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The method of finite elements (FEM) is actively used in calculations of composite shell constructions (rotation
shells, circle and oval cylindrical shells), which are widely used in space-rocket and aviation equipment. To calculate
multi-layer oval cylindrical shells three-dimensional curvilinear Lagrange multi-grid finite elements (MGFE) are sug-
gested. When building a k-grid finite element (FE), k nested grids are used. The fine grid is generated by the basic split
of MGFE that takes into account its complex heterogeneous structure and shape. On k-1 large grids the move functions
used for decreasing MGFE dimension are determined. The stress-strain state in MGFE is described by the elasticity
theory three-dimensional task equations (without introduction of additional hypotheses) in local Cartesian coordinates
systems. The procedure of building shell-type Lagrange MGFE with the use of Lagrange polynomials presented in cur-
vilinear coordinate systems is demonstrated. With the size reduction of discrete models MGFE have constant thickness
equal to the thickness of the shell. The Lagrange polynomials nodes coincide in thickness with the MGFE large grid
nodes and are located on the shared borders of different module layers. The use of such MGFE generates approximate
solutions sequences that uniformly and quickly converge to precise solutions.

The main advantages of MGFE are as follows: they form discrete models with the dimension 10°—10° times smaller
than the basic models dimension and they generate small error solutions. Examples of calculations are given
for four- and three-layer oval shells of various thickness and shape under both uniform and local loading with the use
of 3-grid FE. Comparative analysis of the obtained solutions with the solutions built with the help of the software pack-
age ANSYS shows high efficiency of the suggested MGFE in calculations of multi-grid oval shells.

Keywords: elasticity, composite, oval cylindrical shell, multi-grid finite elements, Lagrange polynomials, conver-
gence of the solution sequence, software package ANSYS.
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Memoo koneunvix snemenmos (MKJ) akmugno ucnonvzyemcs 6 pacyemax KOMNOZUMHBIX 000104eUHbIX KOHCPYK-
yuil (060104KYU BPAUEHUs, KPY2o8ble U 08AbHbIE YUAUHOpUUECKUe 0D0I0UKU), KOMOpble WUPOKO NPUMEHAIOMCS 8 pa-
KEeMHO-KOCMUYECKOU U A8UAyUOHHOU mexnuke. [[nsi pacyuema MHOLOCIOUHBIX 0BANbHBIX YUIUHOPUHECKUX 000104eK
npeoiodceHbl mpexmepHbvle KPUBOIUHENHbIE 1acPaHdcesble MHO20Cemoutble KOHeunble nemenmol (MuK3). Ilpu no-
cmpoenuu k-cemounoeo koneunozo snemenma (K3) ucnoavsyemces k enosicennvix cemok. Menxkas cemka nopocoena
baszosvim pazbuenuem MnKD, komopoe yuumvleaem e2o CLOACHYI0 HeOOHOPOOHYIo cmpykmypy u gpopmy. Ha k—1 kpyn-
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HbIX CEMKax onpeoensiomcs (QyHKyuu nepemewjenui, npumensemvie O noHudcenus pasmepuocmu MuK3. Hanps-
Jrcenno-oeopmuposannoe cocmoanue 6 MuKO onucvisaemes ypaguenuamu mpexmepHo 3a0ayu meopuu ynpy2ocmu
(6e3 88edenUs OONONHUMENbHBIX 2unomes3) 8 JOKAIbHBIX OeKAPMOBbIX cucmemax xoopouram. llokaszana npoyedypa
nocmpoenus nazpandicesvix MuKD obonoueunoco muna ¢ npumeHnenuem noauHomos Jlazpamsica, npeocmasientvix
6 KpUBOIUHEUHbIX cucmemax Koopounam. Ilpu usmenvuenuu ouckpemmuvix mooeneti MuKD umerom nocmosanuyio
MONUWURY, PAGHYIO MOTWUHe 00010YKU. Y3ubl noaunomos Jlaspansica no moawumne coenadaiom ¢ y3iamu KpynHbix
cemox MuKD u pacnonooicenvt na obwux epanuyax pasHomooyrvrvix cioes. Ilpumenenue maxux MuK3 nopoowcoaem
NOCe008AMENbHOCMU NPUOTUINCEHHBIX PEUEHUL, KOMOPble PABHOMEPHO U DbICIPO CXOOAMCSL K MOYHbIM.

