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Paccmampusaemces npobrema umumayuu negecomocmu cucmem OANOK, HOOBCULEHHBIX HA HEPACHIs-
arcumvlx mpocax. Umumayus negecomocmu o3Havaen OOGHyJleHUue UlU YMEHbULeHUe KAK020-Tubo 8bloOpan-
HO20 CUN06020 (hakmopa (Hanpumep, peaKyuu onopvl Ui MOMEHMA 6 ONope U COYIEHEHUU) U KUHeMA-
muyecko2o gaxmopa (npoeuba unu yena nogopoma). Tpebyemcs nodobpame ycunus 8 mpocax makumi,
4moobl CyMMa K8aopamos npo2ubos 6 mouxkax ynpyeou MuHuu 0anKu Oblia MUHUMATLHOLL.

3a0aua Gopmyrupyemces kax 3a0aua HEAUHEUHO20 NPOSPAMMUPOSAHUS, OCYWECMBIEMCL NOUCK M-
HUMyMa yenegou YYHKYUuu ¢ 0SpaHuyeHusMu 8 gude ypasHeHull pagnosecus. B obwem ude ece gvinucan-
Hble O0JIs1 2e0MEeMPUYECKU USMEHAEMOU CUCeEMbl YPAGHEeHUsl TUHellHo-3asucumol. M3 cucmemvl ypagrenuil
8bIOUPAIOMCST NAPAMEMPBL, NPU KOMOPLIX 6EKMOPbL 6600AMC 8 OA3UC, A 0CMABUIUECS RAPAMEmPbl CHU-
mMaiomcst c60O0OHBIMU U AGSLIOMCSL KOOPOUHamamu yenesou gyukyuu. 3aoaya ceenacv K 3aoauye K8aopa-
MUYHO20 NPOSPAMMUPOSaHUs Oe3 ocpanuyerutl. Yacmmuovle npouzeoo0Hblie no KOOPOUHAMAM OQiOm CUCIEMY
JIUHEUHbIX aNeeOpauyecKux ypasHeHull, no360I0WYI0 Onpedeiums KOOPOUHANMbL, NPUHSMbLE KAK c80600-
Hble napamempul, @ 3amem BblUUCIUMb U KOOPOUHAMbL, 86edeHHble 8 bazuc. OnopHblll NiaH HelUHeUHbIX
3a0a4 ONMUMUZAYUL MOICEM UMEMb JIOKALbHble MUHUMYMbL. [loxkazano, umo npu mobom HauarbHOM 6a-
3uUce, ONMUMANbHBLI NIAH eOUHCMBEHHBLI.

s ebruucnenus npo2ubos OAIKU NPUMEHAENC MEMOo0 HAYAIbHBIX napamempos. B kauecmee nauan-
HbIX NApAMempo8 PAcCMampuaiomcs npocud, yeoi nogopoma, OONOIHUMENbHbIE Yeibl NOBOPOMA 8 WAp-
HUPHBIX COYJICHEHUSIX, d MAaKdice pearkyus u uzeubaiowuti momenm. Konmunyanenas 3a0aua nepesooumcst
6 OUCKDEeMHYIO 02PAHUYEeHUEM KOIUYecmed moyek, 8 KOMopwlX ebluuciaiomces npocudwl. Lleneeas ¢ynxyus
uMeem KOHeuHOe 4Ucno nepemennvix. Onpeoeinsiemcs, KaKkoe KOIUYecmeo GblOPAHHBIX MOYeK HA YNpyeoll
JUHUU OANOK ABAAEMCSE OOCMAMOUHBIM 0I5l 00eCneyenus CXxo0uMocmu QyHKyuil npoeudos, yeioe nogopo-
ma, uzeuOAIOUUX MOMEHMOS U NONEPEYHBIX CUIL C YEbIO NPUNONACEHUS K NPAKMUYECKUM DACYEMaM.

Buinonnena onmumusayus npoeu6oe 6anKu, WApPHUPHO 3AKPENTICHHOU, NOOBEUEHHOU HA 08YX mMpocax
C nPoBepKoll peuteHUll, CMEeHOU OA3UCHBIX NePEMEHHBIX U UCCLE008AHUEM CXOOUMOCU 8 3A8UCUMOCIU OM
66100pA KOIUYECTNBA MOYEK, 8 KOMOPBIX BbIYUCTAIOMCS NPOSUOLL.

Ipoananuzuposano degpopmupoganue cucmem 08Ymaspogulx 6ANOK, COCOUHEHHIX ULAPHUPAMU MENCOY
co001l, UMerWUMU 8 YCILOBUSIX 2PASUMAYUY NO2OHHBLI éec. JIsl UMUMAayuu HeeecoMOCmuU CUCMEMbL NOO0-
Kpenusiomcst  mpocamu. Paccmompenvt  epanuunvie  ycnogusi:  oicecmroe  3awjemieHue;  WAPHUPHO-
HENnoO0BUICHOe ONUPAaHUe, CKOIb3AWAs 3a0eaKa, c80000HbLl Kpatl. Modeau cucmem mpex 6ai0Kx npu umu-
Mayuy HeeecoMoCmu 6 OnPedesieHHol cmenenu IKeusaleHmsl. Buo epanuunozo ycrosus 6 6oavueil mepe
enusiem Ha nepgyio oanky. Cuibl HAMAICEHUsL MPOCO8 BbIPAGHUBAION 0eDOPMUPOBAHHOE U HANPSIIICEHHOE
cocmosinue 8 nociedyrowux oarkax. Jobyio uz paccMompeHHbIX CUcmem ¢ npeoCcmasieHHbIMU SPAHUYHbL-
MU YCTIOBUSMU MOJICHO Nepesecmit 6 IKGUBANICHMHYIO ell, USMEHUS SPAHUYHbIE CUL08ble (PaKmopbl, 3a0ae
MOMEHMbL UTU YCINAHOBUS NPYICUHY € 3A0AHHOU JHCECMKOCMBIO U KOPPEKMUPOGKOU HAMSAICEHUSL MPOCOE.
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Kniouegvie cnosa: npozubvi 6an10x, Memoo HAYANbHBLIX NAPAMEMPOS, HETUHEUHOe NPOSPAMMUPOBAHUE,
peayauposanie npocubos8 u HYmMpeHHUX CUI, UMUMAYUS He8ecoOMOCmu, 0be3seusanie Oanox.
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of the beam system by changing the tension forces
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The problem of weightlessness simulation of beam systems suspended on inextensible cables is consid-
ered. Imitation of weightlessness means zeroing or reducing any selected force factor (for example, the
reaction of the support or the moment in the support or joint), and the kinematic factor (deflection or angle
of rotation). It is required to select the forces in the cables such that the sum of the squares of the deflec-
tions at the points of the elastic line of the beam is minimal.

