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Software is a key element that ensures the functioning of any modern complex technical system. One
such system is the constellation of spacecraft and associated ground control complexes that provide recep-
tion, transmission, and processing of collected telemetry. The process of data acquisition and its subse-
quent processing is critical to the flight control of the spacecraft and its onboard scientific equipment. Fur-
thermore, telemetry data processed by ground control systems involves large volumes of raw data, the
processing of which is a complicated and time-consuming task. In order to solve this problem, various me-
thods of automatic data processing are used. Improving them is a key factor in ensuring the fault tolerance
of onboard software and hardware, improving its reliability.

Of all the existing widely-used methods of data processing, we shall focus on N-version programming
(NVP) approach.

N-version programming has firmly established itself as an effective method for increasing software reli-
ability and designing fault-tolerant systems. Since its inception in the 1970s, this approach has been deeply
connected with the development of aerospace software systems, including, among others, satellite ground
control stations. In light of the aforementioned, this paper discusses the application of NVP for processing
telemetry data gathered from nanosatellites (CubeSats). Due to the fact that there exists a skeptical view on
the NVP approach in terms of its efficiency, the author covers this issue in existing literature in terms of the
approach’s applicability for processing satellite telemetry.

Keywords: multiversion (N-version) programming, software redundancy, nanosatellite (CubeSat), te-
lemetry, software reliability.

Introduction

The key technical challenge in the field of software creation is increasing its reliability in terms of
fault tolerance. Among the existing methods built on the principle of software components redun-
dancy, the multi version approach (MVA) occupies a special place, mainly due to the periodic emer-
gence and fading of interest in it in the scientific literature. The multi-version approach, also known as
N-version, was first proposed to solve the problem of increasing software reliability in the early 70s.
XX century. It should be noted that a number of foreign researchers consider N-version programming
only as one of the variants of MVA [1], while in most papers these definitions are synonymous. Over
the next two decades, this method received theoretical development, mainly in the work of a group of
American researchers led by A. Avizhenis and his graduate students at California State University [2].
The main fundamental principles of this approach were formed, reflected in the expression N > 2,
meaning that if the number of program versions is more than or equal to two, the system is multi-
versioned. Despite the abundance of publications by A. Avizhenis and his colleagues during the 1970s
— early 2000s, as well as the language of these works is, in our opinion, rather complex, the basic prin-
ciples of MVA are simple. Independent development teams are expected to create two or more ver-
sions of the same program within given specifications. Running these programs (multi-versions) helps
to identify patterns of software errors and failures, thereby allowing you to select the optimal version
of the program. Within the framework of the classical MV A, three main elements are distinguished:

1. The initial specification process and N-version programming are designed to ensure the inde-
pendence and functional equivalence of N number of independent software development attempts .

2. The final product (program) created within the framework of the profit center approach and hav-
ing attributes of parallel execution with certain cross-points and comparison vectors for decision mak-
ing .

3. The environment that ensures the implementation of the MVA program provides deci-
sion-making algorithms at given cross points [2].

The concept of diversification or variety of software design is introduced, but the difference be-
tween multi-channel, redundant software and multi-version methods is emphasized. The idea of using
a system with # parallel channels and a voting algorithm assumes that independent failures occur with-
in individual versions or software modules and do not affect the system as a whole.

The principle of using n parallel channels with a voting algorithm is a traditional method
for increasing the reliability of both hardware and software of a technical system. In this case, the ra-
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tionale for the MV A with n versions of programs (software modules) embedded in it lies in the follow-
ing postulates [3]:

— channels remain independent of each other in all cases ;

— software glitches always lead to disagreement between duplicate channels ;

— if the voting algorithm is functioning correctly, the probability that at least two channels (N > 2)
out of the total number n corresponds

pm=22)=1-p(m=1)-p(m=0)

where m is the number of matching channels; p is the probability of failure of any of them upon input
signal. The probability of a system error in this case will be

1-p(m=2)=p(m=0)+p(m=1)=p" +n(l-p)p"".

