Cubupckuil aspoxocmuueckuil scypHan. Tom 24, N2 3

UDC 004.021
Doi: 10.31772/2712-8970-2023-24-3-436-449

Joas umtupoBanus: Eppemosa C. B. Mero MyIbTHBEPCHOHHOTO TPOTPaMMHUPOBaHUsI AJ1si 00pabOTKU TeneMeT-
puueckoil nH(opMaUK MablX KOCMUYECKUX annaparos / Cubupckuil aspokocmuueckui sxyprai. 2023. T. 24, Ne 3.
C. 436-449. Doi: 10.31772/2712-8970-2023-24-3-436-449.

For citation: Efremova S. V. [N-version programming for nanosatellite telemetry processing]. Siberian Aerospace
Journal. 2023, Vol. 24, No. 3, P. 436-449. Doi: 10.31772/2712-8970-2023-24-3-436-449.

Metoa My IbTHBEPCHOHHOT0 IPOTPAMMHUPOBAHMS
AJ1s1 00padoTKHU TereMeTpruyecKoi HHGpopMmanuu
MAaJIbIX KOCMHUYECKHX ANNapaToB

C. B. Eppemona

Cubupckuii rocyTapCTBCHHBIH YHHBEPCUTET HAYKH U TEXHOJOTHI UMEHU akajemuka M. @. PemeTHeBa
Poccwuiickas @enepauns, 660037, r. KpacHospck, npoct. M. ra3. «Kpacnosipcknit Pabounii», 31
E-mail: efremova_svet@sibsau.ru

Ipocpammnoe obecneuenue sA6IEMCsL KIHOUEBbIM INEMEHMOM, 00eCneuusarnuum GyHKYUOHUPOBAHUE
110601 COBPEMEHHOU CNONHCHOU MmexHUuuecKkol cucmemvl. OOHOU U3 MAKUX CUCTEM AGTAIOMCA SPYRNUPOSKU
KOCMUYECKUX annapamos U Ces13aHHble ¢ HUMU KOMNIEKCbl HA3eMHO20 YNPAGIeHUs, 00ecneuusaruue npu-
em, nepeoauy u oopabomxy menemempudeckoi ungopmayuu (TMH). Coop u obpabomxa ungpopmayuu
6 cucmemax meneMempuu 0becnedusalom npoyecc YPAeLeHus KaK CAMUM KOCMUYECKUM annapamom
(KA), max u ycmaHnoeneHHbIM Ha HeM HayuHbiM obopydosanuem. [Ipu smom menemempuueckue OaHHble,
npuMeHsieMble HazeMHbIMU Komniekcamu ynpaeienus (HKY) npeocmaensiiom coboii oepommvie 06vembl
OaHHbIX, 06PAOOMKA KOMOPBIX AGNACMCSA CILONCHOIU U MPYOoemMKol 3adayel. [na pewenus smoi npoobiemol
UCHONL3YIOMCA PA3IUYHble MemoOobl agmomMamuyeckol obpabomku Oannvix. HX coeepuieHcmeosaHue
AGNAEMCS KIIOYeGbIM (PaKmopom —oDecnedeHuss OmKa30yYCMouYueoCmu 6opmoeo20 NpoSPaAMMHO-
annapamuo2o KOMNIEKCa U NOBbIUEHUS €20 HAOEHCHOCTIU.

Cpedu cywecmsyrowux memo0oog 0opabomxku uH@opmayuu, Haueowux WuUpoxKoe nPpUMeHeHue 8 Uccie-
dyemotl 00aacmu, MONCHO 8bLOETUMb MEMOO MYAbMUBEPCUOHHO20 npocpammuposarus (MBII).

Mynbmugepcuontoe npospamMmuposarie HPOUHO 3aKPERUIOCh KaK PHeKmusHblll Memoo NOSbIUEHUS HA-
0eIICHOCMU NPOSPAMMHO20 0DeChedeHUst U cO30anust omkazoycmotiusbix cucmem. C MOMEHMA c80€20 603HUK-
HoseHusi 6 1970-e 22., Oauublli NHOOX00 MAKICE ACCOYUUPYEMCS C HAOEHCHOCbIO NPOSPAMMHBIX CUCTHEM
OJ15L A3POKOCMULECKOU OMPACMU, 8 TOM YUCTEe HAZEMHBIX NYHKINO8 YAPABIEHUA KOCMUHECKUMU ANNapamamil.
B nacmosuyeii pabome paccmampusaemcs npumererue 0aHH020 nooxooda 0 00pabomKu meiemempuyecKkoll
UHGOpMayuL, NOCMYnarweli ¢ Maiblx KOCMUHECKUX annapamos. Aemopom paccmMomper 80onpoc Kpumuku
MBII nooxooa 6 nayunou tumepamype 8 4acmu e20 npumenumocmu 014 3aoaq oopabomxu TMH.

Kniouesvie cnosa: mynemusepcuonnoe (N-6epcuonnoe) npozpammuposaniue, npocpammHas u3061mou-

HOCMb, MAJbLL KOCMUYECKUL annapam, menemMempuieckas UH@OopmMayus, HA0EeHCHOCb NPOSPAMMHO20
obecnevenus.