The problem is formulated as a nonlinear programming problem; the search for the minimum of the ob-
Jective function with constraints, in the form of equilibrium equations, is carried out. In general, all equa-
tions written out for a geometrically variable system are linearly dependent. Parameters are selected from
the system of equations, the vectors at which are entered into the basis, and the remaining parameters are
considered free and are the coordinates of the objective function. The problem was reduced to the problem
of quadratic programming without restrictions. Partial derivatives of coordinates give a system of linear
algebraic equations that allows you to determine the coordinates taken as free parameters, and then calcu-
late the coordinates entered into the basis. The reference plan of nonlinear optimization problems can have
local minima; it is shown that for any initial basis, the optimal plan is the only one.

To calculate the deflections of the beam, the method of initial parameters is used. Deflection, angle of
rotation, additional angles of rotation in articulated joints are considered as initial parameters; as well as
the reaction and bending moment. The continuum problem is transformed into a discrete one by limiting
the number of points at which deflections are calculated. The objective function has a finite number of va-
riables. It is determined which number of selected points on the elastic line of the beams is sufficient to en-
sure the convergence of the functions of deflections, angles of rotation, bending moments and transverse
forces for the purpose of application to practical calculations.

Optimization of deflections of a beam pivotally fixed, suspended on two cables with verification of solu-
tions, change of basic variables and convergence study depending on the choice of the number of points at
which deflections are calculated is performed.

The deformation of systems of I-beams connected by hinges to each other, having linear weight in grav-
ity conditions, is analyzed. To simulate weightlessness, the system is supported by six cables. The bound-
ary conditions are considered: — rigid pinching; — hinge-fixed support, — sliding sealing; — free edge. Mod-
els of three-beam systems in the simulation of weightlessness, to a certain extent equivalent. The type of
boundary condition affects the first beam to a greater extent; the tension forces of the cables equalize the
deformed and stressed state in subsequent beams. Any of the considered systems with the presented bound-
ary conditions can be converted into an equivalent one by changing the boundary force factors, setting tor-
ques or installing a spring with a given stiffness and adjusting the tension of the cables.

Keywords: deflections of beams, method of initial parameters, nonlinear programming, regulation of
deflections and internal forces, simulation of weightlessness, de-hanging of beams.

Introduction

The problem of optimal and rational design of structures is relevant in aviation and aerospace
engineering [1; 2]. Review, classification and design analysis of solar panels for spacecraft are consid-
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ered in [3], where solar batteries made of rigid panels, flexible substrate solar panels, inflat-
able solar arrays, self-expanding solar panels and other structures.

The development of modern flexible solar cell carrier is given in [4]. In [5], the dynamic aspects of
weight-free systems for large-sized transformable elements of spacecraft during deployment are
considered. Numerous copyright certificates are known for the development of zero-gravity simulation
stands, for example [6]. Schemes for cable weight-lifting of structures are common, affecting three-
dimensional, two-dimensional and one-dimensional objects, for example, for antenna reflectors, each
single-link spoke is considered as a beam, hinged at one end on a fixed base and pulled up by a cable
[7].

In [8], a method for calculating the weightlessness of large-sized transformable elements of
spacecraft during ground tests is considered using the example of a beam rigidly clamped at the end
and suspended on cables. Deformation is not taken into account.

Thus, the weightless elements, in most cases, are considered to be infinitely rigid in bending and
are pulled up by cables at the center of gravity so that secondary reactions do not occur at the articula-
tion points.

For purposes of [3—5], we can conclude that it is necessary to master the issues of modeling the
weightlessness of a structure, taking into account its deformation. This raises the problem of regulating
stresses, deformations and deflections by additional tension (pre-tension) of certain parts of structures,
in particular, tension by cables. The regulators will be the tension forces of the cables; the values of
which should be determined from the condition that the sum of the squared deflections of the elastic
line of the beam (beams) was minimal. As a result, the problem is reduced to a nonlinear programming
problem.

The weightlessness factor, as an imitation of weightlessness, is considered as zeroing out any force
parameter (reaction or torque). For example, the beam is rigidly clamped and the values of the forces
in the cables are found. It is necessary to deweight so that there is no reaction in the support. To do
this, we consider the calculation of a beam that has the ability to move in the direction of reaction with
a zero angle of rotation. The calculated forces in the cables will ensure the weightlessness of the reac-
tion. For example, we need to eliminate the moment, then we solve the problem with a hinged-fixed
support. Comparing the angle of rotation found here with the bending moment under rigid clamping
will allow us to select the spring stiffness to ensure equivalence.

