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Komnnexcuvimu pacuemuvimu u 9KCHEpUMEHMATbHLIMU UCCAEO08AHUAMU 0OO0CHOBAHbBI PAYUOHANbHbIE
pedtcumbvl ppe3omoyenus CIOHCHOKOHMYPHBIX PABHOOCHIX NOGEPXHOCHIET C 8bICOKOU MOYHOCIBIO hopMubl,
Pazmepos u napamempamu uepoxosamocmu. B xauecmee mamepuana 3a20moeKu 015 U320mMogeHuUs Ho-
BbIX OPUSUHATILHBIX KOHCTNPYKYUL UHCIPYMEHMO8 UCNOAb308AAUCH NPYMKU U3 HAHOCIPYKINYDPUPOBAHHO20
MBePOOCNNIABHO20 KOMNO3UmMa (Noyuennvle dKcmpysuell oumooanbHuix nopoukoswvix cmecei WC-Co-
Al,O3) ¢ nosviwennviMu nOKA3aMeENAMU NO NPOUYHOCIU, MpewjuHocmoxocmu u mepmocmotixocmu. Cogo-
KYNHOCMb 3MUX CEOUCME ABIAEMC He0OX0OUMOU NPeonocuLIKol 011 3¢pgexmuenoli pabomvl pazpabo-
MAHHBIX KOHCMPYKYUTL MHO20IE36ULIHBIX (Dpe3 HA 8bICOKUX CKOPOCMIAX PE3AHUS U 8 YCI0BUAX NePeMEeHHbIX
YUKTUYeCKUX Hazpy3ok. bonee cnodcHas Kunemamuxa coeMecmHo20 8pawjamenbHo20 0BUICEHU UHCPY-
MeHma npu ppezomoueHuu OuKmyem HeoOX00UMOCMb HOBbIX N00X0008 NPU HA3HAYEHUU PAYUOHATbHBIX
pedicumos pezanus. [is noayueHus 00CMOBePHbIX PACUEMHbIX (PopMYn npedsapumenbio Obliu NPpoGeoeHbl
yycneHHble IKCHEPUMEHMbL, 8 MOM YUCTE CUMYTAYUA npoyecca obpabomKu ¢ UCNONb308AHUEM UHMESPUPO-
sanHoll cpedvl paspabomku VisualStudio, 6 xomopoii noddepcusaemcs mexnonocus WindowsForms.
Bosmooicnocms omobpasicenus epaguyeckux 3D-06vekmos Ovina pearuzo8ana 3a cuem 0ONOIHUMENbHO2O
npoepammHnoz2o npodykma 6 eude 2eomempuueckozo sopa Open CASCADE. Hucnennvie s3xcnepumenmol
€ UCnonv308anuem npozpammuslx npooykmos MathCAD u ocnosannvie HA AHATUMUYECKUX NOTONCEHUSX,
NPeoNoNCeHHbIX 8 pabome, NO3GONUNU OYEHUMb GIUAHUE PEHCUMOB Pe3AHUs, 2eOMemPUIecKux napamem-
PO8 pedxcywell vacmu uHcmpymenma (npouis u Konuvecmea 3y0ves), KUHEMAMUKY OMHOCUMENbHO2O Ne-
pemeujeHus 8 cucmeme «UHCMpYyMenm — 0emanby Ha opmy nogepxHocmell u napamempusl Koumypa (ue-
poxosamocmuy), nonyuaemvie npu gpezomouenuu. Paspabomana memoouxa, aneopumm u npocpamma as-
MOMAMU3UPOBAHHO20 PACYEMA PEHCUMOB Pe3aHusl, KOMOopds 6epuuyupo8ana npu npoeedeHuy HamypHbix
IKCHEPUMEHNIO8 U U320MOBIEHUU CTIOJICHONPODUILHBIX Oemanell u3 artoOMUHUeBbIX CHIAB08 O/l NPUBOO0E
uzdenutl aspoxocmuyeckou ompaciu (6 popme PK-npoguns u demaneil yeeounoil nepedaiu Mexanusmos
Haseoenus). Ilpu smom Ha ocHosanuu 3D-moodenu uzdeauti co30a8anUcCy YNpasiawuue npocpammovl 0
cmankog ¢ YI1Y c ucnonvsosanuem MasterCAM. Ilpakmuueckas 3Ha4umocms u mexHUKO-2KOHOMUYECKAsl
ahhekmusHOCmb NPeOLONCEHHBIX KOHCHMPYKMOPCKO-MEXHONI02UYECKUX peueHull OISl A2POKOCMUYECKOU
ompacny 3aK0UAemcs 8 NOGbIUEHUY NPOU3BOOUMENLHOCU U CHUINCEHUU MPYOOeMKOCmU 00pabomxu
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(8 cpasnenuu ¢ 6A306bIMU BAPUAHMAMU) 34 CUEM UCHONL30BAHUSL HOBbIX MHO20NE36UUHBIX MBEPOOCNNIAE-
HbIX UHCIMPYMEHMO8 O/ BbICOKOCKOPOCMHO20 (pe3eposanus (6 mom uucie npu obpabomre KOMNO3uyu-
OHHBIX MAMEPUANO8).