N-version programming for nanosatellite telemetry processing

S. V. Efremova

Reshetnev Siberian State University of Science and Technology
31, Krasnoiarskii Rabochii Prospekt, Krasnoyarsk, 660037, Russian Federation
E-mail: efremova_svet@sibsau.ru

436

Pa3zden 1. Mngopmamuka, 8bl4ucAuUMenbHAs MeXHUKA U YNpasJieHue

Software is a key element that ensures the functioning of any modern complex technical system. One
such system is the constellation of spacecraft and associated ground control complexes that provide recep-
tion, transmission, and processing of collected telemetry. The process of data acquisition and its subse-
quent processing is critical to the flight control of the spacecraft and its onboard scientific equipment. Fur-
thermore, telemetry data processed by ground control systems involves large volumes of raw data, the
processing of which is a complicated and time-consuming task. In order to solve this problem, various me-
thods of automatic data processing are used. Improving them is a key factor in ensuring the fault tolerance
of onboard software and hardware, improving its reliability.

Of all the existing widely-used methods of data processing, we shall focus on N-version programming
(NVP) approach.

N-version programming has firmly established itself as an effective method for increasing software reli-
ability and designing fault-tolerant systems. Since its inception in the 1970s, this approach has been deeply
connected with the development of aerospace software systems, including, among others, satellite ground
control stations. In light of the aforementioned, this paper discusses the application of NVP for processing
telemetry data gathered from nanosatellites (CubeSats). Due to the fact that there exists a skeptical view on
the NVP approach in terms of its efficiency, the author covers this issue in existing literature in terms of the
approach’s applicability for processing satellite telemetry.

Keywords: multiversion (N-version) programming, software redundancy, nanosatellite (CubeSat), te-
lemetry, software reliability.

Introduction

The key technical challenge in the field of software creation is increasing its reliability in terms of
fault tolerance. Among the existing methods built on the principle of software components redun-
dancy, the multi version approach (MVA) occupies a special place, mainly due to the periodic emer-
gence and fading of interest in it in the scientific literature. The multi-version approach, also known as
N-version, was first proposed to solve the problem of increasing software reliability in the early 70s.
XX century. It should be noted that a number of foreign researchers consider N-version programming
only as one of the variants of MVA [1], while in most papers these definitions are synonymous. Over
the next two decades, this method received theoretical development, mainly in the work of a group of
American researchers led by A. Avizhenis and his graduate students at California State University [2].
The main fundamental principles of this approach were formed, reflected in the expression N > 2,
meaning that if the number of program versions is more than or equal to two, the system is multi-
versioned. Despite the abundance of publications by A. Avizhenis and his colleagues during the 1970s
— early 2000s, as well as the language of these works is, in our opinion, rather complex, the basic prin-
ciples of MVA are simple. Independent development teams are expected to create two or more ver-
sions of the same program within given specifications. Running these programs (multi-versions) helps
to identify patterns of software errors and failures, thereby allowing you to select the optimal version
of the program. Within the framework of the classical MV A, three main elements are distinguished:

1. The initial specification process and N-version programming are designed to ensure the inde-
pendence and functional equivalence of N number of independent software development attempts .

2. The final product (program) created within the framework of the profit center approach and hav-
ing attributes of parallel execution with certain cross-points and comparison vectors for decision mak-
ing .

3. The environment that ensures the implementation of the MVA program provides deci-
sion-making algorithms at given cross points [2].

The concept of diversification or variety of software design is introduced, but the difference be-
tween multi-channel, redundant software and multi-version methods is emphasized. The idea of using
a system with # parallel channels and a voting algorithm assumes that independent failures occur with-
in individual versions or software modules and do not affect the system as a whole.

The principle of using n parallel channels with a voting algorithm is a traditional method
for increasing the reliability of both hardware and software of a technical system. In this case, the ra-

437

Cubupckuil aspoxocmuueckuil scypHan. Tom 24, N2 3

tionale for the MV A with n versions of programs (software modules) embedded in it lies in the follow-
ing postulates [3]:

— channels remain independent of each other in all cases ;

— software glitches always lead to disagreement between duplicate channels ;

— if the voting algorithm is functioning correctly, the probability that at least two channels (N > 2)
out of the total number n corresponds

pm=22)=1-p(m=1)-p(m=0)

where m is the number of matching channels; p is the probability of failure of any of them upon input
signal. The probability of a system error in this case will be

1-p(m=2)=p(m=0)+p(m=1)=p" +n(l-p)p"".

Thus the use of multi-version diversification leads to a certain improvement within one program
channel:

2 B 1
P n(l-mp"" p"4n(-p)p -

In the last decade the MV A has been developed in the works of a number of domestic and foreign
researchers [4—18]. Thus in work [18] the use of this approach for creating fault-tolerant software for
dynamic systems (unmanned aerial vehicles) is considered. It should be noted that the use of MVP in
the design of aviation software was declared in the early stages as the main area of successful applica-
tion of this method [1; 18]. However, this use of profit center, in a sense, contradicts the classical con-
cept of profit center (described by A. Avizhenis in his “Methodology” [2]), which is built around the
software design process, and not its subsequent operation .

The problem of MV A usage

After MV A first arose, it was not criticized by the scientific community for a long time, mainly due
to its theoretical significance. Despite the abundance of scientific literature on the topic of using MVA
for processing various categories and types of data, the methodology for implementing this method is
extremely poorly covered. In this regard, the above-mentioned study [19—21] compares favorably. The
authors of the work describe in detail the entire algorithm for organizing an experiment to test the
MVA method for analyzing data obtained from the conditions specified within the experiment. This
study is especially important for us because the authors concluded that MVA is ineffective (although
they point out that this conclusion is only valid within the framework of the experiment they con-
ducted). We decided to repeat this experiment with changing parameters in terms of data type and vol-
ume.