OcnosHuvle 0ocmouncmea MuKD cocmosam 6 mom, umo oHu 06pasyrom OUcKpemusvie Mooeiu, pa3mMepHOCmb KOmo-
poix 6 10°—10° paz menviue pazsmeprnocmu 6azo8vix Modenet, u NOPOHCOAIOM peuieHus ¢ Manoli nozpeunocmuio. lpeod-
CMABIeHbl NPUMEPbL PACHEeMO8 Yemvlpex- U MPexclOUHbIX 08AIbHbIX 000NIOYEK PAa3IUYHOU MOIWUHBL U (HOpMbL
npU PasHOMEPHOM U JTOKATbHOM HASPYICEHUAX ¢ npumeneHuem 3-cemounvix K. Cpasnumenvuvlii anaiusz noiyyenHoix
peuienull ¢ peuweHusmMu NOCIMpPOEHHbIX C NHOMOWbIO npoepammnozo komniexca ANSYS noxasvieaem evicokyio s¢pghex-
mueHocmb npeoaazaemvix MuK3 6 pacuemax MHO20CI0UHBIX 08AIbHBIX 0DONIOUEK.

Knouesvie crosa: ynpyeocms, KOMNO3umul, 08aIbHAA YUAUHOpUYECKAS 000I0YKA, MHO20CEMOYHble KOHeUHble Jle-
MeHmbl, NOIUHOMbL Jlazpandica, cXxoOuMocms nOC1e008amelbHOCIU peuleHut, npoepammmuslil komniekc ANSYS.

Introduction. When studying the stress-strain state = multilayer circular cylindrical shells. The order of the
(SSS) of elastic homogeneous and composite shells, Lagrange polynomials in the height of the MGFE was
various numerical methods are widely used [1-8]. Tradi- arbitrary and was not related to the number of layers.
tionally, in the theory of shells, displacements are decom- In [12—14], the method of reference surfaces was pro-
posed into power series with respect to a coordinate posed for calculating homogeneous and layered shells in
normal to the middle surface. However, in this case, in the  the three-dimensional formulation. As unknowns, func-
numerical study of the SSS of thick shells, it is necessary  tions of displacements of these surfaces are chosen as
to take into account a large number of terms in the corre-  functions of curvilinear coordinates. Displacements across
sponding expansions [1; 2]. Effective numerical the shell thickness are approximated using Lagrange
approaches to the study of elastic shells are mainly based ~ polynomials of various orders, and displacements in the
on the finite element method (FEM) [3—5]. The construc- reference surfaces are given by functions that satisfy the
tion of finite elements (FE) in curvilinear coordinates boundary conditions. For displacements and deformations
creates a number of difficulties [5], in particular, related ~ of reference surfaces, standard bilinear approximations
to the fulfillment of conformance conditions, which is and four-node curvilinear FEs are used [15], which dis-
necessary for the monotonic convergence of the sequence  tinguishes this approach from the analysis of the SSS
of FEM solutions [6]. of the shell L.lsipg three-dimensional MGFE [1o; 11].

When calculating shells using the FEM, there are three _In [16], it is noted that the use of non-circular cylin-
main approaches: approximation of the shell by flat FE,  drical shells in aircraft industry allows to reduce the mass
using curvilinear two-dimensional FE and construction ©f the structure, effectively using the internal volume
of three-dimensional FE. As shown by numerical of presgurlzed cabins. The variability of the.radlus of cur-
experiments, in the latter case, the calculation of shells vature in the cross section of such shells in the general

with inhomogeneous (micro-inhomogeneous) structure by case C;Eﬁbs,r;ertalg, ffc_llff'llcpltles n dcalc;!z;tllrllg the ,SSS
FEM using the equations of three-dimensional elasticity ?smg L esef }11 lcu,(ﬁﬁs arefre uc; hl the 11110n01rf:u-
theory without introducing additional simplifying ar cross section of the middle surface of the shell consists

hypotheses leads to systems of linear algebraic equations of several conjugate arcs of circles [16]. In this case,