Knrouesvie crosa: gpeseposarnue, meepOocniasHvill pexcyuutl UHCHPYMEHm, MAmemMamuieckoe mooe-
JUPOBAHUE, CIOHCHONPODUIbHBIE NOBEPXHOCTIU, ATFIOMUHUEBbIE U MUMAHOBbIE CHIABbI, KOMNO3UMbI, Kade-
cmeo obpabomxu.
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Complex computational and experimental studies substantiate rational modes of milling of complex
contour equiaxed surfaces with high accuracy of shape, dimensions and roughness parameters. Bars made
of nanostructured carbide composite (produced by extrusion of WC-Co-Al,O3; bimodal powder mixtures)
with increased strength, crack resistance and heat resistance were used as a workpiece material for the
manufacture of new original tool designs. The combination of these properties is a necessary prerequisite
for the effective operation of the developed designs of multi-blade cutters at high cutting speeds and under
conditions of variable cyclic loads. A more complex kinematics of the joint rotational movement of the tool
during milling dictates the need for new approaches when assigning rational cutting modes. To obtain reli-
able calculation formulae, numerical experiments were previously carried out, including simulation of the
machining process using the VisualStudio integrated development environment, which supports Windows-
Forms technology. The ability to display graphical 3D objects was implemented using an additional soft-
ware product in the form of the Open CASCADE geometric core. Numerical experiments using MathCAD
software products and based on the analytical provisions proposed in the work made it possible to evaluate
the influence of cutting conditions, geometric parameters of the cutting part of the tool (profile and number
of teeth), kinematics of relative movement in the “tool — part” system on the shape of surfaces and contour
parameters (roughness) obtained during milling. A technique, algorithm and program for the automated
calculation of cutting conditions have been developed, which have been verified during full-scale experi-
ments and the manufacture of complex profile parts from aluminum alloys for drives of aerospace products
(in the form of an equiaxial profile and parts of a pinion transmission of guidance mechanisms). At the
same time, on the basis of a 3D model of products, control programs for CNC machines were created using
MasterCAM. The practical significance and technical and economic efficiency of the proposed design and
technological solutions is to increase productivity and reduce the complexity of processing (in comparison
with the basic options) through the use of new multi-edge carbide tools for high-speed milling (including
when processing composite materials).

Keywords: milling, hard metal tools, mathematical modeling, complex surfaces, aluminum and titanium
alloys, composites, processing quality.

Introduction

The active use of modern 3-5-axis multi-tasking CNC machines gives the expanded technology op-
portunitites for processing complex-profile parts with high productivity and accuracy. At the same time,
these digital technologies dictate the need to develop methods corresponding to their level of new tool
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and equipment designs for the effective implementation of high-speed precision machining processes.
Solving these complex problems is of particular importance when processing complex-profile products
for the aerospace industry, obtained from materials that are difficult to deform during cutting, such as
composites, titanium and aluminum alloys. Increased demands are placed on the parts made from these
materials on the quality of processing (accuracy of dimensions and relative position of surfaces, rough-
ness), reliability and durability.

