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In practice problems, which consist in the search of the best (optimal) solution according to the different irredun-
dant and contradictory (conflicting) criteria, called multi-objective problems, are of frequent occurrence. One of the
most commonly used methods for solving this kind of problems consists in combination of all criteria into the single one
by using some linear relation. However, despite the simplicity of this method, solving problems with its help may cause
other problems related to the determination of the mentioned linear combination, namely related to the determination of
the weight coefficients for each criterion. The incorrect selection of these coefficients may lead to non-optimal solutions
(according to the Pareto theory). In this regard, recently various population-based algorithms have been proposed for
solving the described problems, which are the modifications of these population-based algorithms for solving single-
objective optimization problems. This article describes the developed modifications of the Differential Evolution algo-
rithm (DE) for solving multi-objective unconstrained optimization problems based on the well-known NSGA (Non-
dominated Sorting Genetic Algorithm) and MOEA/D (Multiobjective Evolutionary Algorithm Based on Decomposition)
schemes, which use the Pareto theory. The investigation into the efficiency of the Differential Evolution algorithm for
solving multi-objective optimization problems in relation to the chosen mutation operator of the original DE algorithm
and to the multi-objective scheme was conducted. The developed modifications were tested by using some well-known
multi-objective real-valued optimization problems with 30 variables, such as ZDTI, ZDT2, ZDT3, etc. The practical
problem of spacecraft control contour variant choice was solved as well. The experimental results show that better
results were achieved by the Differential Evolution algorithm with the simplest mutation operators combined with the
NSGA scheme. Thus, the applicability of the described modification for solving practical multi-objective optimization
problems was demonstrated.
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B npaxmuueckoil dessmenvHocmu 4acmo 6Cmpedaiomcst 3a0ayiu, 3aKI0YaOWUecst 6 NOUCKe IYyUule20 (OnmuMatbHo-
20) peulenusi nPU HATUYUU PA3TUYHBIX HECBOOUMbBIX OpYe K OpY2y U NPOMUBOPEHUBLIX (KOHDAUKMYIOWUX) Kpumepues
ONMUMATLHOCMU, HA3bl8AEMble 3A0aUAMU MHO2OKPUMEPUAIbHOU onmumuzayuy. OOun u3 Hauboiee pacnpocmpanen-
HBIX Memo008 peuleHusi NOO0OH020 poda 3a0ay 3aKuoHaemcs 8 00vbeOUHeHUU 8cex Kpumepues 6 OOUH, UCNONb3Ys
Hexomopoe auHelHoe coomnoutenue. Hecmomps na npocmomy memooa, npu peuieHuu 3a0a4 makum cnocooom mMozym
BO3HUKHYMb NPOOIIeMbl ¢ ONpedesieHueM Camo20 TUHEHO20 COOMHOWEHUS, A UMEHHO 8€CO8bIX KOIDDUYUEHMO8 KadiC-
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0020 Kpumepusi, HeNpPasUIbLHLLL NOOOOP KOMOPBIX MONCEM NPUBECHU K HEONMUMATbHBIM (8 cmbicie meopuu [lapemo
OOMUHUPOBAnUs) peuteHusm. B cesa3u ¢ smum 6 nacmosujee 8pems npeoaoAHCceHbl pA3IuyHble NONYIAYUOHHbIE ANCOPUNI-
Mbl OJisL peuienust ONUCAHHBIX 300ad, KOMOopble 6 C80I0 0Uepedb G0N L MOOUDUKAYUSMU IMUX HCe NONYISAYUOHHBIX
aneopummos OJisi peuteHust 3a0ay 0OHOKPUMEPUAIbHOU onmuMmusayuu. B dannot cmamve onucamvl paspabomanivie
Mmoouguxayuu anzopumma oupgepenyuansvrou ssonroyuu (Differential Evolution, DE) 0na pewenus 3a0ay MHO20Kpu-
mepuanvHou 0e3yciosHou onmumuzayuu Ha 6aze wupoko useecmuvix cxem NSGA (Non-dominated Sorting Genetic
Algorithm) u MOEA/D (Multiobjective Evolutionary Algorithm Based on Decomposition), ucnoaws3syrowux meopuio Ila-
pemo domunuposarnusi. Hccredosanue s¢pgpexkmusnocmu aneopumma OuhhepeHyuaivroll 960a0Yuu 05 peuleus 3a-
0au MHO2OKPUMEPUATIbHOU ONMUMU3AYUU NPOBOOUTIOCH 8 3AGUCUMOCIIU OM 8bIOOPA ONEPAMoOpa Mymayuu UcXoo0H020
aneopumma ougghepenyuanbHol 80MI0YUU U CXEMbL YUema MHOJCeCmad yeneduix yukyuil. Pazpabomannvie moougu-
Kayuu Obliu npomecmupo8anbl ¢ NOMOWBIO U3BECTMHLIX 300ad MHOSOKPUMEPUALbHOU 0e3VCI08HOU ONMmuMU3ayuu
sewjecmeeHHo3Haunblx Gyukyuu ¢ 30 nezasucumvivmu nepementvimu, Hanpumep, ZDTI1, ZDT2, ZDT3 u m. 0., maxoice
Ovlia peuwiena npaxkmudeckas 3a0aya 6vloopa IdexmusHoco eapuanma annapamHo-nPOPAMMHO20 KOMHIIEKCA
O cucmem YnpagieHus KOCMUYeCKUMY annapamamu. B pezynomame sxcnepumenmog 6vL10 ycmanosieHo, 4mo aneo-
pumm OugpepeHyuanibHol 36010YUU OeMOHCIMPUPYem IyYiue pe3yibmamsl nPu UCNOAb308AHUU HAUOOLee NPOCHIbIX
ONepamopos Mymayuu 8 COHemaHuu co cxemou yuema yenegvix yuxyuti NSGA, maxum obpazom, noxkasana yenecooo-
PA3HOCTb €20 NPUMEHEHUsL C OAHHbIMU NAPAMEMPAamMU OJisi PEULeHUsi NPAKMUYECKUX 3a0ay.