Thus the use of multi-version diversification leads to a certain improvement within one program
channel:

2 B 1
P n(l-mp""  p"4n(-p)p -

In the last decade the MV A has been developed in the works of a number of domestic and foreign
researchers [4—18]. Thus in work [18] the use of this approach for creating fault-tolerant software for
dynamic systems (unmanned aerial vehicles) is considered. It should be noted that the use of MVP in
the design of aviation software was declared in the early stages as the main area of successful applica-
tion of this method [1; 18]. However, this use of profit center, in a sense, contradicts the classical con-
cept of profit center (described by A. Avizhenis in his “Methodology” [2]), which is built around the
software design process, and not its subsequent operation .

The problem of MV A usage

After MV A first arose, it was not criticized by the scientific community for a long time, mainly due
to its theoretical significance. Despite the abundance of scientific literature on the topic of using MVA
for processing various categories and types of data, the methodology for implementing this method is
extremely poorly covered. In this regard, the above-mentioned study [19—21] compares favorably. The
authors of the work describe in detail the entire algorithm for organizing an experiment to test the
MVA method for analyzing data obtained from the conditions specified within the experiment. This
study is especially important for us because the authors concluded that MVA is ineffective (although
they point out that this conclusion is only valid within the framework of the experiment they con-
ducted). We decided to repeat this experiment with changing parameters in terms of data type and vol-
ume.

Now we turn to the description of the experiment. The programs used in the experiment, according
to the conditions, were written in the Pascal programming language. Due to the fact that this language
can be considered outdated, we decided to write programs in the more modern Python language (or
C++). The authors of the experiment proposed 27 versions of the same program, written by teams of
programmers independent of each other. One version — the 28th — was defined as the “reference” and
was used to calibrate the remaining versions. In this work, the number of program versions was in-
creased to 50 (see table).

Data on multiversion failures from the results of the Knight and Levison experiment

Version Failure Reliability Version Failure Reliability
1 2 0,999998 15 0 1,000000
2 0 1,000000 16 62 0,999938
3 2297 0,997703 17 269 0,999731
4 0 1,000000 18 115 0,999885
5 0 1,000000 19 264 0,999736
6 1149 0,998851 20 936 0,999064
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Version Failure Reliability Version Failure Reliability
7 71 0,999929 21 92 0,999908
8 323 0,999677 22 9656 0,990344
9 53 0,999947 23 80 0,999920
10 0 1,000000 24 260 0,999740
11 554 0,999446 25 97 0,999903
12 427 0,999573 26 883 0,999117
13 4 0,999996 27 0 1,000000

There are two options for approaching the generation of the proposed program versions:

— directly writing programs manually, as was done in [19];

—modeling of software versions based on mathematical models .

Since given specific parameters software versions are expected to be largely similar if not identical,
the involvement of human resources for their creation cannot be considered advisable. In this regard
the optimal solution should be the use of a mathematical model for the formation of subse-
quent versions of a given software. Thus, we created a reference version of the program,
which was then reproduced 49 times using the mathematical methods presented below.

To implement the objectives of this article we consider the MV A model using the example MVA
structural sub model. This approach was shown for the first time in [22] and is of particular in-
terest because it includes the basic principles of MV A within the framework of software reli-
ability theory. Within this method, it is possible to combine functional and temporary failures into a
single value. This allows you to build an analytical model based on both functional and performance
failures. In the MV A sub model, time is considered as a constant value and is measured from the mo-
ment of running multi versions of the program. For this model the following assumptions have been
made:

— software versions are conditionally independent of each other in a given input ;

— failure times of software versions for a given input are represented by equally common random
variables with probability density f- (#; V) depending on d dimension vector of the parameter
V=(Vyy ey Vi)

— execution times of software versions for a given input represent uniformly distributed variables
with probability density f; (1, ¥) depending on b dimension vector of the parameter
V= (\Vla oeey \Vb);

— the execution time of the voting algorithm is negligible compared to the time required to imple-
ment each version ;

— due to the real time constraint, the system must perform correct decisions in the time interval
t>0.