Now we turn to the description of the experiment. The programs used in the experiment, according
to the conditions, were written in the Pascal programming language. Due to the fact that this language
can be considered outdated, we decided to write programs in the more modern Python language (or
C++). The authors of the experiment proposed 27 versions of the same program, written by teams of
programmers independent of each other. One version — the 28th — was defined as the “reference” and
was used to calibrate the remaining versions. In this work, the number of program versions was in-
creased to 50 (see table).

Data on multiversion failures from the results of the Knight and Levison experiment

Version Failure Reliability Version Failure Reliability
1 2 0,999998 15 0 1,000000
2 0 1,000000 16 62 0,999938
3 2297 0,997703 17 269 0,999731
4 0 1,000000 18 115 0,999885
5 0 1,000000 19 264 0,999736
6 1149 0,998851 20 936 0,999064

438

Pa3zden 1. Mngopmamuka, 8bl4ucAuUMenbHAs MeXHUKA U YNpasJieHue

Version Failure Reliability Version Failure Reliability
7 71 0,999929 21 92 0,999908
8 323 0,999677 22 9656 0,990344
9 53 0,999947 23 80 0,999920
10 0 1,000000 24 260 0,999740
11 554 0,999446 25 97 0,999903
12 427 0,999573 26 883 0,999117
13 4 0,999996 27 0 1,000000

There are two options for approaching the generation of the proposed program versions:

— directly writing programs manually, as was done in [19];

—modeling of software versions based on mathematical models .

Since given specific parameters software versions are expected to be largely similar if not identical,
the involvement of human resources for their creation cannot be considered advisable. In this regard
the optimal solution should be the use of a mathematical model for the formation of subse-
quent versions of a given software. Thus, we created a reference version of the program,
which was then reproduced 49 times using the mathematical methods presented below.

To implement the objectives of this article we consider the MV A model using the example MVA
structural sub model. This approach was shown for the first time in [22] and is of particular in-
terest because it includes the basic principles of MV A within the framework of software reli-
ability theory. Within this method, it is possible to combine functional and temporary failures into a
single value. This allows you to build an analytical model based on both functional and performance
failures. In the MV A sub model, time is considered as a constant value and is measured from the mo-
ment of running multi versions of the program. For this model the following assumptions have been
made:

— software versions are conditionally independent of each other in a given input ;

— failure times of software versions for a given input are represented by equally common random
variables with probability density f- (#; V) depending on d dimension vector of the parameter
V=(Vyy ey Vi)

— execution times of software versions for a given input represent uniformly distributed variables
with probability density f; (1, ¥) depending on b dimension vector of the parameter
V= (\Vla oeey \Vb);

— the execution time of the voting algorithm is negligible compared to the time required to imple-
ment each version ;

— due to the real time constraint, the system must perform correct decisions in the time interval
t>0.

Next, we present a modified version of the MVA implementation in a given subsystem based on
[22]. The distribution function F(¢; V) gives the probability of failure of the first version of the pro-
gram up to ¢, taking into account the failure of functionality. In this case the probability that the first
version has a functional failure is

P, (r;v,\v):f Fr ()t (s y)de (1)
0
Next we assume that each version produces the correct result before T :
P(x; v, w) = [[1= F (5 V5 (5 wt. @)
0

In this case, a system performance failure, as well as a temporary failure, occurs if none of the ver-

sions are completed before a given time T :

439

Cubupckuil aspoxocmuueckuil scypHan. Tom 24, N2 3

P (ty)=1- f Je@w)dt =1-Fy(t:y). 3)

Next, we will consider a model with multi versions of the program. The temporary failure MVA of
the system is (n =2m — 1) for a given input in the event that most versions do not output processed

data (finish their operation) during =T
z n n n—n
Pr(ty)=), (n mef (G W -F(uy] ™. (4)
ny=m\""3

In case the majority of versions completed on time (before 1), there is a high probability of func-
tional failure of the entire system (most of the results are erroneous):

< n n n—n
Py(tv,9)= (”2 JPﬁ (T v, W= Pr (v,)], (5)
ny=m
On the contrary, most of the results are correct (multi versions ran successfully):
C n ny n—nj
Po(tv,y)= D | |P(n v, W= P v, w)]" . 6)
ny=m 1

Finally, equation (7) shows the absence of both the majority of positive and the majority of nega-
tive results :

B (G v, W) = 1= Fp (1 9) = B (1, v,) = P (T v,). (7)

Processing telemetry information from small nanosatellites

Telemetry data transmitted to the ground control complex (GCU) can be in various formats, includ-
ing texts, images, audio and video files.

Telemetry systems consist of the following elements:

1. Data collection system.

2. One of the following multiplex systems:

— separated by frequency (frequency multiplexing);

— time-separated (discrete, time multiplexing);

— hybrid systems, which are a combination of systems separated by frequency and time.

3. Modulator, transmitter, antenna.

4. Wave-forming and transmitting communication channel .

5. Antenna, RF receiver, intermediate frequency section, signal demodulator .

6. Demultiplexing system for frequency and time systems, as well as their hybrids .

7. Data processing system [23].

The first six elements presented are responsible for collecting various physical data, converting it
into an electronic signal, and then converting it into various frequencies, taking into account sampling
for the purpose of transmitting it. Transmission signal frequencies typically fall within two ranges:
1435-1535 MHz and 2200-2290 MHz. Without dwelling in detail on the wave formation system, let
us consider the fifth, sixth and seventh elements of the presented system. They consist of hardware
responsible for receiving signals from the spacecraft, as well as hardware and software that carry out
subsequent processing of data and their conversion into design formats. The demultiplex subsystem
ensures the separation of frequency and discrete signals and their direction from individual sensors
into the correct channels, after which the data can be displayed, recorded and further processed.