The work considers linearly deformable systems. The cables have infinitely high tensile rigidity.
The elastic line of the beam contains an infinite number of points, so a discrete problem with a finite
number of points on the elastic line is analyzed. A nonlinear programming problem may have local
minima. A test is performed to determine whether there is a single optimal plan depending on the
choice of variables entered into the basis.

1. Formulation of the problem of minimizing deflections

Let us consider a multi-span beam, consisting of three beams of total length L, as a geometrically
variable system (Fig. 1, a). To turn this system of beams into a statically determinate one, it is
necessary to impose three additional constraints, since this system has three degrees of freedom. Let
the beam (Fig. 1, b) be acted upon by active concentrated forces F,P,,...,P,, distributed loads

q1,9,---q;-, and momentM ,. To balance these loads, we will apply de-weighting forces
N,,N,,...,N to ensure the equilibrium of system. If the number of secondary forces N,,N,,...,Ny is

less than the number of degrees of freedom of the beam, then the beam remains a geometrically vari-
able system. If the number of secondary forces N,,N,,...,Ng is equal to the number of degrees of

freedom of the beam, then the forces are calculated from the equilibrium equations (we assume that
the forces are distributed correctly). In this case, there is nothing to optimize; the equilibrium of the
beam and the equilibrium of its parts are satisfied. If the number of secondary forces N,,N,,...,Ny is

greater than the number of degrees of freedom of the beam, then it is possible to vary the forces,
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achieving the required weight-loss parameters, for example, eliminating reactions in joints, reducing
deflections at given points, regulating internal forces and stresses. The beam, which initially does not
have a sufficient number of support connections, must be in equilibrium under the influence of secon-
dary forces (naturally, there should be no signs of instantaneous variability).

The problem of modeling the deformation of beams suspended on cables with the condition of mi-
nimizing the sum of squares of its deflections by varying the tension forces leads to a nonlinear pro-
gramming problem [9; 10]. Let us express the objective function F in terms of deflections at »
points:

F(Ry,0,,M Ny, Nyys Ng) = [ v(z)] > min, z, =k(L/n), k=1,2,3,...n. (1)
k=1
Where
V(Zk):f(RA’eA’MA’Nl’N2""’NS)’ (2)

the deflection function at a point with a coordinate z, with unknown parameters
R,,0,M,,N,,N,,..,Ng; k —point number (the distance between points is the same); 0 , — angle of
rotation; R, reaction at point 4 of the beam; M , — bending moment at point 4; N;,N,,...,Ng —the

desired forces.
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Fig. 1. Model (design scheme) of a beam with three hinges:
a —a beam as a geometrically variable system; b — a beam with loads acting on it

As restrictions, equilibrium equations are added to (1): Z y =0- the sum of the projections of

forces on the y-axis; Zmi =0 — the sum of the moments of all forces relative to the point i . The sys-

tem of restrictions has the form of equalities. From the compiled system of restrictions, we select basic
variables, for example, R,,N,,N,, which we substitute into (1). Now the objective function (1) will

contain only free variables, i.e. parameters 0 ,,M ,,..., Ny :

F(eAaMAa---aNS)=Zn:["(zk)]2a 3)
k=1
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which allows solving the optimization problem without restrictions [11]. Partial derivatives (3) with
respect to free parameters (the parameters are often called coordinates):

oF _ OF oF

R— =0, ..., —=0 (4)
00, oM, N

give a system of linear algebraic equations for the required parameters that determine the optimal plan
for calculating deflections (2) at discrete points.
Derivatives of the deflection function (2)

0(z)=dv(z)/ dz ; M(z)=-EJd*v(z)/dz*; O(z)=dM(z)/ dz; q(z)=dO(z)/ dz )

give functions of rotation angle, bending moment, shear force and load ¢ =¢g(z).

The basic solution of nonlinear optimization problems may have local minima, so the work will
show convergence to the optimal plan for various combinations of basis and free variables. To calcu-
late deflections (2), the method of initial parameters was used as a direct method of integrating a
fourth order differential equation with discontinuous functions [12]. Derivatives of functions are cal-
culated numerically [13].

Beams can be not only geometrically variable, as shown in Fig. 1, but also without supports, i.e.
movable, which contradicts the concepts of kinematic analysis of structural mechanics [14]. However,
the balance of the beams is achieved by tensioning the cables (Fig. 2). In Fig. 2, a we will show the
design diagram of a beam without support connections with an active moment M. Here, equilibrium is
ensured by a pair of equal forces. Let us present a design diagram of a composite beam consisting of
four beams (Fig. 2, b). Having imagined the floor diagram of beams, we can see that the main beam is
statically indeterminate; the secondary beam, statically determinate, rests on it. Both right beams, the
third and fourth one, are supported by forces N,— N, .

co AR AR AR
| A, UL HL

Puc. 2. PacuerHble cXxeMbl OaJIOK:

a — OTIOPHBIX CBA3EH HET — paBHOBECHE MOJUIEpKMBaeTCs cuiaMmu N, N, ;

6 — cocTaBHas Oanka — PaBHOBECHUC NOAACPIKUBACTCA pEAKIUAMU OIIOP U CUTIaMU Nl — N7

Fig. 2. Design schemes of beams:
a — there are no support links — the equilibrium is maintained by forces;
b — composite beam — the balance is maintained by the reactions of the supports and forces N,— N,

It should be noted that to calculate deflections (2) you can use the variational-difference method in
the form of the finite difference method and FEM. However, the first method requires introducing ad-
ditional contour nodes at all hinge joints, which complicates programming, and the second method
requires defining deflections and rotation angles at all discrete points (we shall call them nodes),
which increases the dimension of the problem. The method of initial parameters taking into account
intermediate hinges requires calculating only deflections at discrete points, and at the joint nodes of
beams the deflection and increment of the rotation angle are calculated.