Therefore, it is necessary to take into account that the shaping processes during high-speed cutting
on multi-purpose machines (milling, turn-milling, turning) have a number of features associated with
the so-called size effect [1-3]. When assigning cutting modes, in addition to the known parameters
generally accepted in theory and practice (cutting angles and material of the cutting part of the tool,
properties of the workpiece material, shrinkage amount, angle of inclination of shear surfaces, cutting
forces, etc.), it is necessary to take into consideration other characteristics [1; 4]. The majority of re-
searchers recognize that one of the most informative indicators in the analytical description of mi-
cromilling processes is the specific cutting force [5; 6] in the deformation zone. To a large extent, its
value depends on the geometry of the cutting part of a multi-blade tool, as well as the profile of the
surface obtained during processing, the height of micro-irregularities in the form of shape deviations,
and roughness [1]. Nevertheless, the use of well-known analytical calculation methods based on geo-
metric and stereological models [6; 7] when designing multi-edge complex-contour cutters is limited,
since they do not take into account the increased intensity and speed of deformation processes. There-
fore, the preferred solution is the integrated use of analytical and numerical methods of finite element
analysis. For example, in the papers [8; 9] these methods determined the minimum thickness of the cut
layer of structural steels, estimated depending on the radius of the cutting edge (r.) by the ratio
Amin = (0,14 — 0,43) r,, at which the required processing quality is ensured. Similar values were deter-
mined experimentally when studying size effects and features of micromilling [10; 11]. But it is not
enough to take into account only the scale factor when describing the features of deformation processes
of high-speed processing [12; 13]. An increase in cutting speed (spindle speed on multi-purpose ma-
chines reaches 40,000 rpm) and feed speed leads to a significant change in the kinematic cutting an-
gles. In particular, a large negative-rake angle may appear [14; 15] and, as a result, a “ploughing” ef-
fect occurs (instead of cutting off the surface layer) [1; 6; 13]. This leads to an increase in the specific
energy concentrated in the cutting zone, which is also characteristic of high-speed micropocessing [4;
8;9; 11; 14; 15]. In this case, elastic deformation predominates, and finely crushed chips are formed in
the layer being cut. The differences in fracture mechanisms during high-speed cutting can be indirectly
assessed by the shape and size of the chips: the sizes of undeformed layers (fragments) of chips can
vary from 0.1 to 900 um [8; 9; 14]. With increasing cutting depth, the material is plastically deformed,
but before reaching a very certain threshold value [16]. A characteristic feature of microprocessing is
also the increased intensity of cyclic deformation processes, the frequency of formation of surfaces,
shear elements, and the formation of submicron lamellae in the chip cross-section [1]. The theoretical
and analytical description of the mechanisms of their formation, modeling and calculation of kine-
matic parameters under which various shaping mechanisms are realized are necessary conditions for
determining rational cutting conditions and ensuring the required processing quality. In particular,
theoretically and experimentally substantiated methods of high-speed rotational turning, turn-milling
and milling allow increasing the intensity of deformation processes and ensuring effective crushing of
chips down to micron and submicron sizes. At the same time, it is possible to improve the quality of
processing surfaces according to roughness parameters [11; 14; 15]. The papers [16-20] present the
analysis of problems and research results that allow various methods to increase the efficiency of high-
speed processing of aluminum alloys: by choosing the correct milling strategy [16], assigning rational
cutting modes [17], combining micro-milling and electrophysical methods [18], applying a protective
coating to the surface of a cutting tool [19], optimizing the geometric parameters of cutters [20].

The works [21-26] analyze the main problems that arise when processing various composites (de-
lamination, stretching of composite fibers, chipping and non-cutting of composite fibers); recommen-
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dations were given on the geometry of the cutting part and the design of tools [21-24], the choice of
methods and technological modes of processing of composites [25; 26]. The advantageous perform-
ance differences of high-speed milling do not always guarantee the required quality of surfaces, espe-
cially when processing products based on difficult-to-deform materials (aluminum and titanium alloys,
fiber composites). There are objective restrictions on cutting modes and design of the tool when proc-
essing complex surfaces. The existing problems can be largely solved through the expanded use of
milling methods and new original designs of multi-edge milling cutters for their implementation on
CNC machines [27-29]. Milling with high geometric complexity of the tool allows reducing the vol-
ume of the cut layer (chip size) and cutting forces, as well as produce three-dimensional microcompo-
nents from a wide range of metallic and non-metallic materials, including composites. In addition,
longitudinal turning using a top cutting tool can be replaced by milling, which improves processing
productivity by combining the rotational movements of the workpiece and the tool while simultane-
ously improving surface quality. With high-speed milling, in addition to reducing the volume of chips
(the thickness of the cut layer can be comparable to the radius of the tool edge), the mechanisms of
destruction of the workpiece material also change - destruction occurs mainly in the elastic zone with-
out significant plastic deformation. There are some known methods for mathematical modeling and
studying the influence of the kinematics of relative movement in the “tool — workpiece” system on the
shape of bodies of rotation obtained during processing of complex surfaces (equiaxial contours) [30].