Let us turn to the problems that arise at the stage of processing telemetry information. Due to the
nature of their activities, spacecrafts must provide compact, undistorted and accessible data libraries in
the shortest possible time period. In this regard, one of the main problems is the limited bandwidth

440

Pa3zden 1. Mngopmamuka, 8bl4ucAuUMenbHAs MeXHUKA U YNpasJieHue

available for transmitting telemetry data. The available bandwidth is limited by the capacity of the
communication system and the distance between the spacecraft and the ground station. This limited
bandwidth poses a challenge for processing and analyzing telemetry data in real time.

Another challenge is the complexity of the telemetry data architecture. Telemetry data from a
spacecraft usually consists of a large number of parameters, each having its own range of values and
units of measurement. Analyzing these data requires specialized knowledge and experience that may
not always be available.

Finally there is the risk of data loss or corruption during transmission. In some cases telemetry data
may be lost or damaged during transmission due to interference or other factors. This may result in
incomplete or inaccurate data, which can affect the analysis and decision-making process.

Processing spacecraft telemetry data is one of the most challenging tasks in the field of space data
processing. Spacecraft telemetry data formats are complex and varied, and data format definitions vary
among spacecraft platforms. Common data formats include PCM frame format, packet format, mixed
frame format, cycle count frame format, and so on. With the advent of the new platform, the number
of formats is constantly increasing. Spacecraft telemetry data formats have a number of complex char-
acteristics: the formats have hierarchical and nested structures that must be processed in cross-frames;
formats have complex parameter dependencies. The spacecraft telemetry data processing model of the
existing mission data processing software is based on the “Frame — Field” structure. Different frame
formats are described by different methods for processing telemetry frames, and each field in the
frame format describes the format of a specific parameter. This model has the following problems:

1. The descriptive ability of the method for processing one telemetry frame is limited, which does
not allow adaptation to the characteristic: the formats have a hierarchical and nested structure that
must be processed cross-frames.

2. Complex dependencies between parameters cannot be described effectively.

3. The versatility and scalability of the model are poor. A new change (even a small change) in the
data format leads to a restructuring of the frame processing method, which means frequent changes to
the program code.

Thus, the existing model for processing spacecraft telemetry data, based on the “Frame-Field”
structure, is difficult to adapt to the real situation of frequent changes in spacecraft telemetry data for-
mats, especially during high-frequency flights. It is necessary to develop a new model for processing
spacecraft telemetry data, which has greater expressiveness, greater versatility and scalability and
solves the above problems [24].

The key differences between telemetry data obtained from nanosatellites, in contrast to standard
spacecraft, include the conditions for their generation: for example, large devices are able to accom-
modate a larger number of components that provide system redundancy, thereby increasing its fault
tolerance in an aggressive space environment (to in particular, ionizing radiation) [25].

Early samples (first generation) of specialized software for nanosatellites include the PolySat soft-
ware architecture for CP series devices. The highly resilient hardware platform was built primarily
using redundant components; their relative low cost and low power consumption made it possible to
build a system with a high degree of redundancy. Fig. 1 shows the spacecraft hardware design.

The designed spacecraft operated in three modes: preparatory (pre-ops), normal (normal-ops) and
emergency (contingency). In this case, the choice of mode for communication and the command and
data controller (C&DH) is carried out independently. The latter is responsible both for various aspects
of the system’s operation and for the collection, processing and transmission of telemetry [25-27].
Data collected from three satellites in the constellation was collected and stored in an I°C serial asym-
metric bus in an electrically erasable flash memory. The memory capacity was no more than 256 kB,
which significantly limited the operational characteristics of the nanosatellites. The second generation
of software is built on Linux; thus, the author of [25] offers his own version of a software package for
receiving and processing telemetry.

441

Cubupckuil aspoxocmuueckuil scypHan. Tom 24, N2 3

EEPROM

EEPROM

I

RF switch

N Comm .
GPIO £ processor TxRx
C&DH)
e ’C
processor
T Comm TxRx
oro — processor
GPIO
N
Payload

(@)

Puc. 1. IIpumep annapaTHON OIOK-CXEMbI PE3€PBUPOBAHHS KOMMYHHUKAIIMOHHON CUCTEMBbI

Fig. 1. Example of hardware block diagram of redundant communication system

In our case, telemetry information received from ReshU-1 is stored in log files (log files; CSV
extension) with all data frames (Fig. 2-3). Moreover, the frames for each team are different. The data
is parsed by a parser and then stored in the laboratory database. Log files are a common format for this
type of information, such as TMI. Modern measurement information systems are capable of generat-
ing constant streams of this file format, providing information about the operation and state of the

system.

Integration of a multi-version approach into the telemetry processing

One of the important steps is the integration of a multi-version approach into the telemetry process-
ing system. This involves creating a framework that can handle multiple versions of an algorithm and
determine the final result based on a consensus of versions. The system must also be designed to han-
dle any errors or inconsistencies that may arise during the processing of telemetry data .