Let us consider examples of beam calculations that show the unity of the optimal solution for a
non-linear programming problem depending on the choice of variables introduced into the basis, and
the convergence of solutions from the assigned number of points at which the deflection is calculated.
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2. Optimization of deflections of the beam hinged-fixed and suspended on two cables
We consider an I-beam hinged at one end and supported by two cables (Fig. 3). The cables have
infinitely high tensile rigidity. In Fig. 2 their action on the beam is shown by the forces and N, u N, .

Initially, the beam is geometrically variable. Let us add balancing forces and create an objective
function

F(Ry,0,,N,, Ny q) =Y [v(z)] - min, n=24. (6)
k=1

Let us write the deflection function based on the initial parameters method

3 _ 3 B 3
W) =0,z 4| a2 (METLIS o gy NaGZ2LTD)
EJ| 3! 3! 30

H(z-2L/3)- q: )

Where v(z) — deflection at the point z; 0, — angle of rotation at the beginning of the beam (initial
parameter at point 4); R, — reaction at point 4; N, — force in the first cable; N, — force in the second
cable (required parameters); ¢ — uniformly distributed linear load; E — Young’s modulus; J — axial
moment of inertia of the beam cross-section; H()— Heaviside function.

Beam length L = 6 m; rolled I-beam profile, hinged-fixed fastening at a point 4; Young's modulus
of the material £ =2 - 10'' Pa; axial moment of inertia in the bending plane J = 200 - 10"* m*; linear
weight of the beam ¢ = 100 n/m.

2.1. Checking solutions by changing basic variables

Let us consider solutions related to the peculiarities of beam bending as a discrete problem with a
finite number of points at which deflections are calculated. We will search for the global minimum of
the objective function.

We check that for different basic variables introduced into the objective function, there must be a
single optimal solution.

w TNZ

HHH+HHHHHH#HHH"

L/3 | L/3 >l L/3 >I

Puc. 3. banka, npukperieHHas MapHUPOM U MOAAEPKHUBaeMasi IByMs TPOCaMU

Fig. 3. A beam attached by a hinge and supported by two cables

As restrictions, we add equilibrium equations to the objective function (6)
N,(L/3)+N,(2L/3)—ql? /3=0; (8)

Let us consider three options for applying basic variables.

Variant 1. We introduce variables into the basis N, and N, . To do this, we obtain the forces from
(8) and (9)
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N,=qL/2-2R,, (10)
N,=qL/2+R,, (11)
which, substituted into (6), give the following nonlinear programming problem:

F=F(R,,0,,9)— min (12)
without a system of restrictions.
Derivatives with respect to free variables

OF/0R,=0, 0OF/00,=0
allow you to calculate the angle of rotation 0, and reaction R, . All parameters for calculating func-
tion (7) are defined.
Variant 2. Let us take N, and R, as basic variables. Thereafter from (8) and (9) we derive the
following
N,=3gqL/2-2N,, (13)
R,=N,—-qL/2, (14)
which, when substituted into (6), give the search problem
F=F(N,,0,,q9) > min. (15)
Derivatives with respect to free variables
OoF /0N, =0, oF/00,=0
make it possible to calculate the angle of rotation 0, and the tension force N,. We calculate function

().

Variant 3. As basic variables we take N, and R, . Thereafter from (8) and (9) we obtain
N,=3qL/4-N,/2, (16)
R,=qL/4-N,/2, a7

which, substituted into (6), give the objective function
F=F(N,;,0,,q) > min. (18)

Derivatives with respect to variables N, and 0,
oF/oN,=0, 0F/d0,=0

allow you to calculate the angle of rotation 0, and tension force N, . Function (7) is defined

In all three variants of the basic variables, we obtained exactly the same required parameters
R,,0,,N,,N,. The found parameters give solutions (diagrams), which we present in Fig. 4: diagram

of deflections (Fig. 4, a); diagram of rotation angles (Fig. 4, b); diagram of bending moments (Fig. 4,
¢); diagram of transverse forces (Fig. 4, d). Fourth derivative of a function deflection v(z) along the

z coordinate gives a diagram ¢(z)=—100 ku/m = const , which is a check (Fig. 4, e).
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Puc. 4. ®ynkuuu 1eopMalMOHHBIX U BHYTPEHHUX CUJIOBBIX (PAKTOPOB:
a — nporu0; 6 — 3Mopa YrioB I0BOPOTA; 6 — 3MI0Pa U3rHOaoIIero MOMEHTA; 2 — 3II0Pa INONEPEUHbIX CUIL;
0 — sMmiopa Harpysku g = —100 v/m

Fig. 4. Functions of deformation and internal force factors:
a — deflection; b — plot of rotation angles; ¢ — the bending moment plot; d — the transverse forces plot;
e — the load plot ¢ =—100 N/m

Thus, changing the basis did not affect the solution of the problem. In all three variants, calculating
the programming parameters came to the single optimal solution.

2.2. Study of the convergence of solutions depending on the choice of the number of points in
which deflections are calculated

A discrete problem with a finite number of points on the elastic line of a beam is considered. Initial data as
in paragraph 2.1. The objective function is calculated using formula (6), and deflections are calculated using
formula (7).

We check if the objective function is quadratic, the number of nodes on the elastic line of the beam
is finite, and the method for calculating deflections is accurate, then convergence of deflections, rota-
tion angles, and bending moments is expected from an increase in the number of discretization nodes.