Moreover, by specifying the geometry of the tool, cutting modes and the trajectory of the relative
movement of the points of the tool and the workpiece, one can control the shape of the resulting sur-
face of the part [31]. But the problems of developing new designs of cutters and methods for numeri-
cal assessment of deformation processes in the cut layer based on the finite element method (FEM), in
relation to milling and high-speed precision milling methods, require solutions in the same way as the
problems of creating control programs for CNC machines. The problems of mathematical description
of the kinematics of milling processes, assignment and optimization of cutting modes remain insuffi-
ciently studied, both theoretically and experimentally.

The purpose of the work is to theoretically and experimentally substantiate the kinematic parame-
ters and modes of high-speed milling to increase the productivity and quality of processing complex
surfaces of parts.

Methods and equipment of research

The experimental studies on milling were carried out on a CNC turning and milling machine
(DMG MORI CTX 310 model) with a live tool (Fig. 1, a). Round rolled products made of aluminum
alloy D16 GOST 4784-97 and steel 45 GOST 1050-2013 were used as workpieces during testing. The
study of high-speed milling of composite materials based on carbon fabric UT - 900 - 3 and epoxy re-
sin Etal - 200M was carried out on a Kuka KR 90 R3100 extra HA 9 robotic manipulator with an
H6161H0902 spindle installed on it (Fig. 1, b).

The tools being used were our own original designs of multi-blade router cutters [31] (Fig. 1 ¢, d),
used during testing in comparison with analogues from ISCAR (Israel) and SANDVIK (Sweden).
Analog milling cutter 2P350 — 1000 — OA O12M (Sandvik).

To study the machinability of aluminum alloys, multipoint end mills were additionally designed,
the 3D models of which are shown in Fig. 1 4, f-

The following cutting mode parameters were taken as independent variables: So — longitudinal tool
feed per revolution of the shaft being processed, 0.15—1.2 mm/rev; n, — number of revolutions of the
workpiece, 50-1000 rpm; v, — cutting speed, 310-933 m/min; n. — cutter speed, 6000-18000 rpm;
t —cutting depth, 0.1-1.5 mm. The quality of the processed surface of the samples was assessed
by two height parameters of roughness Ra, Rz on a profilometer model Tr 220 (China), measurement
range 160 um (from —80 to +80 pm). The analysis of the sample microstructure and chip
morphology was carried out using HITACHI TM 1000 and JEOL JSM-7001F scanning electron
microscopes.
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Puc. 1. O6GopynoBaHue U OCHacTKa IS IPOBEJCHUS SKCIIEPUMEHTOB:
a — TokapHo-¢pe3epHslii ctanok ¢ YITY DMG MORI CTX 310; 6 — po6ot Kuka KR 90 R3100 extra HA (Snonus)
u mmuaaens H6161H0902; 6, 2 — 3D-Mo/1enib HOBOW KOHCTPYKIIMHM MHOTOJIe3BUIHOHN (pesbi-poyTepa EMC-D10-90-1
u ipouiib 3yObeB; 0, € — FeOMETpHS PEXKYIIeH YacTh KOHLEBBIX (pe3 s 00pabOTKH aJFOMHHUEBBIX CILIABOB

Fig. 1. Equipment and tool set for experiments:
a — CNC turning and milling machine DMG MORI CTX 310; b — robot Kuka KR 90 R3100 extra HA (Japan)
and spindle H6161H0902; ¢, d — 3D model of a new design of the EMC-D10-90-1 multipoint cutter-router
and tooth profile; e, f— geometry of the cutting part of end mills for processing aluminum alloys

The production of solid carbide milling cutters was carried out on an ANCA RX7 grinding ma-
chine using specially developed control programs, taking into account all the design parameters of the
designed cutters (Fig. 2). Rods made of nanostructured carbide composite (obtained by extrusion of
bimodal WC-Co-Al203 powder mixtures) with increased strength, crack resistance and heat resistance
were used as a workpiece material for the manufacture of the tools [32; 33].