{

radio: {

name: “"gr-satnogs",

version: "v2.3-compat-xox-v2.3.4.0",

parameters: {
soapy-rx-device: “"driver=rtlsdr”,
samp-rate-rx: "2.048e6",

}
¥

rx-freq: "435330000",

file-path: “/tmp/.satnogs/data/receiving_satnogs_8181264_2023-88-31T22-36-08.out",

waterfall-file-path:

decoded-data-file-path:

doppler-correction-per-sec: null,

lo-offset: null,
ppm: null,
rigetl-port: "45327,

gain-mode: "Overall”,

gain: "22.9%,
antenna: “RX",
dev-args: null,
stream-args: null,
tune-args: null,

other-settings: null,

dc-removal: null,
bb-freq: null,

buw: null,
enable-ig-dump: 8",
ig-file-path: null,
udp-dump-host: null,

udp-dump-port: 57356,

wpm: null,
baudrate: "1920@",
framing: “ax25"

latitude: 38.048,

longitude: 23.739,
elevation: 104,
frequency: 435380000

*/tmp/.satnogs/data/receiving_waterfall_§101204_2023-08-31T22-36-08.
“/tmp/.satnogs/data/data_s8l@12e4",

Puc. 2. [Ipumep 3anucu merananHbix ¢ MKA ReshU-1

Fig. 2. ReshU-1 CubeSat metadata sample

442

Pa3zden 1. Mngopmamuka, 8bl4ucAuUMenbHAs MeXHUKA U YNpasJieHue

Time (seconds)
Power (dB)

—=30 =20 -10 [} 10 20 30
Frequency (kHz)

Puc. 3. Yuactok cnekrporpammsel cursana renemerpud MKA ReshU-1

Fig. 3. ReshU-1 CubeSat telemetry signal spectrogram

Integrating a multi-version approach into telemetry processing has several advantages. Firstly, it
improves the reliability and accuracy of telemetry data by reducing the likelihood of errors or incon-
sistencies. Secondly, the amount of data that needs to be transmitted to the ground is reduced, since

only the final result, which is determined by version consensus, is transmitted. This can lead to signifi-
cant cost savings and increased efficiency

Fig. 4 presents an algorithm for ranking telemetric information

443

Cubupckuil aspoxocmuueckuil scypHan. Tom 24, N2 3

Receiving telemetry data
value = {vy,...,vi}

T

Data filtering

All data is filtered? yes| Data compression

¥

Data normalization

v

Time reference data

v

Setting threshold values for each
telemetry parameter
thresholds = {ty,...,t}

v

Setting weighting coefficients for each
telemetry parameter
weights = {wy,...,wi}
|

Checking
whether the parameter
value increases the threshold
value?
valueli] > t[i]?

yes

rank(i] = d-+wfi]

rank(i] = w[i]

Is there still data
that needs to be
processed

Descending order ranking
rank(i]

'

Generating a file with the
result telemetry_data.csv ¢

v

Puc. 4. Anroputm paHKUpOBaHuUs TeneMeTpuueckor nHdopmarmu, nocrynatomiein c MKA

Fig. 4. Algorithm for ranking CubeSat telemetry

The telemetry data of a spacecraft ranking process involves the following steps:

1. Collecting of telemetry data from small spacecraft (other spacecraft).

2. Pre-processing of data in order to filter out irrelevant or noisy information.

3. Applying a compression algorithm to reduce data size and improve transmission efficiency.
4. Use on-board data processing to analyze and extract features from data.

5. Implementing a machine learning model to identify patterns and anomalies in the data.

444

Pa3zden 1. Mngopmamuka, 8bl4ucAuUMenbHAs MeXHUKA U YNpasJieHue

6. Developing a rating system based on the priorities of each piece of information.

7. Applying a multi-version approach by developing several versions of the algorithm with differ-
ent parameters and configurations (Fig. 5).

8. Testing each version of the algorithm on a representative set of telemetry data.

9. Using a rating system to rank the performance of each version algorithm.

10. Selecting of the algorithm with the best performance for each set of telemetry data.

I
y

Uploading a file with telemetry data
telemetry_data.csv

1

Creating a thread for each version:
algorithm = algorithm_version[1], ..., algorithm_version[n]
y

Starting threads
algorithm_version[1], ..., algorithm_version[n]

1

Data processing
algorithm_version[1], ..., algorithm_version[n]

!

Termination of threads
algorithm_version[1], ..., algorithm_version[n]

!

Execution time calculation
algorithm_version[1], ..., algorithm_version[n]

l

Receiving and saving processing results

Results algorithm_1 >
Results algorithm_2 ... Results
algorithm_1 > Results
algorithm_n

1yes

Solution -
algorithm 1

Results algorithm_2 > Results

ye algorithm_1 ... Results algorithm_2 >
r Results algorithm_n
Solution -
algorithm 2

Results algorithm_3 > Results
algorithm_1 ... Results algorithm_3 >
Results algorithm_n

no—v

All versions of the
algorithm have the same|
efficiency

i Output of results |<—

Puc. 5. BBeeHne MyJbTHBEPCHOHHOTO MOJIX0/1a B MpolLiecc 00paboTKu TenemeTprueckoi nHdGopmarmu ¢ MKA

res
Solution -
algorithm 3

Fig. 5. The N-version approach for processing CubeSat telemetry

The ranking algorithm must be flexible and adaptable to different types of telemetry data and proc-
essing methods. It should also be able to process data in real time and update the ranking as new data

445

Cubupckuil aspoxocmuueckuil scypHan. Tom 24, N2 3

becomes available. Using the MVP approach and ranking system, the algorithm can improve the reli-
ability and accuracy of processing telemetry information from spacecratft.

Multiversion of software for processing telemetry data is a natural course of evolution of these sys-
tems. At the same time, the construction of multiversions can be implemented not only within various
programming languages, but also in various operating environments, for example Linux.