) 9 1 i the three-dimensional Lagrangian MGFE developed
(SLAE) of high order (10" ~10""). As a result, it becomes i, 110; 1] can be used to calculate multi-layer oval shells

necessary to develop such FEM variants in which the  of different thickness, which greatly simplifies the appli-
corresponding SLAE has a small order and its solution  cation of FEM to analyze the SSS of oval shells.
provides an acceptable small error for displacements and The features of the MGFE in the calculation of oval
stresses. shells are associated with the discretization rule, which is
In [9; 10], the calculation of circular cylindrical shells  as follows. The proposed MGFEs with any partition have
with a fibrous structure using multi-grid finite elements  a constant thickness equal to the thickness of the oval
(MGFE), in which displacements are approximated by  shell. The nodes of the large MGFE mesh coincide with
Lagrangian polynomials of various orders, is proposed.  the nodes of Lagrange polynomials in the thickness of the
When building a & -grid-based FE (k>2) k nested grids  shell and are located at the boundaries of the multi-
are used. The fine mesh is generated by the base partition ~ modular layers. When refining discrete models, such
of the MGFE, which consists of homogeneous single-grid MGFEs generate sequences of approximate solutions that
FE (SGFE) of the Ist order and takes into account converge uniformly and quickly to exact solutions.
the non-uniform structure and shape of the MGFE. The The advantages of the proposed MGFEs are that they
remaining k —1 large grids are used to reduce the dimen- ~ generate multigrid discrete models of oval cylindrical
sion of the base partition, that is, the dimension of the shells, which require 10*—10° times less computer
MGEFE. In [11], Lagrangian MGFEs are used to calculate  memory than for the basic models. The calculations for
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multi-layer oval cylindrical shells of various thickness
and shape show that the solutions obtained using the
MGFE and using the ANSYS software package differ by
a small value.

Multi-layer Lagrangian multi-grid finite elements.
In [16], construction of the cross section of the middle
surface of an oval shell with semi-axes a, b was shown
(fig. 1). B — the point of conjugation of the arcs 4B and
BC with centers Oy, O, and radii R, . For given a,

b the radii of circles R, r of the middle surfaces of cir-
cular cylindrical shells, fragments of which form an oval
shell, are determined by the formulas

1+k* —1+k? al—k(\/l+k2—k)

r=a s =
1+k-V1+k2 1+k—\1+k>
k:tgazé,yzﬁ—a. 1)
a 2

For the procedure of constructing a multi-grid discrete
model for calculating a multilayer oval cylindrical shell
we will consider the example of a 4-layer shell of constant
thickness #, located in the Cartesian coordinate system

4
Oxyz , Oy - the axis of the shell. We have #& :Zh,.,
=1
— the thickness of the i-th layer of the shell, let
hy=const, i=1,..,4.

h.
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Fig. 1. Section of the shell middle surface

Puc. 1. Ceuenne cpenMHHON TOBEPXHOCTH
OBaJIBHOH 000I0UKI

Without losing commonality of views, for simplicity,
we assume that the geometric shape, physical
characteristics, the discrete model, and the fixing of the
oval shell are symmetrical with respect to the planes Oyz
and Oxy. Therefore, we will consider a 1/4 part
of the oval shell, that is, a cylindrical panel, which we
denote by 7°. The panel V° consists of subregions
(panels) V; and V, of circular cylindrical shells,
respectively, with radii R and r (their middle surfaces,
fig. 1). We believe that bonds between the components of
the inhomogeneous structure of the shell are ideal. The
procedure of constructing an MGFE for calculating a 4-

layer panel ¥° is considered on the example of a 4-layer
three-grid FE (3GFE) VL(;) (fig. 2), where the superscript
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in brackets corresponds to the number of nested grids that
are used in the construction of 3GFE [10; 11].