The combination of these properties is a necessary prerequisite for the effective operation of the
developed multipoint cutter design at high cutting speeds and under conditions of variable cyclic
loads. The developed new designs of cutters made of carbide composite have an expanded scope and
correspond to groups P, N, M and S according to the ISO 513:2012 standard.

Simulating milling processes
When processing a part using the milling method, the tool makes two movements: progressive mo-

tion along the axis of the part (s,) and rotational motion around its own axis (#.); and the workpiece
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being processed rotates around its own axis (#,). It is possible to have both a perpendicular position
(Fig. 3, a) of the cutter rotation axis relative to the workpiece rotation axis, and a coaxial position (Fig.
3, b). In the first case, an end processing scheme is implemented, and in the second — a contour one.

Puc. 2. O6pasipl HOBBIX KOHCTPYKIUH TBEPAOCILIABHEIX (pe3
JULS IPOBEJEHUSI UCTIBITAHUIT

Fig. 2. Samples of new designs of carbide
milling cutters for testing

n, S

)"
a b

Puc. 3. CxeMbl 00pabOTKH MOBEPXHOCTEHN MU PPEe30TOUECHUN

Fig. 3. Schemes of surface machining during milling

A necessary condition for achieving high accuracy and productivity when processing parts by mill-
ing is the assignment of optimal cutting conditions.

The more complex kinematics of the joint rotational motion of the tool during milling imlicitly in-
fluences the methodology for calculating cutting conditions. To obtain reliable calculation formulae,
numerical experiments were previously carried out, including simulation of processing using the inte-
grated development environment VisualStudio, which supports WindowsForms technology. The abil-
ity to display 3D graphic objects was implemented using an additional software product in the form of
the Open CASCADE geometric kernel (Fig. 4).

Puc. 4. Kunemaruueckasi cxema ¥ mpoQuiib MOBEPXHOCTH TPH TOPIIEBOM (Ppe30TOUCHUN

Fig. 4. Kinematic scheme and surface profile during face milling
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Based on the results of numerical estimates for the first scheme of face milling, a comprehensive
methodology and calculation formulae were developed for determining the main cutting conditions
(1-6) given below.

The diameter of the workpiece being processed is determined by the following formula:

D,,=Dy-2 - a,, (1)

where a, — cutting depth. Step offset angle:

x
0=arctg| — |, 2
g[3,14-D j @

m

where x — a helix pitch.
Workpiece rotation speed, mm/rev:

o o Efn 3)

w
X

where z — number of cutter teeth, f, — feed per tooth, n; — tool revolution speed.
The feed per tooth and feed in the axial direction are determined by the formulae (4), (5):

:fz/'x-cos(e)

, “4)
£ 3,14-D,,
2/23,14-Dm-nw’ (5)
z-cos(0)-n,
And finally, the speed of the cutter along the spiral path:
n-D_-n
/! cos(0) ©

The calculations using the formulae (1)—(6) show a significant increase (up to 2 times) in cutting
speed and productivity in terms of the volume of the material being cut compared to a turning process.

The additional feed motion of the cutter (s,) with a contour processing scheme (Fig. 3, ) also pro-
vides the ability to process complex surfaces, such as equiaxed contours with a regular profile, cyc-
loidal, helical, etc.

When modeling coaxial milling processes and in the experimental part of the work, an original de-
sign of a multi-edge tool was used, which combines elements of “conventional” cutting of a layer of
material and a router. Increased intensity and frequency of surface layer cutting cycles imply increased
productivity and quality of surface treatment of the part. This is precisely what explains the effective-
ness of using high-speed precision milling according to the scheme presented in Fig. 3, ». The numeri-
cal experiments using MathCAD software products, based on the analytical principles proposed in the
work, made it possible to evaluate the influence of cutting modes, geometric parameters of the cutting
part of the tool (profile and number of teeth), kinematics of relative motion in the “tool-workpiece”
system on the shape of surfaces and parameters contour (roughness obtained during milling).