Kmiouesvie cnosa: onmumusayus, oupgepenyuanvras seomoyus, meopus Ilapemo oomunuposanusi, MOEA/D,
NSGA, mymayus.

Introduction. Complex technical and organizational mization problems based on the well-known schemes
systems control requires constant decision making taking such as MOEA/D (Multiobjective Evolutionary Algo-
into consideration various criteria and limited resources. rithm Based on Decomposition) [6] and NSGA (Non-
Such kind of problems (multi-objective optimization dominated Sorting Genetic Algorithm) [7], that use the
problems) can be found in different areas, including aero-  Pareto theory, are introduced. Moreover, efficiency of
space industry (for example, [1-3]). For some of them it  these modifications was examined in accordance with the
is possible to find solutions, which would be optimal with ~ chosen DE’s mutation operator [8].
respect to all criteria. However, the opposite situation, Differential Evolution. Differential evolution or DE
namely when the criteria conflict with each other, occurs is a population-based meta-heuristic approach initially
more frequently. In that case there is s a need to determine  developed for solving multidimensional optimization
a set of solutions (best possible variants), where each  problems. It was firstly introduced by K. Price and
one of them can be considered as a compromise between  R. Storn in 1995 [5] for solving single-objective optimiza-
all criteria. tion problems. The DE algorithm is a direct optimization

There are various ways to determine the mentioned set  method, thus it only needs values of the objective func-
of solutions, but the most popular among them is the tion; it uses some of ideas the proposed for the genetic
Pareto dominance theory [4]. Generally speaking, a multi-  algorithms such as mutation as well.
objective optimization problem includes a set of D pa- The DE starts with the random initialization of the
rameters (variables), a set of K objective functions of population that contains N individuals, to be more specific
these variables, and a set of M constraints. It is necessary  the set of N vectors is randomly generated. Each individ-
to find a solution, that is optimal according to all K crite- ual is represented by its coordinates in the search space
ria, while solving a multi-objective optimization problem;  with D dimensions. Then a new generation is created in

and the problem is formulated as follows: the following way. For each individual x| three different
y=f(x)=(£(x), /o(x)ses fx (x)) > 0pt, (1) vectors from the old generation are randomly chosen,
after that a new mutant vector v/ is generated by using

8j (x ) <0,j=Lr, @) the mutation operator.

h. ( x) =0,j=r+1LM Nowadays there are various mutation schemes for the
J ’ 4 ’ . . . . .
differential evolution algorithm [8]. In this study five
where x:(xl,xz,...,xD) is possible solution. most popular mutation strategies were used (rand, best,