Fig. 2. Three-grid FE Ve(;) for 4-layer oval shell

Puc. 2. Yersipexcnoiinsiii TpKD Ve(;)

OBaJILHOM 000JI0UKHU

The circular cylindrical panel V), consists of 3GFE

y®

op» Where e=1..N,, N, is the total number of 3GFE

in the panel V,, p=12. Each 3GFE V") consists of

two-grid FE (2GFE) V"), where m=1,..,M,, M, is
the total number of 2GFE. For simplicity, we assume that
M, =M, =M . The area of 2GFE V\?) of the panel V,
consists  of homogeneous  single-grid
FE (SGFE) V) of the Ist order (p=1.2), n=1,...K, is

the total number of SGFE. Fig. 3 shows the eight-node

curvilinear

SGFE V,f}; with  characteristic ~ dimensions
hif"g xh},’,’; X h;f’;, O,x,y,z, is a local Cartesian coordinate

system. SGFEs Vn(,]; take into account the inhomogeneous
structure and shape of 2GFE V,ff;. The stress state in

SGFE Vn(}; is described by the equations of the three-
dimensional problem of the theory of elasticity, which are
represented in the local Cartesian coordinate system
O,x,y,2,, that is, a three-dimensional SSS is realized in
SGFE.

Fig. 3. Single-grid FE Vn(l[))

Puc. 3. Ongnocerounsiii KD Vn(lzj
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The procedures of constructing SGFE and 2GFE for
circular cylindrical panels are described in detail in [9].

For 3GFE V®

.p» P=12 we introduce three local

coordinate systems:
05EnC , and for nodes of a coarse 3GFE VL(;) grid Hy —
integer-valued ijk, where i,j=1,...4, k=1,..,5, the

Cartesian O;x3),2z;, curvilinear

nodes of the coarse grid H; in fig. 2 are marked by dots,
80 nodes. The special feature of the 3GFE Ve(;) is that it

has a constant thickness # equal to the thickness of the
shell, that is, the thickness of the 3GFE Ve(? does not

change when the partitioning of the discrete model is
refined. Herewith, the nodes of the coarse grid H; of

3GFE Ve(;) lie at the boundaries of the multi-modular
layers by thickness, fig. 2. The 3GFE VL(? with the

characteristic dimensions h)(f])) x h;f; xh has the 3rd order

in the coordinates x;, y;, and the 4th order in thickness
h, that is, in the coordinate z; (fig. 2). Note that when
calculating the #-layer oval shell »-layer Lagrangian
3GFEs of the n -th order in thickness are used, the order
of MGFE in the direction of each of the three coordinates
is determined by the order of the corresponding Lagrange
polynomial constructed on its coarse nodal grid.

3GFEs VY

el »
in geometric dimensions and physical characteristics
and correspond respectively to circular cylindrical panels
V, and V,, are designed according to a single algorithm
[10; 11], the brief essence of which is as follows. On the

coarse grid H, of the 3GFE

Ve(é), which differ from each other only

Ve(;) , we determine the func-

3)

tions of displacements »®, v® w®  which are used to

reduce the dimension of the 3GFE Ve(;) . The base func-
tion N for a node S with integer coordinates 7, j,k
of a coarse grid H; of the 3GFE Ve(;) (fig. 2) is repre-
sented as [10; 11]

Ny (o,n, ) = Ly () L;(M) L (C) 2
where o is the central angle corresponding to the arc
h, (fig. 2), i,j=1..4, k=1..5, L(a), L,M),
L, (§) are Lagrange polynomials having the form

L)

o—a “ -
L(a)= H - L, L= H w’
n=ln#i Vi n n=lLn#j nj T]n
3 —
L,(0)= H ﬁ ) (3)
n=l,n#k Sk — C.m

Let the coarse grid node H; with coordinates i, j,k
(i,j=1,..,4, k=1,...,5) correspond to an integer [,
B=1,..80. Using (2), (3), we will present functions

3)

of displacements #©® , v® | w® in the form
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80 80 80
G _ 3),3) 3 _ 3),,(3) 3 3),(3)
SN, SR I