The theoretical study of the possibilities of using milling processes to obtain more complex sur-
faces such as equiaxed contours (Fig. 5) required the development of more complex mathematical
models using specialized CAD systems.
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Puc. 5. Pe3ynbrarsl MoJenupoBaHus npoduiieii moBepXHOCTEH neTanei:
a — npodune TpeyronsHuKa Peno; 6 — nuKiIonaa; ¢ — MHOTOIPaHHHUK

Fig. 5. The results of modeling the profiles of the surfaces of parts:
a — profile of the Reuleaux triangle; b — cycloid; ¢ — polyhedron

The angular velocities of the tool and the workpiece were specified as input data in the milling
process model to determine the profile of the machined surface; and these parameters and their corre-
lations varied when determining the required trajectory. Tool cutting surfaces are formed as a result of
the intersection of the plane of the front surface with the generating surface of the cutter. The descrip-
tion of the motions of the tool and the part is presented in the form of a system of equations (7)
and a part rotation matrix (8). For example, with the ratio of angular velocities of 1/3: w; = 2n3,
op = —27, where o are angular velocities of the tool, ®p are angular velocities of the part.

770 €0s(g,t +3¢) +¢

rI (ta S(P) = 0 ’ (7)
70 €0S(&,t + 3)

cos(wpt) —sin(wpyt) 0
M, (t)=| sin(wpt) cos(wpt) O, ®)
0 0 1

where 7, — coordinates of tool motion points; 3¢ — distance between cutting edges; € —ratio of the radii
of a cutter and a workpiece.

The discreteness of the calculations was specified by the step of the parameter 7. Depending on the
number of cutting edges of the cutter N and the pitch between the teeth K, the rotation angle 6¢
changes - formula (10) and the contour of the surface being machined (9):

H(t, 8¢) = MA1) i (1, 8¢), €))
_360-deg
oy -2 K (10)

The simulation results show that milling allows obtaining different profiles on the part (Fig. 5). The
examples of profiles and surface roughness obtained by milling at different values of the number of teeth
N, angular velocities of the tool w; and workpiece wp, and the distances between the tool axis and the
workpiece ¢ are presented in Fig. 5. For example, for an equiaxial contour in the shape of a Reuleaux
triangle (Fig. 5, a), the coordinates of the points (change in the angle of the equilateral figure) can be de-
termined by the formulae p (£) =9 — cos (3%).

The description of an equally wide curve in accordance with the model is made by determining the
coordinates of points x and y using the formulae (11) and (12).
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x(t)z(p(t)cos(t)Jr% p(t)sin(t)j0,07, an

y(t)=(p(t)sin(t)+%p(t)cos(t))0,07, (12)

Based on the above formulae describing the process of forming an equiaxial contour, an algorithm
was developed and a calculation program was created to automate the procedure for determining the
coordinates of points. The construction of the pin-gear wheel profile is carried out after calculating the
main initial parameters. For example, for a gearbox part with a gear ratio of 8 and a nominal race di-
ameter of 50 mm, the wheel diameter will be 44.444 mm and the pin diameter will be 8.73 mm. After
auxiliary constructions with superimposition of the contours of the workpiece and the tool, we obtain
an array of intermediate circles (Fig. 6, a) and the contour of the pin-gear wheel (Fig. 6, b).

Puc. 6. [ToctpoeHne KOHTypa LIEBOYHOr'O KoJieca:
a — MaccHB ITPOMEKYTOYHBIX OKPY>KHOCTEH; O — poduib neTaiu

Fig. 6. Constructing the outline of the lantern wheel:
a — array of intermediate circles; b — part profile

To obtain the trajectory of the cutter, it is necessary to perform the “object displacement” opera-
tion. The amount of displacement should be equal to the radius of the cutter, and the trajectory is a
closed contour of arcs of two different radii (Fig. 7, @). If the diameter of the cutter is equal to the di-
ameter of the pin, the trajectory will consist of arcs of the same radius (Fig. 7, b).

