =
(1)—(4) then according to (17) vl.z, p* a new solution for

Assuming that is some system solution

the same system
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vlzzvll(t,xl+a3f1()x2+a4f2 ). X3 +as fy(t )+a3fl
v =7 (t’xl +ay fi(1),%; +agfo (1), % +as f; (¢ )+a4f2
V32 ;(t x|+a3f()x2+a4f2 x3+a5f3 )+asf3

p*=p(tx +asfi ()0 +ay fy(1).xs +as f5 (1)) -

3 m
- Y X, [0, (18)
i=1
is also accurate solution for the same system. We use this
property to frame new system solutions (1)—(4). We
will apply formula (18) to the solution framed in para-
graph 2B).
We have

u=ag(alr+ /() + B+ fo () + 1+ £5(0) + £, (1),
v:Bg(oc(x+f1 )+B(y+fz )+Y(Z+f3 ))‘*‘fz
w:Cg(a(x+f1(t))+B(y+f2( ))+y(z+f3(t)))+f3(t)

m
p==xf()- yfz(t) Zf3(t)+<P(t)
19)
As a result, a new unstable velocity field, which corre-
sponds to the following stressed state, has been built

n=2 D o2 p D’ =p D’
A+ oB A+ aC B+BC
0122520 3613:Y2D 7023:yzoﬁ ’

D? =(a;,(ad)* + ay, (BB)* + ay;, (YO)* +

+ ay, 1 2(BA+0aB)? +ay; /1 2(yA+aC)>? +%(y3 +BC)? )

p=—x£1(0)-y £2() -2 £3(1) + o(1).

4. New automatic solution of the equation system
(1)-(4). Let us frame the invariant solution based on
subalgebra M =10, + x,0,. . It has the following appear-

ance

—”(ﬁaﬂaC)»V=V(éanag)aW=W(§an,C):

(20)
p=p(&n(), e=L : c%

3T]_

In the literature, such decisions are commonly referred
to as auto-model.

We substitute (20) into the equation system (1)—(4)
and obtain

(u—=8)oeu+(v—m)du+(w=C)d.u=0.6),+03,0, + .03,
(u—&,)@év+(v—n)8nv+(w—
(u=8)ow+(v—m)0,w+(w=C)0,w=0,03 +0,0p; + 0,033,

C)agv =0:01y + 0,0 + 0O,

8§u + 6nv+8gw: 0,

2
+

ap (511 —P)2 +ay (622 —P)2 +as; (633 —P)
+ 2(a120122 +a,00 + a23053)= 1.

@n
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The equation system (21) is more simplistic than the
initial equation system since it contains one independent
variable less.

We will search for the equation system solution (21)
with the following appearance

u=§& v=nm, w=-20+ f(&n),

p=r(&n.C) 22
where f(&,m) is differentiable function.
Substituting (22) into (21) we receive
0:0y, =0,
0,62 =0.2(~f +3C) =. 23)

= 0013 + 0,093 + 0, p.

Note that the incompressibility equation is satisfied in
the identical manner.
From the system (23) we receive

611 =0y, p=3C+oy,
—2f =0:03+0,0.
Out of the last system equation (23) follows the equa-
tion to determine function f

2f=0 Je +
& 2 2
\/all +ay —2ay +apn fo +af, 24)
/a
+ 8n

2 2
\/“11 +ay —2ay +apn fi +asf,

Equation (24) is found in the study of equilibrium sur-
faces in the hydromechanics of weightlessness [16]. It is
also found in the theory of plasticity [17] when describing
slow non-stationary currents in the cylindrical channel,
generating of which are parallel to the z axis.

In general, it is difficult to solve equation (24), so we

will consider the particular case where f = f (&) In this

case we get an ordinary second-order differential equation
that allows order downgrade and is reduced to a first-
order equation of the class

f’—+\/1+(2a33 —ay, —ay)ap(f* +C)
T — 3 5

apy(f?+C)

where C — arbitrary variable. Equation (25) is found via

quadratures; solutions are written as elliptical integrals of
the first and second classes.

For convenience of the framed solution interpretation

we will transform variables as follows. Let's enter new

independent variables based on formula

(25)

x'=-mx,
y'=-my, z'=mz, ' =h—mt. Here m,h — are positive
constants. This transformation can be done because the

source system allows stretch and transfer operators. In
this case the solution is framed as

2mz —mx
w= +f .
h—mt h—mt
This solution can be interpreted as a plastic flow of a
layer along the oz axis that is compressed by rigid and

_—mx
h—mt’

__ny
h—mt’

u Vv

rough plates in the x and y directions with plates ap-
proaching at a constant speed m. Then,2H = h—mt , the
thickness of the layer at the time ¢.

5. Generalization of Annin 's solution to the anisot-
ropic case. In this paragraph we will summarize
B. D. Annin's solution [3] to the anisotropic case. To do
this, let us find an invariant solution based on a two-
dimensional sub-algebra generated by operators

9
op’

_ T g
/00, + f,(t)o, —yfz(f)a

. M
fl(t)ax +f1 (t)au _xfl (t)
(.1,)=

It should be looked for as
O

S

u =—x+Bl(t,z):A1x+Bl,
1
0

vzf—2y+Bz(t,z):A2x+Bz,
fa
w=A(t)x+B(1), (26)
XZ? 23; X2 0
=2 Y D g )= I | A (4 |-
2 2/, 2

2

]
- %{A% (A2)2J+ B*(1,z).

Here A',B' — functions are calculated from (1)—(4).
Adding (26) to equation system (1)—(4) we obtain

A=-A-4

p:_ﬁ jl_,_(Al)Z _y_z A[2+(A2)2 _
2 2

2( 0
- Z?(A3+(A3)2J+(t)x+b2(t)y+7u43,

S; =Ad', Sy, =AA?, Sy =24, S, =0,
S;; =A0,B', Sy, =10.B°,
A2 =ay (A +ay (A7) +ag (A7) +
+ 2a,(0.8') +a3(0.8%)).

Here b, — arbitrary function of ¢. Functions A4',B' are
calculated from

0
B'=b+A'B' +( 42+ B*)0.B' = 0.(.B"),

]
B~b,+ A'B* +(4'z+B)0.B> =0, (B”).

This solution can be applied when analyzing a plastic
flow of a parallelepiped made of anisotropic material
compressed between rigid plates.

Conclusion. The paper demonstrates how with
the help of symmetries it becomes possible to turn
a stationary solution of plasticity equations into a whole
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class of non-stationary solutions of dynamic plasticity
equations. These solutions might be used to analyze dy-
namic technological processes. In addition, new solutions
to dynamic plasticity equations have been framed by the
standard methods of group analysis.
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