We perform a numerical experiment for n = 6, n = 12, n = 24. The calculation results (diagrams)
are shown in Fig. 5 and in Table 1.

In Fig. 5, a the deflection diagrams are shown. We find the following convergence of deflections.
For example, at the end of the beam ( z = L ), the deflection increased from 0.2025 mm on a grid n =6
to 0.2597 mm on a grid » = 12, which is 28%. Further, on the n = 24 grid, the deflection changed to a
value of 0.2935 mm. Compared to a grid of n = 12, this is 13%. The next refinement of the grid should
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be a difference from the previous one of about 6%. Extrapolation gives the expected deflection of the
beam end equal to 0.311 mm.

Deflection function v(z)

-0.0001
N
-0.0002 v\wzlz ﬁ 2 n=12
0 1 2 n=24 3 1 e 6
a
Angles of rotation 0(z)

00002

-0.0003

Bending moments M(z)

c
Transverse forces 0(2)
200
100
]
- 1 A
Eﬁ
0 1
0 ! 2 3 4 3 %
-1 DGE

Puc. 5. OnTuManbHble MapamMeTpsl OATKH IS CeToK =6, n=12u n=24:
a — QyHKIMY IporuboB; 6 — QYHKIMH YIIIOB TOBOPOTA; 6 — QYHKIMH U3rHOAIONMX MOMEHTOB; 2 — PYHKIMH To1e-
PEUHBIX CHII; O — 3aJlaHHasl paclipe/ielieHHas Harpy3Ka (BbIYUCIICHA, KaK YeTBepTas Npou3BOAHAas GYHKLUUH MTporuda)

Fig. 5. Optimal beam parameters for grids n =6, n=12 and n=24:

a — deflection functions; b — rotation angle functions; ¢ — bending moment functions; d — transverse force functions;
e — a given distributed load (calculated as the fourth derivative of the deflection function)
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We calculate the average values of the sum of squared deflections [15] using the formula

S T N
k=1

The values are: 8, =0,171 mm, §,, =0,159 mm, 6,, =0,152 mm . The difference is 7,4 % and 4,3
% respectively.

Fig. 5, b shows diagrams of the rotation angles of the beam sections, which coincided essentially.

The second derivatives of the deflection functions, that are bending moments (Fig. 5, ¢) calculated
on different grids, are practically indistinguishable.

Diagrams of transverse forces (Fig. 5, d) coincide completely and they are represented by one bro-
ken line having breaks at the points of application of forces

Fig. 5, d shows the distributed load, calculated as the fourth derivative of the deflection function.
This is a solution check. On all three diagrams we got the specified value g =—100 n/m.

To conclude this section, one could say that, based on the change in deflections depending on the
grid refinement, grids from n = 12 to n = 24 are sufficient. If the prerogative is the need to calculate
stresses, it is enough to assign the grid n =6

We present the calculated variables in Table 1. Rows 1-3 of the table show the parameters for the
grids n=6, n=12, n=24. Lines 4-5 show the relative difference of the desired parameters. The fol-
lowing are written sequentially in the columns: v(n) — deflections of the beam console at the point
z=1L; 0,(n)— initial parameter, angle of rotation of the section; R ,(n)— initial parameter, reaction at

the beginning of the beam; N,(n)— calculated parameter, the first force; N,(n) — calculated parameter,

the second force; &(n) — root-mean-square deflection of the beam end.

Table 1
Optimal design parameters
Row | Numberof | y() 0,(n) Ry | N [ Ny 8(n)
number points m rad 0 n n m
1 n==6 -0.0002025 —-0.00023013 141.956 16.087 441.956 0.00017097
2 n=12 —-0.0002597 | —0.00021639 138.464 23.071 438.464 0.00015915
3 n=24 —-0.0002935 —-0.00020861 136.454 27.091 436.454 0.00015247
Percentage difference:
4 n=12/ 28 % 6.3 % 2.5% 43 % 0.8 % 7.4 %
n==6
5 n=24/ 13% 3.7% 1.5% 17.4 % 0.5% 43 %
n=12

Note that the data in the rows 2 and 3 differ little compared to the parameters in the rows 1 and 2.
Rows 4 and 5 can be understood as the rate of convergence of the desired parameters.

3. Suspension by cables of the system of three beams connected by hinges

Let us consider a system of I-beams hinged to each other (Fig. 6). Under gravity conditions, the
system has its own linear weight (Fig. 6, a). To simulate weightlessness, we will consider four cases of
fixing the system at point 4 and supporting it with six cables. The system is rigidly pinched at point 4
(Fig. 6, b); hinged-fixed support (Fig. 6, ¢), sliding embedding (Fig. 6, d); free edge (Fig. 6, d).

It is necessary to determine the tension forces of the cables so that the sum of the squares of the de-
flections at given points is minimal, i.e.

F=Y[vz)] > min, z, =k(L/6), k=123,..18. (20)
k=1
In (20) F — the objective function; v(z, ) — desired deflection; z, — point coordinate; k — point num-

ber; n=18— amount of points; the lengths of all beams are the same and equal to L.
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3.1. Rigid
To calculate deflections restraint using the initial parameters method with rigid clamping of the
beam at point 4 (Fig. 6, b), the deflection function is written as:

v(z)=0,(z—=L)H(z-L)+0,(z-2L)H(z-2L)+

3 3 3
+L 3MAZZ+RA23+N1[Z—£j H z—£j-|—N2 Z—Z—Lj H Z—Z—Lj4—N3 2—4—Lj H 2—4—Lj+
6EJ 3 3 3 3 3 3

3 3
-|-N4(z—z H z—2 -l-NS(z—2 H(z—E +
3 3 3 3

3 4
+N6(z—8?LJ H(z—g—LJ_%},ze[OﬁL]. 1)

Where 0, — the rotation angle (initial parameter at point B); 0,— angle of rotation (initial parameter
at point C); M ,— fixing moment (point 4); R, — reaction acting on the beam at point 4; N,,(i=1-6)—
forces in the cables (required parameters); g =const— uniformly distributed linear load; E — Young’s
modulus; J — axial moment of inertia of the beam cross-section; H ()— Heaviside function.