An important factor contributing to the promotion of Unix platforms to achieve the goals set within
the MVP is their accessibility to a wide range of programmers, the availability of open source code
and free libraries.

An analysis of the software used in existing nanosatellites has shown that the software architecture
of most of the devices is built on the principle of multi-layering, which allows us to propose the intro-
duction of MVP into the components of the software architecture. In the case of the American nanosa-
tellite platform KubOS, multiversion is already built into the concept of its architecture, which uses a
combination of two operating systems Linux and U-boot, which perform duplicate functions, thereby
creating software redundancy. This approach, which goes beyond the traditional MVP approach,
which involves only creating duplicate versions of essentially the same program, suggests the use of
conceptually different software as multiversions.

Conclusion

The main problems of reliability formation and characteristic features of software for fault-tolerant
control systems are considered. Descriptions of the causes of software failures and methods for ensur-
ing fault tolerance are provided. It is shown that one of the main tasks in the development of small
spacecraft control software is the creation of such algorithms and software development methods that
can ensure the stability of the entire system against failures .

By applying the methodology of multi-version software development, it is possible not only to en-
sure a given level of reliability, but also to guarantee the fault tolerance of control and information
processing systems. This methodology is based on software redundancy, the introduction of which can
significantly increase the level of reliability of the software component .

bubauorpadpuueckue ccblIKU

1. Troger P. Dependable Systems Software Dependability. 2010.

2. Avizienis A. The methodology of n-version programming //Software Fault Tolerance. 1995.
Vol. 3. P. 23-46.

3. Hatton L. N-version design versus one good version // IEEE Software. 1997. Vol. 14, Ne. 6. P. 71-76.

4. Iapes P. 10. Cpena ucnoiaHeHHST MYyJIbTHBEPCHOHHOTO MporpaMMHOT0 obecrneuenus // Ilpo-
rpaMMHbIe TPOAYKTHI U cucTembl. 2007. Ne 2. C. 29-30.

5. Solving navigation-temporal tasks in different coordinate systems / V. E. Chebotarev, V. V. Bre-
zitskaya, 1. V. Kovalev et al. // IOP Conference Series: Materials Science and Engineering. 2018.
P. 022029.

6. Development of methods for equivalent transformation of gert networks for application in multi-
version software / M. V. Saramud, P. V. Zelenkov, 1. V. Kovalev et al. // IOP Conference Series: Ma-
terials Science and Engineering. 2016. P. 012015.

7. Applying filtering for determining the angular orientation of spinning objects during interfer-
ence / I. N. Kartsan, A. E. Goncharov, P. V. Zelenkov et al. // IOP Conference Series: Materials Sci-
ence and Engineering. 2016. P. 012020.

8. Kapman U. H., Eppemosa C. B. MyIsTHBEpCHOHHAS. MOJICTH ITPOTPAMMHOTO 00ECITEUEHUS CHC-
TEM YIpaBlIeHUs] KOCMUYECKIM allapaToM ¢ paHKHPOBaHWEM MPHUHATHA pemeHus // CuOupckuid as-
pokocMmuueckuit xxypHai. 2021. T. 22, Ne 1. C. 32-46.

9. DddexkruBHOCTh pagnoHaBuranuonHbeix cuctem / M. H. Kapman, K. I'. Oxotkun, P. B. Kapmas,
J. H. ITaxopykos // Bectank Cu6l'Y. 2013. Ne 3 (49). C. 48-50.

446

Pa3zden 1. Mngopmamuka, 8bl4ucAuUMenbHAs MeXHUKA U YNpasJieHue

10. Kapuan M. H. HazemHbIi1 KOMIUIEKC yIIpaBiIeHUs A1 MaJIbIX KOCMHYECKHX ammapaToB // Bect-
HUK Cuol'Y. 2009. Ne 3 (24). C. 89-92.

11. Kosanes 1. B., Llapes P. FO. MuoroarpubyTrBHas MoAeab GOPMUPOBAHHS FaApaHTOCIIOCOOHO-
ro Habopa MPOEKTOB MYJIbTUBEPCHOHHBIX Hporpammubix cuctem // Becthmk HUU CYBIIT. 2001.
Bpim. 7. C. 129-137.

12. Kapman U. H., Ebpemona C. B., I'oposoii /. C. [Ipumenenne nporeayps! topsis B HHTepecax
ONTHMU3ALNU CHCTEMBI yIpaBiieHHs // Bompockl KOHTPOIS XO3IHCTBEHHON AESTEIHHOCTH U (prHaH-
COBOTO ayauTa, HAIIMOHAIHFHON 0€30MacHOCTH, CUCTEMHOTO aHaINW3a W yIpaBJlieHHs : cO. MaTepraioB
VI Beepocc. Hay4d.-tipakT. KoHG. M., 2021. C. 436-445.

13. Efremova S. V., Kartsan 1. N., Zhukov A. O. An ordered ranking multi-attributive model for
decision-making systems with attributes of control systems software // IOP Conference Series: Materi-
als Science and Engineering. 2021. P. 12068.

14. The hardware and software implementation of the adaptive platform for an onboard spacecraft
control system / [. N. Kartsan, A. O. Zhukov, A. O. Platonov, S. V. Efremova // Journal of Physics:
Conference Series. 2019. P. 33071.

15. Formation of optimal composition of the modules of single-function multiversion software for
automated control system of the satellite communication system / V. I. Kudymov, V. V. Brezitskaya,
P. V. Zelenkov et al. // IOP Conference Series: Materials Science and Engineering, 2018. No. 450 (5).
P. 052009.