Let us consider the multi-objective unconstrained op- ~ Cu/7ent_to_best, best2, rand2):

timization problems. Generally, there are no additional t ¢ ¢

. . ) vj:xR1j+F(xR27—xR3j); 3)
requirements of functions f;(x), i =1, ..., K, that would : » :
be convenient for optimization (for example, convexity, V; :xf,est, G +HF (x}}l’ j —x;u, j); “)
differentiability, etc.). Functions can be defined algo-
rithmically; variables can be continuous, discontinuous, Vi=xl 4 F( Xyt~ xit/‘)+ F( U j) NG
binary and even mixed. This fact significantly reduces the ' " " ) b |
class of optimization algorithms, which could be applied Vi = X+ F (xfm’ i~ %R, j)+F (x}‘& X, j); (6)

to solving such problems.
In this study modifications of the Differential Evolu- r_ i ¢ t 1 ¢
= +F = )+ F ;= . @
tions (DE) algorithm [5] for solving multi-objective opti- Vi TR (sz"-’ *h3.j ) (xm” Rs.j ) ()
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In these formulas indexes R1, R2, R3, R4 and RS are
numbers randomly chosen from the range [1, V], all of
them differ from the index i and each other; F is the scal-
ing factor, namely the maximum possible distance by
which the search area can be expanded in one variable;

X}, — the best position found by the population during ¢

iterations.

The next step is the crossover, which is performed
for the mutant vector. During the crossover its coordinates
(or at least a part of them) can be replaced with some
probability (CR) by the coordinates of the parent vector.
A new obtained vector is called a trial vector. If the value
of the objective function calculated for the trial vector is
better than the value of the objective function calculated
for the parent vector, then the parent vector should be
replaced by the trial vector in a new generation, otherwise
it stays the same.

Modifications of the DE algorithm for solving
multi-objective optimization problems. In this study
two well-known schemes for the multi-objective optimi-
zation problems were used: Multiobjective Evolutionary
Algorithm Based on Decomposition (MOEA/D) [6]
and Non-dominated Sorting Genetic Algorithm
(NSGA) [7].

Modification of the DE algorithm based on the
scheme NSGA works as follows. First of all, in addition
to the population of individuals an external archive is
generated, in which optimal according to the Pareto the-
ory solutions are saved. This archive is updated at each
iteration.

Besides, on every iteration during the crossover the
additional second archive of size 2/, in which initially all
individuals from the population are stored, is created. As
was mentioned before, during crossover trial vectors, that
can replace parent individuals in population, are gener-
ated. If the parent individual from the second additional
archive is non-dominant with respect to the respective
trial vector then the latter is discarded and the parent indi-
vidual stays the same, and vice versa, if the trial vector is
non-dominant then it replaces the parent vector in the
second archive. However, if the parent and trial vectors
are not comparable then they both are stored in the second
additional archive. It should be noted that the trial vectors,
which are stored in the mentioned archive, later partici-
pate in the crossover, and for them the mutant vectors are
generated by using individuals saved in the same archive.

On the next step the second additional archive is trun-
cated to the size N by using the sorting of individuals ac-
cording to the degree of their non-dominance proposed
for the NSGA scheme [7]. Individuals are sorted in the
mentioned archive as follows. For each individual its
rank, which is denoted as “rank”, is determined. If an
individual is non-dominant with respect to all other indi-
viduals from that archive then its rank = 0. After that the
individual, which is non-dominant with respect to all
other individuals from archive except the one with the
rank = 0, is determined. Therefore, its rank is assigned
to 1. If there are more than one such an individual, then
the same rank is assigned to each of them. The process
continues until all individuals in the population are
ranked.
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Next, the ranked individuals are selected according to
the Crowding-distance metric (/) described in [9]. For
each objective function the solutions with the smallest and
largest values of this metric are determined. It is assumed
that the metric value for these solutions from the second
additional archive reaches its maximum. For other solu-
tions from the archive the distance (metric value) is calcu-
lated as follows:

K . _ ._
1=y A AL ®
= Je Tk
Here parameters /™ and f™" are the maximum

and the minimum values of the k-th objective function,
fe[i+1] and f;[i—1] are values of the k-th objective

function for the (i + 1)-th and (i — 1)-th individuals re-
spectively.