Formula (21) gives the parameters 6, and 6,, which are the angles of rotation of the beams adja-
cent to the intermediate hinges [16], i.e. 0, =07 -0 | j=1,2. 6™ — the angle of rotation at
the point 7 on the right («cmipaBay) of the hinge, and 0;"*** — the angle of rotation at the point i on the
left («cneBa») of the hinge. The rotation angles 0, are additional unknown variables similar to initial

parameters v, and 0, .

To equations (21) we add the equilibrium equations
zmgnpasa — 0 , zm;}npaBa — 0 , szHpB.Ba — 0 , (22)

representing the set of constraints. From (22) we select the basic variables N,, N5, N,

1 0 0 qL/2
0N, +{1Ns+{0FN, = 2qL—N, /3 , (23)
0 0 1 9gL/2—N,/3-2N,/3-4N, /3

which we add to the objective function (20). Next observe that F'=F(M ,,0,,0,,N,,N,,N;). The
equilibrium equation ¥y =0 — redundant and serves to check solutions. Partial derivatives F with
respect to coordinates M ,,0,,0,,N,,N,,N; give a system of six equations regarding the moment, two

angles of rotation and three forces in the cables (note the symmetry of the matrix of the system of equ-
ations). The problem was reduced to a quadratic programming problem without restrictions. The min-
imum objective function (20) determined the optimal solution.

The found parameters M ,,0,,0,,N,,N,,N;, substituted into equations (21), give according to

formulas (5) the functions of deflections, rotation angles, bending moment and shear force, respec-
tively. Fig. 7-10 show the functions for rigid embedding; solutions for a hinged-fixed edge are consid-
ered; diagrams for sliding embedding are shown; functions for the free edge at point 4 of the beam
system are considered.
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3.2. Hinged-fixed support
For the system of beams with hinged support at point 4 (Fig. 6, ¢), the formula for the initial pa-
rameters method is as follows:

v(z)=0,z+0,(z-L)H(z-L)+0,(z-2L)H(z-2L)+

3 3 3
—i—L RAZ3+N1 z—£ H z—£ +N, 2—2—L H z—z—L + N, 2—4—L H 2—4—L +
6EJ 3 3 3 3 3 3
5L 5L 7Ly’ 7L 8LY 8L g¢z*
+N4(z——) H[z——]+N5(z——) H(z——)+N6(Z——) H(z——]—q— ,z€[0,3L]. (24)
3 3 3 3 3 3 4

Where 0, — angle of rotation at point A.

Additional equations (22) allow you to introduce variables N,, N;, Ny, into the basis, as in (23).
The reaction for formula (24) is determined from the equilibrium equation Xy =0. The functions of
deflections, rotation angles, bending moment, and shear force are shown in Fig. 7-10.

3.3. Sliding sealing
We consider the sliding sealing at point 4, a fragment of which is shown in Fig. 6, d. The following
equilibrium equations are compiled:

Zménpaaa -0, Zmlt:grlpalaa =0, Yy=0. (25)

We introduce vectors for the variables N,, N5, N, into the basis, and after calculating the de-

rivatives with respect to free variables from the equilibrium equation ¥m, =0, we express the deflec-
tion functions M ,.
Now, the deflection function is the following:

v(z)=v,+0,(z=L)H(z-L)+0,(z-2L)H(z-2L) +

3 3 3
+L 3MA22+N1[Z—£j H(z—£j+N2(z—2—Lj H(Z—z—Lj+N3(z—4—Lj H(Z_4_Lj+
6EJ 3 3 3 3 3 3

3 3 3 4
+N4(z—£) H[z—£]+N5(z—lj H(Z—E)+N6(Z—%) H(z—%]—ﬂ ,ze[0,3L]. (26)
3 3 3 3 3 3) 4

All solutions are presented in Fig. 7-10.

3.4. Free edge

In the case of a free edge, there are no connections at point 4 of the beam (Fig. 6, d), there are 10
unknown parameters. Then observe that v(z)= f(v,,0,,6,,0,,N,,N,,...,Ny). Each beam disk in a
plane has three degrees of freedom. There are 9 of them in total. Each simple hinge takes away two
degrees of freedom; 4 in total are eliminated. For a system of three beams, 5 degrees of freedom
remain. To turn the beam system under consideration into a geometrically unchangeable one, 5
connections should be added. One degree of freedom is subtracted, since there is no displacement in
the direction of the longitudinal force. You can write 4 equilibrium equations, but they are linearly
dependent.