Below there is an algorithm and fragments of the implementation of a control program for the
manufacture of drive parts for the cycloid transmission of satellite communication control mecha-
nisms. To obtain trajectory coordinates, one can use the built-in tools of the CAD environment API to
transform curves into a set of points and then obtain the dependence of the rotation angle of the part on
the trajectory point. The CAD environment provides the ability to obtain curve parameters through the
interface with subsequent processing in lateral software products (Fig. 8).

Puc. 7. Tpaexropus st Gppe3sl AMaMETPOM, PaBHBIM AUAMETPY IIEBOK:
a — 3aMKHYTBIA KOHTYP M3 AYT IBYX PA3IHYIHBIX PAINYCOB; O — TPAEKTOPHUS U3 AYT OJHOTO pajmyca

Fig. 7. Trajectory for a cutter with a diameter equal to the diameter of the pins:
a — closed contour of arcs of two different radii; b — trajectory of arcs of the same radius
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Fig. 8. Obtaining arc characteristics in SolidWorks (@) and Application interface (b)

Since during milling the cutter moves only along one coordinate, the sets of points of the X coordi-
nate and the angle of rotation of the workpiece are selected to form the trajectory (Table 1).
Moreover, to obtain a profile using milling methods, it is necessary to make appropriate adjust-
ments for the rotation of the workpiece. This procedure can be performed on the basis of a 3D model
of products when creating control programs for CNC machines using the MasterCAM software prod-

uct.

Tabnuya 1
The correlation between the position of the cutter and the angle of rotation of the workpiece
Ne 1 2 3 4 5 6 7 8 9 10 11
Position of the
cutter relative to | 19 57| 19,59 | 19.6 | -19.62 | ~19.63 | ~19.65 [ ~19.66 | -19.68 | -19.69 | -19.71 | 1972
the workpiece,
mm
Angle of rotation
of the workpiece, | 2.94 2.94 293 2.92 291 2.9 2.89 2.89 2.88 2.87 2.86
degrees

Experimental studies of high-speed milling processes. Results and discussions
The assignment of cutting parameters during milling to obtain complex-contour equiaxed surfaces of
aerospace products was carried out using control programs for CNC machines. As the main parameters
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for verifying the modeling results during experimental studies, the values of the accuracy of the dimen-
sions and shape of equiaxed contours, the roughness of the surface machined by milling during the man-
ufacture of real parts in production conditions were used. As a result, it was possible to produce parts in
the form of an equiaxed contour profile (Reuleaux triangle) with high accuracy of dimensions, shape and
the required quality of the surface layer (Fig. 9, a). The step-by-step processing when obtaining the con-
tour of a part for the pin-gear drive is presented in Fig. 9, b—d.

c

Puc. 9. Cno)XHOKOHTYpHBIE TIOBEPXHOCTH JIETaJIeH, TOyYeHHbIe (PEe30TOUCHHEM:
a — TpeyroyibHUK Peno; 6 — cxema Hanaaku rnpu Gppe3oToUeHuH; 6 — IpOQUIb IUKIONIBI
JUIS IEBOYHOM Nepeayn; 2 — FOTOBas 1eTajlb

Fig.9. Complex contour surfaces of parts obtained by milling:
a — Reuleaux triangle; b — setup diagram for milling;
¢ — cycloid profile for pin-gear drive; d — finished part

The high intensity of milling processes is confirmed by the results of studying the microstructure of
the surface layer. An increase in the microhardness of steel parts to a depth of 80 um was found to be
2.5 times higher than that of the base, i.e. this cutting method can be used instead of heat treatment.
This ensures high surface quality in terms of roughness, which eliminates the need for additional fin-
ishing operations. Indirect confirmations of the advantages of high-speed types of milling are the re-
sults of electron microscopic studies of the shape and size of the chips. To experimentally verify the
numerical results of FEM studies, surface roughness values were used. The morphology of chips ob-
tained by milling an aluminum alloy with a multi-edge contour cutter is illustrated in Fig. 10. The siz-
es of the chips vary in the range from 2 to 50 microns, and a more detailed study reveals that large
types of chips are agglomerates of fragments with sizes of 480—-880 nm (Fig. 10, b).
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Puc. 10. Mopdosnorus anoMUHUEBOH CTPYKKH, IOTY4EHHON NP (HPe30TOUCHUU:
a — pacripe/iesieHue 1o pasmepam, x 400; 6 — HAHOCTPYKTYPHPOBAHHBIN (parMeHT CTPYIKKU