(3)

where ug 3)

E) vﬁ E)
functions of B-th node of the H, grid

wé”, Né” are displacements and shape

The functional of the total potential energy l'[(;)
(p=1,2) for the 3GFE V;E? is written as

M
1
(©) Q) T2 §2) ) T p(2)
Hp _2(5(6’",1’) Kmnp 6m,p— (6'",17) Pm,p >
m=1
r=12, ®)
where Kg,i)p is the stiffness matrix, P,ff;, , ﬁfnz’)p are the

vectors of the nodal forces and displacements of the
(2) . .
2GFE V,”, corresponding to the coordinate system
O;x33z4, T 1is the transposition.
Using (4), we express the vector of displacements
65”2,)1, of 2GFE V,ffl)] through the vector of nodal

displacements 6;3) of the coarse grid H; of the 3GFE

Ve(i,) , thus obtaining the relation
(2) _ AB) §3)
3, ,=A, 8", (6)
where Aﬂj’)p is a rectangular matrix,

3) _yg,,3 B3 ONT
o, ={ug”, vy mp ) .
Substituting (6) into (5) and, following the principle
of minimum total potential energy aﬂ([f)(ﬁf)) / 86;3) =0,
we obtain the relation Kf)ﬁf) = P[(f ) where

(3)

m,p

M
3 3) Ty (2
Kfv) = Z(Agn)p) Kgm)p A
m=1

3) T p2)
m,p Pm,p

b p:l727 (7)

(3) S
PO=% (A
m=1

where K(;) s PS ) is the stiffness matrix and the vector of
nodal forces of the 3GFE pr) .

So, 3GFEs Ve(;) correspond to the circular cylindrical
panel V,, where p=1,2, e=L..N,, N, is the total

number of 3GFEs V®

.y » representing the area of the

panel V,.
Remark. The dimension of the vector 8;3) (i. e., the
dimension of the 3GFE Ve(j,) ) does not depend on the total

number M of 2GFE V»

wp that make the 3GFE Ve(;)

e . 3)
Consequently, the partitioning of the 3GFE 7,7} into
2GFEs V,fli); , and therefore also into SGFE Vn(}; s
arbitrarily small, which makes it possible to take into ac-

can be
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count the complex heterogeneous (micro-inhomogeneous)
structure and shape of the circular cylindrical panels ¥,

and V.

Calculations show that the introduction of additional
nodes of polynomials inside the layers allows reducing
the error of the SSS values, but it increases the order of
the SLAE and increases the estimated time of the prob-
lem.

The number of layers of 2GFE may be less than the
number of layers of the shell. For example, when con-
structing a 4-layer 3GFE, one can use 2-layer 2GFE. This
reduces the time costs in the calculation of the SSS with
an insignificant change in the solution error.

In order to reduce the dimensionality of discrete mod-
els of shells, according to the procedure similar to the one
discussed above, it is possible to construct 4-grid FE, and
k -grid FE, k>4 . The described method can be used to
calculate multi-layer oval cylindrical shells with layers of
both equal and different thickness.

Examples of the calculation of 4-layer oval shells of
various thickness. Thick-walled shell. In the Cartesian
coordinate system Oxyz we consider the solution of the

FEM problem of deformation of a 4-layer oval cylindrical

shell V' of constant thickness 4' =12 cm with semi-
axes ¢ =90 cm; b =72 cm (fig. 1), Oy is an axial coor-

dinate of the shell. The length of the shell is equal

i=@=7.5<10,i. e. the
12

to 2L =1200 cm. We have: X

shell 7' is thick-walled. The thicknesses of the homoge-
neous isotropic layers of the shell (starting from the inner

layer) are equal: 4, =h'/12=1 cm, hy=h'/2=6 cm,
hy=h'"/4=3 cm, h,=h'/6=2 cm, which Young's
moduli are equal: E, =10F kg/em?®, E, =3E kg/em?,
E;=5F kg/cmz, E,=20F kg/cmz, where E=10%,
Poisson's ratio is equal v=0.3. For y=0; 2L, we have
u=v=w=0. Pressure ¢, =10 kg/cm® is applied to the

outer surface of the shell. In the calculations we use 1/8 of
the oval shell, which we denote by V},, of length L. A

cylindrical panel V|, consists of two circular cylindrical

panels V;, V, (conjugated along a common lateral bor-

der) of length L with radii (their middle surfaces) R
and 7 (fig. 1) defined by the formula (1).