We compose three equilibrium equations. The deflection function will look like this:

v(z)=v,+0,z+0,(z-L)H(z-L)+0,(z-2L)H(z-2L)+
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3 3 3
+L N, z—£ H z—£ +N, 2—2—L H Z—Z—L + N, 2—4—L H z—4—L +
6EJ 3 3 3 3 3 3
sLY 5L 7LY 7L 8L 8L\ gz*
+N4[Z—T) H(Z_TJ+N5(Z_T) H[Z_T)+N6(Z_T) H(z——j—qT},ze[OﬁL]. 27

We display the solutions in Fig. 7-10.

y B < D
HHHHHHHGTHHHHH#H#nHHHHHHHq
|‘ L ;I‘ L P L ‘I

> > >

R ? q

4 L/3 ,  L/3_ | L/3 | L/3 L/3 | L/3 | L/3 L/3 | L/3 |
l [ " g b

L L L

Y

A
A

Puc. 6. Cucrema Tpex 06ajoK, COCTUHEHHBIX HIAPHUPAMHU:
a — cUCTeMa B yCIIOBHAX TPABUTAINH; 6 — MOJEIMPOBAHNE HEBECOMOCTH CHCTEMBI JKECTKHM 3allleMJIeHHE B TOUKE A;
6 — hparMeHT MapHUPHO-HENOABIKHOTO OTIMPAHHS CUCTEMBI 0aJIOK B TOUKE A; 2 — GPAarMeHT CKOJb3sIIIeH 3aeTIKH
cucTeMbl 0anok B Touke A; 0 — pparMeHT cBOOOAHOTO Kpast CUCTEMBbI 0aIoK B TOUKe A

Fig. 6. A system of three beams connected by hinges:
a — the system under gravity conditions; » — modeling of the weightlessness of the system by rigid pinching at point A;
¢ — a fragment of the hinge-fixed support of the beam system at point A; d — a fragment of the sliding sealing
of the beam system at point A; e — a fragment of the free edge of the beam system at point A

In table 2 we present the tension forces of the cables for a system of beams with four types of

boundary conditions. We compare the tension forces for a rigidly clamped and hingedly supported

beam. On the first beam, the tension forces of the cables are equal: N

sealing), N;""""P =-124,02 1 («wapuup» — hinge) - the difference is 220%; N,*"* =407,5H,
N =336,07 1 - the difference is 21%. On the second beam, the greatest tensile forces are:
N =262,6 m, NP =251,9 u - the difference is 4.2%. On the third beam, the tension forces
of the cables are almost equal: N:¥™ =96,3 u, NP =100,7 u - the difference is 4.5 %. In the
extreme cable: Ng """ =174,6 Hand N =176,8 H - the difference is 0.13 %.

=-278,4 H («3aumenka» —
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The type of fastening (hinged or sealing) affects the first beam from fastening. The tension forces
of the cables, to a certain extent, level out the deformed and a tense state. In subsequent beams, the
tension forces of the cables are practically the same, i.e., they do not depend on the type of fastening of
the first beam. The same conclusion can be drawn for beams with sliding sealing.

Models of three beam systems when simulating weightlessness are equivalent to a certain extent. So, for exam-
ple, if a model of a beam system with hinged support at point A4 is given a moment (for example, by a mover) equal
to 89,9 H-M ora spring is set to stiffness G, =M , /0, =89,9 HM/5,78'10_5paI[ =1,5 xu/pan , we obtain a
model of deformation with rigid pinching. Accordingly, it is necessary to change the tension forces of the cables.

In table 3, to the cable tension forces from table 2, rotation angles were added at the beginning of the
beam system (point 4) and additional rotation angles at the hinges, root-mean-square deflections and max-
imum deflections. When moving from rigid fastening to hinged fastening, then from sliding fastening to the
free edge, the rigidity of the system decreases. The root mean square deflections increase:

o =2,301-10° M («amenka» — sealing); & =2,396-10" M («mapamp» — hinge);

3aj1eKa IapHUP

) =2,741-107 M («ckomp3smas» — sliding); & =3,282-107° m («cBO6GOTHBIIH

CKOJIb3sIIast cBOOOIHBIH Kpait

Kpai» — free edge), i.e. by 4.1, 14.4 and 19.7%. Maximum deflections in the first three cases occur at the
point where the hinge connecting the second and third beams, respectively, is installed,

(4,31+4,5+5,14)-10"° M and in the middle of the system of beams with a free edge — 6,07 107 M.

M ,=289,9 N, =278,4 N;=5,39 N5 =96,3
0.00003 /\
-0.00002 ﬁ
-0.00004
R,=229,7 N, =407,5 N, =262,6 N, =176.8
a
N, =124,02 =
0.00003 1 J_|7 /‘\ Vs %
0 A ' T T T T /\ 1
1 ﬂ 6 '?J U \:
-0.00002
~0.0000% N, =251,9 N, =174,6
RA=110,65 N2=366,07 4 — > 6 — >
o
M, =43,79
0.00003 =216,97 ,=167,17
0.00001
—0.00001 \
—0.00003 ﬁ ﬁ
—0.00005
N, =173,59 N, =259,04 =67,58 Ny =115,67
68
N, =158,19
0. uut}m /\
\}
-0 uut}mj/ ﬁ ﬂ \/ ﬁ ﬁ v ﬂ H
N, =158,19 N, =133,63 N, =158,19 N, =133,63 Ng=158,19

2
Puc. 7. ®yHKuuy nporuOOB M CHIIBI HATSHKEHHS TPOCOB JUISl TPAaHUYHBIX YCIOBHH cieBa:
a — )KECTKOH 3aJ1eJIKH; O — LIAPHUPHOTO OIHMPAHHUS; 8 — CKOJIB3AIICH 3a/1€JIKH; 2 — CBOOOIHOTO Kpast

Fig. 7. Functions of deflections and tension forces of cables for boundary conditions on the left:
a —rigid sealing; b — hinged support; ¢ — sliding sealing; d — free edge
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M, =899
0.00008
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R,=229,7 N =2784 ’ Ns =96,3

N, =407.5 N, =262,6 N, =176,8

N, =366,07 N, =251,9 N, =174,6

AN PN
L]