Fig. 10. Morphology of aluminum chips obtained by milling:
a — size distribution, x 400; b — nanostructured chip fragment

In the process of experimental studies, the possibility of improving the quality of the surfaces of fi-
ber composites during high-speed processing using new original designs of multi-blade router cutters
was also confirmed (see Fig. 1, ¢, d and 2). When conducting the experimental studies of the influence
of cutting modes on roughness parameters, carbon-plastic witness samples were used (Fig. 11, a).
They were obtained in parallel from the same material that was used for the manufacture of products

(Fig. 11, b).

a 0

Puc. 11. O6pa3us! i n3y4eHns! BEICOKOCKOPOCTHOTO (ppe3epOBaHUs KOMIIO3UTOB
HA OCHOBE YIJICILIACTUKOB!
a — o0pa3sibl /ISl UCTIBITaHU; 6 — U3/AeNus

Fig. 11. Samples for studying high-speed milling of composites based on carbon fiber:
a — samples for testing; b — products

The images of the machined surfaces show that effective cross-section of fibers is ensured (Fig. 12,

a, b). This can be explained by the increased frequency of cutting cycles (up to 4000-6000 s '). An
indirect confirmation of the effectiveness of the tool is the morphology of the chips - its sizes vary in

the range from 3 to 8 microns (Fig. 12, ¢, d), i.e., they correlate with the roughness of the machined
surface (Fig. 12, a).

581



Cubupckuil aspokocmuueckuil scypHan. Tom 24, N2 3

TM-1000_

TM-1000_ %3,0k 30 um

Puc. 12. Pe3ynpTaTsl 2J1€KTPOHHO-MUKPOCKOITNIECKOTO UCCIIEJOBAHUS:
a — o0paboTaHHas MOBEPXHOCTh CTEKIIONJIACTHKA; 6 — 00paboTaHHAas! TOBEPXHOCTh YTJICTIIIACTHKA,
6 — MOP(QOJIOTHS CTPY>KKH CTEKIIOIIACTHKA; & — MOP(OJIOTHS CTPY>KKH YIIIEIIaCTHKA

Fig. 12. Results of electron microscopic examination:
a — machined surface of fiberglass; b — machined surface of carbon fiber;
¢ —morphology of fiberglass chips; d — morphology of CFRP chip

The chip crushing coefficient at a milling depth of 0.5 mm and a rotation speed of 4000 rpm is k =
250. This fact indirectly confirms the increase in the productivity of processing and the decrease in the
specific cutting force.

The use of high-speed processing of parts made of composite materials confirms the effectiveness
of using new designs of multi-edge milling cutters (the quality of processing corresponds to the char-
acteristics of the world's best analogues). As confirmation, the results of experimental studies are pre-
sented in the form of comparative diagrams of measuring the surface roughness of carbon fiber rein-
forced plastics according to the parameters Ra and Rz using different types of cutters (Fig. 13, 14).
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Fig. 13. Roughness of the machined surface Ra after comparative tests
with different cutter designs
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Fig. 14. Results of measurements of parameter Rz after comparative tests

Conclusion

Based on the results of a complex of computational and experimental studies, the following main
conclusions can be made:

1. The semi-empirical calculation formulae proposed on the basis of research adequately reflect the
results of full-scale experiments and make it possible to determine rational cutting modes for obtaining
complex surfaces such as an equiaxed contour.

2. Full-scale experiments confirmed the practical significance and technical and economic effi-
ciency of the proposed design and technological solutions: complex drive parts were manufactured by
milling, and the processing time was reduced from 6 hours to 18 minutes on a G-64S electrical dis-
charge machine (in the basic version of the technological process).

3. The multi-edge design of the new cutter-router with a trapezoidal shape of the cutting edge of
the tooth ensures an increase in the quality of processing composite materials, namely, reduction in the
roughness and defects of the surface layer (at the level of the world's best analogues).

4. The experimental studies made it possible to evaluate the influence of cutting modes, geometric
parameters of the cutting part of the tool (profile and number of teeth), kinematics of relative move-
ment in the “tool — workpiece” system on the shape and dimensions of a complex contour surface ob-
tained by milling.
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