Next, we present a modified version of the MVA implementation in a given subsystem based on
[22]. The distribution function F(¢; V) gives the probability of failure of the first version of the pro-
gram up to ¢, taking into account the failure of functionality. In this case the probability that the first
version has a functional failure is

P, (r;v,\v):f Fr ()t (s y)de (1)
0
Next we assume that each version produces the correct result before T :
P(x; v, w) = [[1= F (5 V5 (5 wt. @)
0

In this case, a system performance failure, as well as a temporary failure, occurs if none of the ver-

sions are completed before a given time T :
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P (ty)=1- f Je@w)dt =1-Fy(t:y). 3)

Next, we will consider a model with multi versions of the program. The temporary failure MVA of
the system is (n =2m — 1) for a given input in the event that most versions do not output processed

data (finish their operation) during =T
z n n n—n
Pr(ty)= ), (n mef (G W -F(uy] ™. (4)
ny=m\""3

In case the majority of versions completed on time (before 1), there is a high probability of func-
tional failure of the entire system (most of the results are erroneous):

< n n n—n
Py(tv,9)= (”2 JPﬁ (T v, W= Pr (v, )], (5)
ny=m
On the contrary, most of the results are correct (multi versions ran successfully):
C n ny n—nj
Po(tv,y)= D | |P(n v, W= P v, w)]" . 6)
ny=m 1

Finally, equation (7) shows the absence of both the majority of positive and the majority of nega-
tive results :

B (G v, W) = 1= Fp (1 9) = B (1, v, ) = P (T v, ). (7)

Processing telemetry information from small nanosatellites

Telemetry data transmitted to the ground control complex (GCU) can be in various formats, includ-
ing texts, images, audio and video files.

Telemetry systems consist of the following elements:

1. Data collection system.

2. One of the following multiplex systems:

— separated by frequency (frequency multiplexing);

— time-separated (discrete, time multiplexing);

— hybrid systems, which are a combination of systems separated by frequency and time.

3. Modulator, transmitter, antenna.

4. Wave-forming and transmitting communication channel .

5. Antenna, RF receiver, intermediate frequency section, signal demodulator .

6. Demultiplexing system for frequency and time systems, as well as their hybrids .

7. Data processing system [23].

The first six elements presented are responsible for collecting various physical data, converting it
into an electronic signal, and then converting it into various frequencies, taking into account sampling
for the purpose of transmitting it. Transmission signal frequencies typically fall within two ranges:
1435-1535 MHz and 2200-2290 MHz. Without dwelling in detail on the wave formation system, let
us consider the fifth, sixth and seventh elements of the presented system. They consist of hardware
responsible for receiving signals from the spacecraft, as well as hardware and software that carry out
subsequent processing of data and their conversion into design formats. The demultiplex subsystem
ensures the separation of frequency and discrete signals and their direction from individual sensors
into the correct channels, after which the data can be displayed, recorded and further processed.

Let us turn to the problems that arise at the stage of processing telemetry information. Due to the
nature of their activities, spacecrafts must provide compact, undistorted and accessible data libraries in
the shortest possible time period. In this regard, one of the main problems is the limited bandwidth
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available for transmitting telemetry data. The available bandwidth is limited by the capacity of the
communication system and the distance between the spacecraft and the ground station. This limited
bandwidth poses a challenge for processing and analyzing telemetry data in real time.

Another challenge is the complexity of the telemetry data architecture. Telemetry data from a
spacecraft usually consists of a large number of parameters, each having its own range of values and
units of measurement. Analyzing these data requires specialized knowledge and experience that may
not always be available.

Finally there is the risk of data loss or corruption during transmission. In some cases telemetry data
may be lost or damaged during transmission due to interference or other factors. This may result in
incomplete or inaccurate data, which can affect the analysis and decision-making process.

Processing spacecraft telemetry data is one of the most challenging tasks in the field of space data
processing. Spacecraft telemetry data formats are complex and varied, and data format definitions vary
among spacecraft platforms. Common data formats include PCM frame format, packet format, mixed
frame format, cycle count frame format, and so on. With the advent of the new platform, the number
of formats is constantly increasing. Spacecraft telemetry data formats have a number of complex char-
acteristics: the formats have hierarchical and nested structures that must be processed in cross-frames;
formats have complex parameter dependencies. The spacecraft telemetry data processing model of the
existing mission data processing software is based on the “Frame — Field” structure. Different frame
formats are described by different methods for processing telemetry frames, and each field in the
frame format describes the format of a specific parameter. This model has the following problems:

1. The descriptive ability of the method for processing one telemetry frame is limited, which does
not allow adaptation to the characteristic: the formats have a hierarchical and nested structure that
must be processed cross-frames.