After that, the i-th individual is compared with the rest
(i=1, ..., 2N) until it is better than any individual accord-
ing to the rank or to the value of the metric (the higher,
the better). In this case, it is saved in a truncated archive,
the comparison is stopped and the next individual is con-
sidered. These actions are repeated until the number of
individuals in the truncated archive is equal to N.

The external archive, in which non-dominated solu-
tions are stored, is updated by the individuals stored in the
additional archive. The population that consists of indi-
viduals from the truncated archive passes to the next gen-
eration.

Now let us consider the modification of the DE algo-
rithm, developed on the basis of the MOEA/D scheme
[6]. As for the previous modification, initially an external
archive for the non-dominated solutions according to the
Pareto theory is generated; moreover, this archive is up-
dated at each iteration. Further, the population of N indi-
viduals is initialized randomly.

For each i-th (i = 1, ..., N) individual, the vector L;
consisting of weight coefficients for the corresponding
objective functions (one coefficient per objective func-
tion) is generated. The coefficients are generated ran-
domly within the range [0, 1] and vector L; is normalized.

Next, the reference vector z=(z,z,,...,zx ), Where z;

is the best currently found value of the j-th (j =1, ..., K)
objective function f;, is determined. In addition, for each
i-th individual, a set of indexes B(i) is created,
it consists of 7 indexes of the nearest to L; neighbors, to
be more specific the distances between the vectors L; and
L;(j=1, ..., Nandj #i) are calculated using the Euclid-
ean metric, and then 7 indexes of the nearest neighbors
are selected.

Thus, for each i-th individual, where i = 1, ..., N, the
set of indexes B(i) = {i(1), ..., i(T)} is defined such
as Li(1), ..., L{T) are the T closest vectors to the vector L,.
Then, during the mutation for the described schemes
(3)—(7) indexes R1, R2, R3, R4, RS for the i-th individual
are randomly chosen from the set B(i).

At the crossover step the trial vector U is generated,
after that the vector z is updated. Finally, according to the
rule described in [6] the individual in the population is
updated (it is replaced by the trial vector U).
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Experimental results. The investigation into the effi-
ciency of the DE algorithm with different mutation strate-
gies and schemes for the multi-objective optimization
problems was conducted by using the following test prob-
lems: ZDT1, ZDT2, ZDT3, ZDT6, Schaffer’s Min-Min
(SCH) and DTLZ2 [10]. The following parameters were
used for testing:

1) S — the maximum number of optimal according to
the Pareto theory solutions, which were saved during the
algorithm’s work; it was set to 100;

2) N — the population size, it was equal to 100;

3) MaxGen — the maximum number of iterations equal
to 250;

4)F=04;

5) CR = 0.3 for modification of the DE approach
based on the MOEA/D scheme;

6) CR = 0.6 for modification of the DE approach
based on the NSGA scheme;

7) T=20;

8) D = 30.

Each problem was solved by all modifications
10 times and after each program run the following values
were calculated: the £y error (i. e. the difference between
the obtained and real Pareto fronts) and the spread A
(i. e. the extend of spread achieved among the obtained
solutions).

The E; error was calculated by using the following
formula (9):

2 N 2
:Z(PF/'G_PF;) ’
1

j=

E, = “PFe — PF"

)

where PF° is the found Pareto front, PF' is the actual
Pareto front, NS is the number of points in the external
archive. The value of the spread A was determined using

the following formula:
NS-1

dy+d+ Y ‘di—z‘
i=1

A d,+d +(NS-1)d 1o
where d; is the minimal Euclidean distance between
the i-th solution from the obtained Pareto front and other
solutions from that front [11] (NS — number of solutions

in the external archive), and d is the average distance.
Parameters d; and d; are Euclidean distances between
the extreme solutions of the real and obtained Pareto
fronts.

Results obtained by the modification of the DE algo-
rithm based on the MOEA/D scheme with different muta-
tion strategies and averaged by the number of program
runs are presented in tab. 1.

Thus, it was established that modification of the DE
approach based on the MOEA/D scheme demonstrated
the best results while using the mutation strategy best.
Tab. 2 shows how many times this algorithm configura-
tion outperformed others according to four criteria:
Best — the best obtained values of Efand A respectively,
Worst — the worst values, Mean — the mean values
for Erand A, SD is the standard deviation for the obtained
results.