—>
—>
/

3 N, =124,02 N;=19,9
—0.00010-} L 3 N, =100,7
R, =110,65
4 6
M, =4379 N, =259,04 N, =216,97 N, =167,17
000006

—0.00010 ﬂ

N, =73,59 N, =67,58 Ny =115,67
6
N, =133,63 N, =158,19 N, =158,19
0.000101 ﬁ
—0.00010-
N, =158,19 N, =158, 19 N5 =133,63
2

Puc. 8. ®yHKIIMYM YTrIIOB TOBOPOTA M CHIIBI HATSKEHUS TPOCOB ISl TPAHUYHBIX YCIIOBHH CIIEBa:
a — )KECTKOH 3aJelIKu; 6 — NIAPHUPHOTO ONMPAHUS; 8 — CKOJIb3AIIEH 3a/1eJIKH; 2 — CBOOOJHOTO Kpast

Fig. 8. Functions of rotation angles and cable tension force for boundary conditions on the left:
a —rigid sealing; b — hinged support; ¢ — sliding sealing; d — free edge

R,=229,7

N, =407,5 N, =5,39 Ns=96,3 N =176,8

g =S

M, =899

Puc. 9. ®yHKIMK U3rHOarONMX MOMEHTOB M CHJIbI HATSHKEHHUS TPOCOB ISl TPAHUYHBIX YCIOBUH ClieBa:
a — KeCTKOH 3aJIeJIK/; O — NIAPHUPHOTO OIMPAHUS; 8 — CKOJIb3sLIeH 3a/1e)KH; 2 — cBoOogHOro Kpas (Hauano)

Fig. 9. Functions of bending moments and tension forces of cables for boundary conditions on the left:
a —rigid sealing; b — hinged support; ¢ — sliding sealing; d — free edge (The beginning)
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RA—110 65 N, =366,07 N,; =19,9 N,=251,9 N;=100,7 Ng=174,6

Nt

—-20

-40
el N, =124,02
~30
~100-
6
A=4379 N Z259.04 N, =67,58 167,17

N, =216,97

mE:> i

N, =115,67

N, =133,63

, =133,63
N, =158,19 ﬁ Ny=N, =158,19 ﬁ N, =158,19
3

Puc. 9. OxoHnuanne

Fig. 9. The ending

N, =176,8
9
N5 =963
a
N, =124,02 Ny =19,9 N5 =100,7

100
0

9
-100
-20

R, =110,65 N, =174,6

Puc. 10. ®yHxumm nepepe3bIBaonIfX CHJI M CHIIBI HATSDKEHUS TPOCOB [T TPaHUYHEBIX YCIIOBHI clieBa:
a — )KECTKOH 3aJIeNIKH; O — NIAPHUPHOTO OMHUPAHUS; 8 — CKOJIB3AIICH 3a/1eJKH; 2 — cBobogHOTO Kpas (Hauano)

Fig. 10. Functions of shearing forces and cable tension forces for boundary conditions on the left:
a —rigid sealing; b — hinged support; ¢ — sliding sealing; d — free edge (The beginning)
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N, =167.17

0
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100 ﬂ
0
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— 100 =
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N, =158,19 N, =133,63 6 =155
2
Puc. 10. Oxonuyanue
Fig. 10. The ending
Table 2
Cable tension forces
Row Type‘ of fas- N1 N2 N3 N4 N6
tening at
numbers . n n n n n
point 4
1 sealing —278.4 407.5 5.39 262.6 176.8
2 hinged 124.02 336.07 19.9 2519 174.6
support
3 sliding 73.59 259.04 67.58 216.97 115.67 167.17
sealing
4 free edge 158.19 133.63 158.19 158.19 133.63 158.19
Table 3
Reaction forces and geometric characteristics of the system
M R 0 0 0 S v(z)
Row Type of fasten- 4 4 AS 15 25
numbers ing at point 4 nm n 107 10™ 10™ 10~ m 105 m
rad rad rad
1 sealing -89.9 229.7 0 11,1 14.7 2.301 v(6 M) =4,31
2 hinged support 0 110.65 5.78 12.3 15.2 2.396 v(6 M) =4,50
3 sliding sealing | —43.79 0 0 15.6 16.7 2.741 v(6 M) =5,14
4 free edge 0 0 8.01 | —20.1 | 20.1 3.282 v(4,5 M) =6,07

The dimensions of physical quantities are described according to [17].

Conclision

In a quadratic programming problem, given different basis variables introduced into the objective
function, there is a single optimal solution. Changing the basis does not affect the solution of the prob-

lem.

Analysis of the solution to discrete problems (with a finite number of points on the elastic line of beams)
showed that grids from n =12 to n =24 points are sufficient. The difference in weighted average deflec-
tions is 4.3%.

The models of three beam systems are equivalent to a certain extent when simulating weightless-
ness. Any of the considered systems with the presented boundary conditions can be converted into an
equivalent one by changing the boundary force factors. For example, if in a model with hinged support
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we specify a moment or install a spring with a given stiffness, we obtain a deformation model with
rigid pinching. Accordingly, it is necessary to adjust the tension forces of the cables

The type of boundary condition has a greater effect on the first beam; the tension forces of the ca-
bles level out the deformed and stressed state. In subsequent beams, the tension forces of the cables are
practically the same.

When moving from rigid fastening to hinged fastening, then from sliding fastening to the free edge,
the rigidity of the systems decreases. The root-mean-square deflections increase.

Simulating the weightlessness of a system with the condition of minimizing the sum of squared de-
flections can be useful in preparing physical experiments.

It is possible to generalize the formulation of the problem of regulating the stress-strain state for sys-
tems of suspended plates and panels; it is possible to install springs in hinged joints; the forces in the ca-
bles can be additionally distributed with weight factors.
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