2. Complex dependencies between parameters cannot be described effectively.

3. The versatility and scalability of the model are poor. A new change (even a small change) in the
data format leads to a restructuring of the frame processing method, which means frequent changes to
the program code.

Thus, the existing model for processing spacecraft telemetry data, based on the “Frame-Field”
structure, is difficult to adapt to the real situation of frequent changes in spacecraft telemetry data for-
mats, especially during high-frequency flights. It is necessary to develop a new model for processing
spacecraft telemetry data, which has greater expressiveness, greater versatility and scalability and
solves the above problems [24].

The key differences between telemetry data obtained from nanosatellites, in contrast to standard
spacecraft, include the conditions for their generation: for example, large devices are able to accom-
modate a larger number of components that provide system redundancy, thereby increasing its fault
tolerance in an aggressive space environment (to in particular, ionizing radiation) [25].

Early samples (first generation) of specialized software for nanosatellites include the PolySat soft-
ware architecture for CP series devices. The highly resilient hardware platform was built primarily
using redundant components; their relative low cost and low power consumption made it possible to
build a system with a high degree of redundancy. Fig. 1 shows the spacecraft hardware design.

The designed spacecraft operated in three modes: preparatory (pre-ops), normal (normal-ops) and
emergency (contingency). In this case, the choice of mode for communication and the command and
data controller (C&DH) is carried out independently. The latter is responsible both for various aspects
of the system’s operation and for the collection, processing and transmission of telemetry [25-27].
Data collected from three satellites in the constellation was collected and stored in an I°C serial asym-
metric bus in an electrically erasable flash memory. The memory capacity was no more than 256 kB,
which significantly limited the operational characteristics of the nanosatellites. The second generation
of software is built on Linux; thus, the author of [25] offers his own version of a software package for
receiving and processing telemetry.
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Fig. 1. Example of hardware block diagram of redundant communication system

In our case, telemetry information received from ReshU-1 is stored in log files (log files; CSV
extension) with all data frames (Fig. 2-3). Moreover, the frames for each team are different. The data
is parsed by a parser and then stored in the laboratory database. Log files are a common format for this
type of information, such as TMI. Modern measurement information systems are capable of generat-
ing constant streams of this file format, providing information about the operation and state of the

system.

Integration of a multi-version approach into the telemetry processing

One of the important steps is the integration of a multi-version approach into the telemetry process-
ing system. This involves creating a framework that can handle multiple versions of an algorithm and
determine the final result based on a consensus of versions. The system must also be designed to han-
dle any errors or inconsistencies that may arise during the processing of telemetry data .

{

radio: {

name: “"gr-satnogs",

version: "v2.3-compat-xox-v2.3.4.0",

parameters: {
soapy-rx-device: “"driver=rtlsdr”,
samp-rate-rx: "2.048e6",

}
¥

rx-freq: "435330000",

file-path: “/tmp/.satnogs/data/receiving_satnogs_8181264_2023-88-31T22-36-08.out",

waterfall-file-path:

decoded-data-file-path:

doppler-correction-per-sec: null,

lo-offset: null,
ppm: null,
rigetl-port: "45327,

gain-mode: "Overall”,

gain: "22.9%,
antenna: “RX",
dev-args: null,
stream-args: null,
tune-args: null,

other-settings: null,

dc-removal: null,
bb-freq: null,

buw: null,
enable-ig-dump: 8",
ig-file-path: null,
udp-dump-host: null,

udp-dump-port: 57356,

wpm: null,
baudrate: "1920@",
framing: “ax25"

latitude: 38.048,

longitude: 23.739,
elevation: 104,
frequency: 435380000

*/tmp/.satnogs/data/receiving_waterfall_§101204_2023-08-31T22-36-08.
“/tmp/.satnogs/data/data_s8l@12e4",

Puc. 2. [Ipumep 3anucu merananHbix ¢ MKA ReshU-1

Fig. 2. ReshU-1 CubeSat metadata sample
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Fig. 3. ReshU-1 CubeSat telemetry signal spectrogram