Results obtained by the modification of the DE algo-
rithm based on the NSGA scheme with different mutation
strategies are presented in tab. 3.

Table 1
Results obtained by the DE+MOEA/D algorithm with different mutation schemes
Problem rand best current_to_best best2 rand2
ZDTI1 E, 0.00384 0.00054 6.59454 0.00119 0.0062
A 0.16367 0.11775 0.489 0.13324 0.16509
7DT2 Ef 0.00053 0.00041 5.92685 0.00055 0.00199
A 0.09408 0.11174 0.70551 0.105 0.11352
7DT3 E, 0.15176 0.08976 4.84475 0.0003 0.00249
A 0.19449 0.16297 0.43173 0.09944 0.15936
ZDT6 E; 2.08E-07 2.05E-07 0.47384 2.03E-07 0.00391
A 0.04915 0.44263 0.63503 0.04259 0.02977
SCH E, 6.85E-07 7.19E-07 0.00019 0.01249 7.19E-07
A 0.40399 0.30593 0.36606 0.32616 0.35382
DTLZ2 E, 0.00024 0.00022 2.62E-05 0.00056 0.00038
A 0.05619 0.06844 0.0706 0.10307 0.07852
Table 2
The results of the comparison of the mutation schemes for the DE+MOEA/D modification
Scheme Er A
Worst Best Mean SD Worst Best Mean SD
rand 0 1 1 0 1 0 2 1
best 3 4 2 3 1 3 4 1
current to_best 1 1 1 1 0 1 0 0
best2 2 0 2 2 3 2 1 3
rand?2 0 0 0 0 1 0 0 1
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Thus, it was established that the strategy best demon-
strated the best results comparing to others in 10 cases,
while the strategy rand in 14 cases. However, for this
modification strategy rand outperforms the strategy best
because it showed the better results according to the sec-
ond criterion (spread of solutions along the front) more
frequently. Tab. 4 shows how many times this algorithm
configuration outperformed others according to four crite-
ria: Best — the best obtained values of E, and A respec-
tively, Worst — the worst values, Mean — the mean values
for Erand A, SD is the standard deviation for the obtained
results.

Examples of the Pareto fronts obtained by the devel-
oped modifications of the DE algorithm with determined

on the previous step best mutation strategies for the listed
test problems are demonstrated in fig. 1-6.

The developed modifications of the DE algorithm
(DE + NSGA and DE + MOEA/D) are compared with the
other methods for solving multi-objective optimization
problems: MOPSO [12], NSGA-II [13], SPEA [14]
and PAES [15]. Moreover, the comparison was made
according to the previously used criteria (error and varia-
tion).

Tab. 5 shows the mean values for the criteria obtained
by the listed algorithms. The results of the NSGA-II and
SPEA, PAES algorithms are taken from the literature
[15], and the results of the MOPSO algorithm were ob-
tained independently.

Table 3
Results obtained by the DE+NSGA algorithm with different mutation schemes
Problem rand best current to best best2 rand2
7DT1 E, 0.00733 0.00884 0.00577 0.02993 0.03549
A 0.0775 0.07231 0.28125 0.07318 0.06684
7DT2 E, 0.00627 0.00311 0.31043 0.0197 0.03744
A 0.10933 0.603442 0.75164 0.11818 0.12551
ZDT3 E; 0.00491 0.00628 0.00277 0.0259 0.44998
A 0.06465 0.07346 0.59455 0.0817 0.16594
7DT6 E, 0.00058 2.90E-07 0.00212 3.25E-07 0.00324
A 0.05462 0.03373 0.05722 0.0548 0.06761
SCH E; 4.93E-05 5.69E-06 5.66E-07 0.00041 7.7E-07
A 0.10595 0.17782 0.18019 0.11755 0.10743
DTLZ2 E, 11.1832 6.6664 12.164 4.91719 0.01469
A 0.417295 0.27964 0.542015 0.20289 0.05895
Table 4
The results of the comparison of mutation schemes for the DE+NSGA modification
Scheme E A
Worst Best Mean SD Worst Best Mean SD
rand 2 1 1 2 2 1 3 2
best 1 1 2 1 1 1 1 2
current to best 1 4 2 0 0 0 0 0
best2 1 0 0 1 2 3 0 1
rand?2 1 0 1 2 1 1 2 1
1,2 12
1 ' 1 o.
0,8 \. 0,8 s\
e | S N
~, y
04 . 0.4 ‘s -
» ™~ . ——
0,2 e -~ 0.2 ..
0 e, 0 ha— .
0,00E+00 2,00E-01 4,00E-01 6,00E-01 B,00E-01 1,00E+00 1,20E+00 0,00E+00 2,00E-01 4,00E-01 6,00E-01 B,00E-01 1,00E+00 1,20E+00
Based on scheme NSGA Based on scheme MOEA/D