16. Choice of optimal multiversion software for a small satellite ground-based control and com-
mand complex / I. N. Kartsan, S. V. Efremova, V. V. Khrapunova, M. 1. Tolstopiatov // IOP Confer-
ence Series: Materials Science and Engineering, 2018. No. 450 (2). P. 022015.

17. Kapmaa U. H. MynsTUBEpCHOHHOE IPOTPpaMMHOE 00ecTIieueHHe OOPTOBOT'O KOMIUIEKCa YIIPaB-
JIEHUS ¢ TEHETHYECKUM alropuTMoM // PemeTHeBckue dreHus : Matepuaisl X X1 MexmayHap. Hayd.-
npakT. koH(. (08—11 HOs6ps 2017, 1. KpacHosipck). KpacHospck : Cubl'Y um. M.®D. Pemernena,
2017.T. 1. C. 372-373.

18. Subasi N., Guner U., Ustolgu I. N-version programming approach with implicit safety guaran-
tee for complex dynamic system stabilization applications // Measurement and Control. 2021. Vol.
54(3-4). P. 269-278.

19. Knight J., Leveson N. A large scale experiment in N-version programming // Proc. Of Ninth
Annual Software Engineering Workshop. 1984.

20. Spatial filtering algorithms in adaptive multi-beam hybrid reflector antennas / V. N. Tyapkin,
I. N. Kartsan, D. D. Dmitriev, A. E. Goncharov // 2015 International Siberian Conference on Control
and Communications, SIBCON 2015 — Proceedings. 2015. P. 7147244.

21. Phase methods for measuring the spatial orientation of objects using satellite navigation
equipment / Y. L. Fateev, D. D. Dmitriev, V. N. Tyapkin et al. / IOP Conference Series: Materials
Science and Engineering. 2015. P. 012022.

22. Goseva-Popstojanova K., Grnarov A. Performability and reliability modeling of n version fault
tolerant software in real time systems / EUROMICRO 97. Proceedings of the 23rd EUROMICRO
Conference: New Frontiers of Information Technology (Cat. No. 97TB100167). IEEE, 1997. P. 532-539.

23. Carden F., Jedlicka R., Henry R. Telemetry Systems Engineering. Boston and London: Artech
House, 2002.

24. Bin S., Hua W., Yu-jie Y., Hui-fen D., Juan Z. A universal spacecraft telemetry data process-
ing model based on MCP // 2nd IEEE International Conference on Computational Intelligence and
Applications (ICCIA). Beijing, China, 2017. P. 12—15.

25. Manyak G. Fault tolerant and flexible cubesat software architecture. California Polytechnic
State University, 2011.

26. Kapman U. H., Ckpumaues B. O. Ontumuzanus 0TKa30yCTOHYHBOrO MPOTPaMMHOTO oOecte-
yeHUs // BOTpOCHI KOHTPOJIA XO3HCTBEHHOH JEATEIHPHOCTH W (DMHAHCOBOTO ayAWTa, HallHOHAIBHOU

447

Cubupckuil aspoxocmuueckuil scypHan. Tom 24, N2 3

0e30MacHOCTH, CUCTEMHOI'0 aHaIKM3a W ynpaeieHus: ¢0. maTepuanoB V Beepocc. Hayy.-ipakT. KOH.
2020. C. 337-341.

27. Kapacesa M. B., Kapuan U. H., 3enenkor II. B. MeronouckoBass MyJIbTHIMHIBUCTHYECKAS
cuctema // Bectauk Cubl'Y. 2007. Ne 3 (16), C. 69-70.

References

1. Troger P. Dependable Systems Software Dependability. 2010.

2. Avizienis A. The methodology of n-version programming. Software Fault Tolerance. 1995, Vol.
3, P. 23-4e.

3. Hatton L. N-version design versus one good version. I[EEE Software. 1997, Vol. 14, No. 6,
P. 71-76.

4. Tsarev R. Tu. [Multiversion software execution environment]. Programmnye product i sisyemy.
2007, No 2, P. 29-30 (In Russ.).

5. Chebotarev V. E., Brezitskaya V. V., Kovalev L. V., Kartsan I. N., Malanina Y. N., Shemyakov
A. O. Solving navigation-temporal tasks in different coordinate systems. /OP Conference Series:
Materials Science and Engineering. 2018, P. 022029.

6. Saramud M. V., Zelenkov P. V., Kovalev I. V., Kovalev D. 1., Kartsan I. N. Development of me-
thods for equivalent transformation of gert networks for application in multi-version software. /OP
Conference Series: Materials Science and Engineering. 2016, P. 012015.

7. Kartsan 1. N., Goncharov A. E., Zelenkov P. V., Kovalev 1. V., Fateev Y. L., Tyapkin V. N.,
Dmitriev D. D. Applying filtering for determining the angular orientation of spinning objects during
interference. /OP Conference Series: Materials Science and Engineering. 2016, P. 012020.

8. Kartsan I. N., Efremova S. V. [Multiversion model of software control systems for space vehi-
cles with range of decision-making]. Siberian Aerospace Journal. 2021, No 1 (22), P. 3246 (In
Russ.).

9. Kartsan I. N., Okhotkin K. G., Kartsan R. V., Pakhorukov D. N. [Effectiveness of radio-
navigation systems]. Vestnik SibGAU. 2013, No. 3 (49), P. 48-50 (In Russ.).