Integrating a multi-version approach into telemetry processing has several advantages. Firstly, it
improves the reliability and accuracy of telemetry data by reducing the likelihood of errors or incon-
sistencies. Secondly, the amount of data that needs to be transmitted to the ground is reduced, since

only the final result, which is determined by version consensus, is transmitted. This can lead to signifi-
cant cost savings and increased efficiency

Fig. 4 presents an algorithm for ranking telemetric information
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Fig. 4. Algorithm for ranking CubeSat telemetry

The telemetry data of a spacecraft ranking process involves the following steps:

1. Collecting of telemetry data from small spacecraft (other spacecraft).

2. Pre-processing of data in order to filter out irrelevant or noisy information.

3. Applying a compression algorithm to reduce data size and improve transmission efficiency.
4. Use on-board data processing to analyze and extract features from data.

5. Implementing a machine learning model to identify patterns and anomalies in the data.
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6. Developing a rating system based on the priorities of each piece of information.

7. Applying a multi-version approach by developing several versions of the algorithm with differ-
ent parameters and configurations (Fig. 5).

8. Testing each version of the algorithm on a representative set of telemetry data.

9. Using a rating system to rank the performance of each version algorithm.

10. Selecting of the algorithm with the best performance for each set of telemetry data.

I
y

Uploading a file with telemetry data
telemetry_data.csv

1

Creating a thread for each version:
algorithm = algorithm_version[1], ..., algorithm_version[n]
y

Starting threads
algorithm_version[1], ..., algorithm_version[n]

1

Data processing
algorithm_version[1], ..., algorithm_version[n]

!

Termination of threads
algorithm_version[1], ..., algorithm_version[n]

!

Execution time calculation
algorithm_version[1], ..., algorithm_version[n]

l

Receiving and saving processing results

Results algorithm_1 >
Results algorithm_2 ... Results
algorithm_1 > Results
algorithm_n

1yes

Solution -
algorithm 1

Results algorithm_2 > Results

ye algorithm_1 ... Results algorithm_2 >
r Results algorithm_n
Solution -
algorithm 2

Results algorithm_3 > Results
algorithm_1 ... Results algorithm_3 >
Results algorithm_n

no—v

All versions of the
algorithm have the same|
efficiency

i Output of results |<—

Puc. 5. BBeeHne MyJbTHBEPCHOHHOTO MOJIX0/1a B MpolLiecc 00paboTKu TenemeTprueckoi nHdGopmarmu ¢ MKA

res
Solution -
algorithm 3

Fig. 5. The N-version approach for processing CubeSat telemetry

The ranking algorithm must be flexible and adaptable to different types of telemetry data and proc-
essing methods. It should also be able to process data in real time and update the ranking as new data
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becomes available. Using the MVP approach and ranking system, the algorithm can improve the reli-
ability and accuracy of processing telemetry information from spacecratft.

Multiversion of software for processing telemetry data is a natural course of evolution of these sys-
tems. At the same time, the construction of multiversions can be implemented not only within various
programming languages, but also in various operating environments, for example Linux.

An important factor contributing to the promotion of Unix platforms to achieve the goals set within
the MVP is their accessibility to a wide range of programmers, the availability of open source code
and free libraries.

An analysis of the software used in existing nanosatellites has shown that the software architecture
of most of the devices is built on the principle of multi-layering, which allows us to propose the intro-
duction of MVP into the components of the software architecture. In the case of the American nanosa-
tellite platform KubOS, multiversion is already built into the concept of its architecture, which uses a
combination of two operating systems Linux and U-boot, which perform duplicate functions, thereby
creating software redundancy. This approach, which goes beyond the traditional MVP approach,
which involves only creating duplicate versions of essentially the same program, suggests the use of
conceptually different software as multiversions.

Conclusion

The main problems of reliability formation and characteristic features of software for fault-tolerant
control systems are considered. Descriptions of the causes of software failures and methods for ensur-
ing fault tolerance are provided. It is shown that one of the main tasks in the development of small
spacecraft control software is the creation of such algorithms and software development methods that
can ensure the stability of the entire system against failures .

By applying the methodology of multi-version software development, it is possible not only to en-
sure a given level of reliability, but also to guarantee the fault tolerance of control and information
processing systems. This methodology is based on software redundancy, the introduction of which can
significantly increase the level of reliability of the software component .
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