Fig. 1. Examples of the Pareto front obtained for the ZDT1 problem

Puc. 1. Ilpumeps! ¢pponTa [lapero, nomyuennsie 1 3anauu ZDT1
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Fig. 2. Examples of the Pareto front obtained for the ZDT2 problem

Puc. 2. ITpumepsr pponra [apero, moiyuennsie aist 3agauu ZDT2
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Fig. 3. Examples of the Pareto front obtained for the ZDT3 problem

Puc. 3. Ilpumepsr dpponra Iapero, momayuennsie 1us 3agaun ZDT3
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Fig. 4. Examples of the Pareto front obtained for the ZDT6 problem

Puc. 4. ITpumeps! GpponTa [apero, nomxyuennsie 1 3anaun ZDT6
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Fig. 5. Examples of the Pareto front obtained for the SCH problem
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Fig. 6. Examples of the Pareto front obtained for the DTLZ2 problem

Puc. 6. Ilpumeps! pponTa [apero, nonyueHnsie st 3agaun DTLZ2

Table 5
The results of the comparison of the algorithms for solving multi-objective optimization problems
Algorithm ZDTI1 ZDT2 ZDT3 ZDT6 SCH
E, A E, A E, A E, A E, A

NSGA-II-r 0.0335 0.3903 0.0724 0.4308 0.1145 0.7385 0.2966 0.668 0.0034 0.4779
NSGA-II-b 0.0009 0.4633 0.0008 0.4351 0.0434 0.5756 7.8068 0.6445 0.0028 0.4493
SPEA 0.0018 0.7845 0.0013 0.7551 0.0475 0.6729 0.2211 0.8494 0.0034 1.0211
PAES 0.0821 1.2298 0.1263 1.1659 0.0239 0.7899 0.0855 1.1531 0.0013 1.0633
MOPSO 0.0605 0.5685 0.0807 0.4045 0.0016 0.415 0.0015 0.1204 | 8.91E-07 | 0.6039
DE+NSGA 0.0073 0.0775 0.0063 0.1093 0.0049 0.0646 0.5706 0.1977 | 4.93E-05| 0.1059
DE+MOEA/D 0.0005 0.1177 0.0004 0.1117 0.0898 0.163 | 2.05E-07 | 0.4426 |7.19E-07| 0.3059

Thus, as a result of the research, it is established that
the best values of objective functions are achieved by
modifying the algorithm of differential evolution based on
the NSGA scheme with the simplest mutation strategy
called rand. Moreover, the experiments demonstrate that
the modification of the DE algorithm of the NSGA
scheme approximates the Pareto front better than the other
multi-objective optimization algorithms, namely MOPSO,
PAES, NSGA-II, SPEA, DE + MOEA / D.

The problem of the choice of spacecraft control
contour variant. In this study the problem of the choice
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of spacecraft’s control contour variant [16] is consid-
ered. The functioning process of a spacecraft control
subsystems is modeled with Markov chains, while the
problem of choosing an effective variant for a space-
craft control system is formulated as a multi-objective
discrete optimization problem with algorithmically
given functions.

The problem statement and the way the problem of
spacecraft’s control contour variant choice was modeled
are presented in [16]; in this study only a brief description
is given.
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The system for monitoring and control of an orbital
group of telecommunication satellites includes on-board
control complexes (BCC) of a spacecraft, a distributed
system of telemetry, command and ranging (TCR)
stations and data telecommunication systems in each,
command measuring systems (CMS) and flight control
center (FCC). It should be noted that the last three
subsystems are combined into the ground-based control
complex (GCC).

Thus, the ground control complex interacts with the
onboard control complex using a telecommunication sys-
tem, as well as command measuring systems and data
transmission systems, which include communication cen-
ters of a flight control center. BCC is the controlling sub-
system of the satellite that ensures real time checking and
controlling of on-board systems including pay-load
equipment as well as fulfilling program-temporal control.
Control functions performed by the automated control
system can be divided into subsystems called “control
contours”. Mentioned contours perform various functions,
for example the following contours can be distinguished:
a technological contour, a command-program contour,
a target contour, etc. [16].