For the panel V, we use 5 discrete models

R R

o Rs which consist of 3GFE Ve(j?), p=12.

Lp >
The base grid of the model R, , has the dimension

1. 2. 3
m, xm, xn, , Where

mh =162n+1, m> =649n+1,

m)=24n+1, n=1,.,5,

®)
where m) is the dimension of the grid in the circumferen-

tial direction of the panel V,, m? — in the axial direction,

3

m? — in the radial direction. SGFE V") has dimensions

n,p

hi”; xh;f’; xhﬁ?; , fig. 3, where hi”; =a r, , is the

nplnp> Tnp

radius of the lower surface of the SGFE, a, ,=a,/ m)

corner angle a, (o, ) of the panel ¥, (V,), according to
o, =r—q
275 7%

W) =h'/m,. The 3GFE V() with characteristic

(1) we have tgalzé, W' =L/m;,
a

dimensions 81h§f’; x 81h(v’2, xh' consists of Lagrangian

2GFEs Vn(f; with characteristic dimensions

9h§2 ><9h;’,’1)9 xh'. In 2GFE and 3GFE, Lagrange polyno-
mials of the form (3) have the third order in the circum-
ferential and axial directions and the fourth order in the
radial one. The nodes of the Lagrange polynomials (nodes
of the coarse grids of 2GFE and 3GFE) lie on the com-
mon boundaries of the multi-modular layers by the shell
thickness.

Tab. 1 shows the results of calculations of a cylindri-
cal panel V). Characteristic points 4 (in the plane Oyz)

and C (in the plane Oxy) lie at the intersection of the

extension of the semi-axes » and « with the outer
surface of the shell in cross section y = L, in which we

define displacements w, . Equivalent stresses o, (in the

vicinity of points 4, C) are determined by the 4th the-
ory of strength.

Table 1
The results of calculations of a thick oval shell (a/h=7.5;b/a=0.8)
n (Wn)A (mm) 6w,n (%)A % (kg/cmz) 86,,1 (%)A
(Wn )C 6w,n (%)C (GI’I C 86,/1 (%)C
| 7511 - 371.43 -
4.487 144.21
2 7.601 1.181 377.19 1.527
4.564 1.689 146.87 1.811
3 7.620 0.251 378.37 0.312
4.580 0.356 147.78 0.616
4 7.627 0.097 378.88 0.135
4.587 0.142 148.19 0.277
5 7.631 0.051 379.16 0.074
4.590 0.072 148.41 0.148
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Table 2
The results of calculations of the oval shell for the model R; and the ANSYS software package (b/a=0.9)
w 0 3, (%) c 0 S, (%)
alh | Sham) | A oy oA 24 (kg/em?) 24 (kg/em?) o
We we 5,,(%0)¢ O¢ oy 05 (%)
15 12.429 12.444 0.12 544.23 544.29 0.01
7.942 7.964 0.28 302.74 301.42 0.44
30 28.674 28.678 0.01 963.17 962.45 0.07
19.785 19.857 0.36 768.26 766.19 0.27
The relative errors at n=2,...,5 are found by the for- Relative errors are determined by the formulas
mulas (8,,(%)) , =100% x| W —w, | /w5,
85.,(%)=100% x|c, -0, |/0,, (6,(%)) , =100% x| cg -0, /cs(/)1 ,
o =100° 0 _ 0
8,0 (%) =100% x| w, —w,., [/, (9) (0, (%)) =100% x| we ~we /e .
(85(%))¢ =100% x| 6% —o | /% . (10)

The nature of the change §_ (%), &_,(%) in values

w,n G,n

(tab. 1) shows the rapid convergence of stresses &, and
displacements w, . Therefore, the values ws, o at the

points 4 and C can be taken as exact values with
an error of less than 0.15 %. A comparison of the
obtained results with the results of the task calculation in
the ANSYS software package (SP) was conducted.
Values of equivalent stresses and normal displacements,
which are obtained using ANSYS SP, are equal

o’ =380.05 kg/em?®, oY% =149.52 kg/em®
w =-7.655 mm, w) =4.609 mm.