10. Kartsan 1. N. [Land control complex for small space vehicles]. Vestnik SibGAU. 2009,
No 3 (24), P. 89-92.

11. Kovalev I. V., Tsarev R. Yu. [A multi-attribute model for building redundant N-version soft-
ware systems). Vestnik NIl SUVPT. 2007, No 7, P. 129-137.

12. Kartsan 1. N., Efremova S. V., Gorovoi D. S. [Applying the topsis approach for optimizing
control systems] Sbornik materialov VI Vserossiyskoy nauchno-prakticheskoy konferentsii “Voprosy
kontrolya khozyaystvennoy deyatel’nosti i finansovogo audita, natsional'noy bezopasnosti, sistemnogo
analiza i upravleniya” [Collection of materials of the VI All-Russian Scientific and Practical Confer-
ence “In the collection: Issues of control of economic activity and financial audit, national security,
system analysis and management”]. Moscow, 2021, P. 436—445.

13. Efremova S. V., Kartsan 1. N., Zhukov A. O. An ordered ranking multi-attributive model for
decision-making systems with attributes of control systems software. IOP Conference Series:
Materials Science and Engineering. 2021, P. 12068.

14. Kartsan I. N., Zhukov A. O., Platonov A. O., Efremova S. V. The hardware and software im-
plementation of the adaptive platform for an onboard spacecraft control system. Journal of Physics:
Conference Series. 2019, P. 33071.

15. Kudymov V. L., Brezitskaya V. V., Zelenkov P. V., Kartsan I. N., Malanina Yu. N. Formation
of optimal composition of the modules of single-function multiversion software for automated control
system of the satellite communication system. [OP Conference Series: Materials Science and
Engineering. 2018, No. 450 (5), P. 052009.

16. Kartsan 1. N., Efremova S. V., Khrapunova V. V., Tolstopiatov M. 1. Choice of optimal mul-
tiversion software for a small satellite ground-based control and command complex. IOP Conference
Series: Materials Science and Engineering. 2018, No. 450 (2), P. 022015.

448

Pa3zden 1. Mngopmamuka, 8bl4ucAuUMenbHAs MeXHUKA U YNpasJieHue

17. Kartsan 1. N. [The multiversion software of the onboard control complex with genetic algo-
rithm] Materialy XXI Mezhdunar. nauch. konf. “Reshetnevskie chteniya” [Materials XXI Intern. Sci-
entific. Conf “Reshetnev reading”]. Krasnoyarsk, 2017, P. 372-373 (In Russ.).

18. Subasi N., Guner U., Ustolgu I. N-version programming approach with implicit safety guaran-
tee for complex dynamic system stabilization applications. Measurement and Control. 2021, Vol.
54(3-4), P. 269-278.

19. Knight J., Leveson N. A large scale experiment in N-version programming. Proc. Of Ninth
Annual Software Engineering Workshop. 1984.

20. Tyapkin V. N., Kartsan 1. N., Dmitriev D. D., Goncharov A. E. Spatial filtering algorithms in
adaptive multi-beam hybrid reflector antennas. 2015 International Siberian Conference on Control
and Communications, SIBCON 2015 — Proceedings. 2015, P. 7147244,

21. Fateev Y. L., Dmitriev D. D., Tyapkin V. N., Kartsan 1. N., Goncharov A. E. Phase methods
for measuring the spatial orientation of objects using satellite navigation equipment. /OP Conference
Series: Materials Science and Engineering. 2015, P. 012022,

22. Goseva-Popstojanova K., Grnarov A. Performability and reliability modeling of n version fault
tolerant software in real time systems. EUROMICRO 97. Proceedings of the 23rd EUROMICRO Con-
ference: New Frontiers of Information Technology (Cat. No. 97TB100167). IEEE, 1997, P. 532-539.

23. Carden F., Jedlicka R., Henry R. Telemetry Systems Engineering. Boston and London: Artech
House, 2002.

24. Bin S., Hua W., Yu-jie Y., Hui-fen D., Juan Z. A universal spacecraft telemetry data processing
model based on MCP. 2nd IEEE International Conference on Computational Intelligence and Appli-
cations (ICCIA). Beijing, China, 2017, P. 12-15. DOI: 10.1109/CIAPP.2017.8167051.

25. Manyak G. Fault tolerant and flexible cubesat software architecture. California Polytechnic
State University, 2011.

26. Kartsan I. N., Skripachev V. O. Optimizatsiya otkazoustoychivogo programmnogo obe-
specheniya [Optimizing fault-tolerant software]. Shornik materialov V Vserossiyskoy nauchno-
prakticheskoy konferentsii “Voprosy kontrolya khozyaystvennoy deyatel’nosti i finansovogo audita,
natsional'noy bezopasnosti, sistemnogo analiza i upravleniya” [Collection of materials of the VI All-
Russian Scientific and Practical Conference “Issues of control of economic activity and financial au-
dit, national security, system analysis and management”]. Moscow, 2020, P. 337-341.

27. Karaseva M. V., Kartsan I. N., Zelenkov P. V. [Meta-search multi-linguistic system]. Vestnik
SibGAU. 2007, No. 3 (16), P. 69-70 (In Russ.).

© Efremova S. V., 2023

EdpemoBa Ceersiana BiaagumupoBHa — Beaymuii crnienuanuct, CHOMPCKUI TOCYyIapCTBEHHBIH YHHUBEPCHTET
HayKH U TexHoJsorui umenu axkanemuka M. @. PemerneBa. E-mail: efremova_svet@sibsau.ru.

Efremova Svetlana Vladimirovna — Leading Specialist, Reshetnev Siberian State University of Science and
Technology. E-mail: efremova_svet@sibsau.ru.