The main task of the command-program contour is the
maintenance of the tasks of creating command-
programming information, transmitting it to BCC and
executing it and control action as well as the realization
of the temporal program mode of control. Let us consider
the simplified control system, which consists of three sub-
systems: onboard target equipment, on-board control
complexes and ground-based control complex.

If we suppose that BCC can fail and GCC is abso-
lutely reliable, then we can introduce the following nota-
tions: A; is the intensity of BCC failures, y, is the inten-
sity of temporal program (TP) computation, p, is the in-
tensity of the command-programming information (CPI)
loading into BCC, y; is the intensity of temporal program
execution, Ly is the intensity of BCC being restored.
Therefore, all stochastic flows in the system are Poisson,
and there are five possible states for this contour [16]:

1) BCC fulfills TP, GCC is free;

2) BCC is free, GCC computes TP;

3) BCC is free; GCC computes CPI and loads TP;

4) BCC is restored with GCC which is waiting for
continuation of TP computation;

5) BCC is restored with GCC which is waiting for
continuation of CPI computation.

The corresponding Kolmogorov system of equations
for the final probabilities is the following:

R-(h+py)—m, B =0, (1)
Py(m+2y)—ps B—py B =0, (12)
Pe(M+py) =y P—py B =0, (13)

By =r-B-2-B=0, (14)

Bopy=n-B=0, (15)

B+P+PR+P+F=1. (16)
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In these formulas P; is the probability that the system
is in the i-th state, where i = 1, ..., 5. After solving the
system (11)—(16), the necessary indexes of control quality
for the command-programming contour can be calculated:

R . .
1) T =—L'— — the average duration of the independ-
Hy - By
ent operating of the spacecraft for this contour;
B+ P .
2) f,=-32 PS — the average duration of BCC and
My

GCC interactions when loading TP for the next interval
of independent operation of the spacecraft;

)¢ _BrBrhAE the average time from the
B (h+uy)
start of TP computation till the start of TP fulfillment
by BCC.

Maximizing the first indicator and minimizing the last
two indicators leads to the choosing of an effective vari-
ant for a spacecraft control system. Thus, the multi-
objective optimization problem is formulated with three
objective functions. In this study it was solved by the best
developed configurations of the DE+NSGA and
DE+MOEA/D algorithms. The examples of the obtained
Pareto fronts for the described optimization problem are
presented in the fig. 7, to be more specific the projection
of the Pareto front on the plane p, — p4 (i, — horizontal
axis, yy — vertical axis). In addition, on the graphs, the
solid points are the points from the Pareto set, obtained by
the algorithm, the open points are the true set points (not
found respectively).

The problem was solved by each algorithm 10 times,
for each program run the number of iterations was set to
30, number of individuals to 20, and for the
DE+MOEA/D algorithm parameter was equal to 5. As a
result of the research, it was established that modification
of the DE algorithm based on the NSGA scheme
(DE+NSGA) with the previously found configuration is
able to solve the described problem of the choice of
spacecraft control contour variant better. Therefore, the
workability of that algorithm was verified on real-world
problem.

Conclusions. In this paper two developed modifica-
tions of the differential evolution algorithm based on the
schemes NSGA  (DE+NSGA) and MOEA/D
(DE+MOEA/D) for solving multi-objective optimization
problems are described. First of all, the efficiency of the
proposed modifications was examined in accordance with
the selected mutation strategy: it was established that for
the DE+NSGA algorithm the most useful is the rand mu-
tation strategy, while for the DE+MOEA/D algorithm it is
the best strategy.

Then the results obtained by modifications of the dif-
ferential evolution algorithm with defined mutation
strategies were compared with the results obtained by
other well-known population-based algorithms. Finally, it
was proved that the modification DE+NSGA described in
this study with the rand mutation strategy outperforms
alternative algorithms for solving multi-objective optimi-
zation problems.
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Fig. 7. Examples of the Pareto set obtained for the problem of the spacecraft control contour variant choice
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Besides, the problem of the choice of spacecraft con-
trol contour variant was solved and the workability of the
proposed approaches was demonstrated on the real-world
problem.
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