The difference in results between the two variants
of calculations is less than 0.5 % for displacements and
less than 0.8 % for stresses.

The shell is of medium thickness and thin-walled
shell. In the global Cartesian coordinate system Oxyz,

to and

we consider the solution by the FEM of the problem of
deforming a 4-layer oval shell ¥ (V*) with semi-axes
a=90 h=81 =6
(h* =3 cm) with the same ratios of the layer thicknesses
as in the shell V' of p. 2.1, Oy is the axial coordinate of

the shell ¥? (¥*). The shell ¥? (¥*) has a length of
2L =1200 cm, uniform loading ¢, =10 kg/cm® on the

cm; cm, thickness cm

outer surface and is rigidly fixed on the ends. We have:

@ 0 _15:00, i y2

C.

P is a shell of average

93—0 =30> 20, which means V>

. a . .
thickness, — is a thin-

B
walled shell. In the calculations we consider 1/8 of the
oval shell 2 (¥*). When constructing solutions using
the FEM, we use the previously considered 3GFE (fig. 2)
and the grinding law (8). The calculation results are given
in tab. 2, where designations are introduced: w,, w,

G,, O are the displacements and equivalent stresses

0 0 0

found at the points 4, C (see p. 2.1); w5, wa, 6%, o

are displacements and equivalent stresses calculated in
points A, C using SP ANSYS.
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The performed calculations show a small error (less
than 1%) in the spread of the results obtained using the
3GFE and ANSYS software package for thin, medium
and thick 4-layer oval shells.

The dimension of the base model, which is repre-
sented by SGFE, is approximately 1.9x10° node un-
knowns, the width of the SLAE tape is 588550. The cor-
responding three-grid model has 108295 node unknowns,
the width of the SLAE tape is 2775. Realizing the FEM

reduces the order of SLAE by a factor of 1.76x10* and

requires 3.73x10° times less computer memory capacity
than for the base model. The number of 3GFE (160 FE)
used for the calculation is approximately 80 times less
(depending on the value a/#h) than the total amount of

FEs (1.2x10% =1.4x10%) used in ANSYS.

An example of the calculation of a 3-layer oval
shell of complex shape with local loading. In the Carte-
sian coordinate system Oxyz we consider the problem of

deforming a 3-layer oval cylindrical shell with semi-axes
a=90cm, b=63cm, thickness #=3 cm, Oy is the

axial coordinate of the shell. The length of the shell is
2L =400cm. At y=0; 2L the ends of the shell are

clamped. All isotropic homogeneous layers of the
shell have thickness of 4/3. The Young's moduli of the

layers (starting from the inner) are: E; =6F kg/em?,
E,=2E kg/cmz, E,=10F kg/cmz, where E=10%, the
Poisson's ratio for all layers is v =0.3. The form, loading
and fixing of the shell are symmetrical with respect to the
Oyz and y=L planes, therefore in calculations we
use 1/4 of the shell, which we denote: panel V'*, fig. 4
shows its median surface. A panel area V'* of length L

consists of two circular cylindrical panels V5 and V4 (of

length L), respectively, with corner angles o =35";
y=55". The panel V* has two holes (rectangular
in plan) with dimensions 1=L/6, S,=ry/2 (fig. 4).
On the outer surface of the panel V5 in the local area of
L/3<y<2L/3, S,=Ra,

dimensions pressure
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q,=-1 kg/cm? is applied, as shown in fig. 4. When cal-
culating a cylindrical panel V*, we use a three-layer
3GFE with parameters, which were introduced earlier,
and discrete models R, (n=1,...,5), for which the grids

of basic partitions R’ have the dimension
m) =324n+1, m} =486n+1,

m3=6n+1, n=1,..,5. (11)

Tab. 3 shows the calculation results for the models
R,, n=1,..,5. Values w;, o for the model Rs, defined
in points A, C (fig. 4, 5), can be taken as accurate val-
ues with an error of less than 0.2% for displacements and
less than 0.1% for stresses. The values of equivalent

stresses o and normal displacements w°’ obtained

in ANSYS are ¢’ =75.16 kg/em’, o =43.52 kg/cm’

and W) =-6.210 mm, w)=2.534 mm. The difference

in the results of the two calculations is less than 0.3% for
displacements and less than 0.6 % for stresses.

Fig. 4. Design scheme for 1/4 of the shell, panel vt

4
Puc. 4. Pacuetnas cxema 1/4 yactu o6onoukn, nanens J

Table 3
The results of calculations of a thin oval shell with holes (a//2=30; b/a=0.9)
8, (% 80 (%
Rn % (mm) w,n( 0)A % (kg/sz) o-,n( O)A
(Wn )C 8w,n (%)C (6)1 C 6c)',n (%)C
R —6.041 - 78.21 -
! 2.390 39.92
R -6.155 1.852 74.57 4.881
2 2.491 4.055 42.88 6.903
R —6.182 0.437 74,91 0.454
3 2.513 0.875 43.13 0.580
R —6.193 0.178 75.05 0.187
4 2.522 0.357 43.23 0.231
R —6.198 0.081 75.12 0.093
3 2.527 0.198 43.26 0.069
4 180
o \'\\ ’I\"
150 g 7
\ i v
\ H \
\ \" ! /\“l
0 120 ] s )
\ Jy \‘lIl =0
H\.“- N, r' i
20 P \‘.w K
y=L/2
. VAN
y=L \/ ——
B a -
0 0,25 0,5 0,75 5% 1 0 0,25 0,5 0,75 5% 1
a

>

Fig. 5. Distribution of deflections w (a) and of stress G (b) over the upper shell surface in cross-sections:
y=0; L/2; L .Three-grid FE — solid line; SP ANSYS — dashed line

Puc. 5. Pacnipenenenune nporu6oB w (a) u HanpsbkeHuil G (b) o BepxHeil MOBEPXHOCTH 000I0UKU
B nonepeunsix ceuenusx: y=0; L/2; L . TpKD — ciommnas nunus; [IK ANSYS — mrpuxosast aunust

180



HquopMamuKa, eblduciumenlbHas mexunuKka u ynpaejienue

Fig. 5 shows the distribution of displacements
(w=w;s) in sections y=L/2; L and stresses (G =0s)
in sections y=0; L/2; L on the outer surface of the

shell, depending on the parameter s =s/P; s, P is the
distance from the axis Oz to the point on the outer sur-
face of the shell and to the point C (fig. 4). The SSS cal-
culation was fulfilled using the 3GFE (full line) and using
ANSYS (dashed line).

A noticeable discrepancy in the stress distribution is
observed only in the clamping area. In the rest of the
complex shell structure, one can observe an acceptable
in engineering calculations coincidence of the SSS, ob-
tained by means of 3GFE and ANSYS SP.

The FEM implementation for the multigrid model Ry
reduces the order of the SLAE solved by 5625 times and
requires 3.88x10° times less computer memory than
R}, which uses only SGFE.

The number of 3GFE used for calculation in a discrete

for the basic model

model Ry (240 FE) is approximately 300 times less

than the number of FE used for calculation in ANSYS
(73892 FE).

Thus, the use of 3GFE in the analysis of SSS allows
saving computer resources significantly, which greatly
expands the possibilities of FEM in a variant of multigrid
modeling.

Conclusion. The high efficiency of using curvilinear
Lagrangian MGFE in the analysis of three-dimensional
SSS of multilayer oval cylindrical shells is shown. The
implementation of the FEM using MGFE requires

10> —10° times less computer memory than with the use
of SGFE or ANSYS SP, and allows analysis of the SSS
of shells with a small error of results.
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