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B yenosusax nenpepwisnozo unancuposanus npoepamm Munucmepemea obopoust Poccuiickoii @ede-
payuu 0cobeHHO 0Cmpo 8cmaem 60NPOC NOUCKA HAUDOAee pPe3yTbMaAmUEHbIX nymetl MOOEPHU3AYUU uzoe-
JIULL BOOPYIHCEHUSL U BOEHHOU (CNeyUuanvbHol) MexHUuKl, Hapabomky 8 obaacmu KOmopvlx MAKCUMANbHbL U
npOYeccyl UX COBEPULCHCTNBOBAHUS MOSYM 3aHAMb He boaee HecKoabKux nem. K maxkum uzdenusam, 8 uacm-
HOCMU, MOJCHO OmHecmu asuayuortnoe apmuineputickoe opyacue (AAO), nepcnekmugsbl UCNOAb308AHUS
KOMOpPO20 COXPAHAIOMCS HA 6eCb NePU0d CYWeCmBEOBAHUsL apMUU ¢ 8oopydiceHuem 0oviunoeo muna. Oc-
HOBHbIM (DAKMOPOM, GIUAIOWUM HA Kavecmeo @yukyuonuposanus AAO, cuumaemcs meniogusuueckoe
HazpyoJiceHue MaloKambepHo2o0 apmuiiepulickoeo cmeona (daiee — cmeon) 8 npoyecce cmpenvowvi. llpo-
OnemMa nogvlueHUss MOYHOCHU ONpedesieHUsT MeMnepamypHoeo Noisl CMeoad 6HO6b AKMYANU3UPOSAHA
VoKrcecmoyeHuem YCiosull HaneceHus yoapoe no yenim. Ha nepeviii nian 6vl08umynucs 80npocwyl, mecHo
cesa3anHble ¢ unmencuguxayueil pedicumos npumenerus AAO. Omo sonpocwvl Hazpesa, 0X1aNCOeHUsl, NPOU-
HOCMU NpU HAZpese, UZHOCA, JCUBYYECmU CMBOJI08, BONPOCLL be30nacHocmu U 3pgexmugnocmu cmpeiob-
ov1. Hecmomps na memooonocuueckyio 04e8UOHOCHb AHATUMUYEeCKUX U YUCTIeHHBIX N00X0008 (opmanu3a-
yuu menionepeoayu 6 CmeoAe, UX NPAKMUYECKAs peanuzayus O0080AbHO  clodicHa. Dusuxo-
MAMeMamu4ecKuti CMuLCL MO NPUYUHBL CLeOYIOWULL. B03MONCHAS HEYCMOUMUBOCTNb peuleHUl, nposeie-
HUe OCYULTAYUL 8 001ACAX DOTLUUX SPAOUEHINO8, 0OHOBPEMEHHOe NPUCYMCMEUe 8 001ACmaX peuleHull
CBEPX36YKOBbIX, 36YKOBBIX U O038YKOBBIX 30H, CYWECB08AHUE JIAMUHAPHLIX, MYPOYICHMHbIX MeYeHUll U
Opy2ux HeTUHElHbIX 00PA306aHULl, HEMPUBUAILHOCHb ROCHAHOBKYU SPAHUYHBIX YCIA0BULL, HATUYUe mepmMule-
CK020 conpomueienus nosepxuocmeti u m. 0. OOHAKO npakmuiecKue Hyi#covl obecneuenus 6e30nacHocmu u
nosvluieHust ggexmuenocmu ocuegou sxcnayamayuu AAO ouxkmyrom HeobXo0umMocms NOJAYYeHUs OIUZKO20
NPUOTUICEHUSL PACCMAMPUBAEMOUl 3a0a4l K ee BO3MOJCHO CYWeCmEyIowemy MOYHOMY AHATUMUYECKOMY
pewenuio. Lenvio pabomuvl YCMAHOBIEHO COBEPUICHCMBOBAHUE MAMEMATNUYECKO20 ANNAPAma, MoOeiupyio-
weeo memnepamypHoe noie Cmeoid Ha OCHO8e COHYeMAaHUs Memooos Menio0OMeHa U MAmeMamuyeckoll
Guzuxu. TIposeproti docmoseprocmu paspabomaHHoOl Mamemamuyeckol Mooenu (Oanee — Mooeib, eciu U3
KOHMEKCMA U3NONCEHUsl MAMepUand sCHO, Ymo pedb Uoem UMEHHO O NpedidzaemMom UHCMPYMeHmapuu),
VCMAHOBIEeHbL (YaKnbl OMCYMCMBUSL MEMOOUYECKUX OWUDOK NPU POPMUPOBAHUU COCTNABHBIX OJIOKO8 MOOenu
U NOBbIUEHUST MOYHOCIU OeQUHUYUL MENL08020 HazpyceHus cmeona Ha 9,4 %. Hcxoos uz akyenmos 3as6-
JIEHHOU NPOOIeMbl, APSYMEHMUPOBAHBL HANPAGILEHUS COBEPULEHCTNEOBAHUS MOOECIU.

Kniouesvie crosa: pesicum cmpenvOvl, menionposooHocms, ouggepenyuaivHoe ypaghenue, pazHocm-
Hoe ypasHeHue, annpoKkcuMayusi, 00CMo8epHOCHIb.
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In the conditions of continuous financing of the programs of the Ministry of defense of the Russian Fed-
eration, the question of finding the most effective ways to modernize weapons and military (special) equip-
ment, the developments in which are maximum and the processes of their improvement can take no more
than a few years, is particularly acute. Such products, in particular, include aviation artillery weapons
(AAO), the prospects for the use of which remain for the entire period of the army's existence with conven-
tional weapons. The main factor influencing the quality of the AAO functioning is considered to be the ther-
mophysical loading of a small-caliber artillery barrel (hereinafter referred to as the barrel) during firing.
The problem of increasing the accuracy of determining the temperature field of the barrel is again updated
by tightening the conditions for striking targets. Issues closely related to the intensification of AAO applica-
tion regimes have come to the fore. These are issues of heating, cooling, thermal strength, wear, barrel sur-
vivability, issues of safety and firing efficiency. Despite the methodological evidence of analytical and nu-
merical approaches to formalizing heat transfer in the wellbore, their practical implementation is rather
complicated. The physical and mathematical meaning of this reason is as follows: possible instability of so-
lutions, manifestation of oscillations in areas of large gradients; simultaneous presence in the solution re-
gions of supersonic, sonic and subsonic zones, the existence of laminar, turbulent flows and other non-linear
formations, non-triviality of setting boundary conditions; the presence of thermal resistance of surfaces, etc.
However, the practical needs of ensuring safety and increasing the efficiency of fire operation of AAO dic-
tate the need to obtain a close approximation of the problem under consideration to its possibly existing ex-
act analytical solution. The aim of the work is to improve the mathematical apparatus that simulates the
temperature field of the shaft based on a combination of heat transfer methods and mathematical physics. By
verifying the reliability of the developed mathematical model (hereinafter referred to as the model, if from
the context of the presentation of the material it is clear that we are talking about the proposed tools), the
facts of the absence of methodological errors in the formation of the constituent blocks of the model and the
increase in the accuracy of determining the thermal loading of the wellbore by 9.4 % were established.
Based on the accents of the stated problem, the directions for improving the model are argued.

Keywords: firing mode, thermal conductivity, differential equation, difference equation, approximation,
reliability.

Introduction

An analysis of existing trends in the development of artillery convincingly shows that at present the
main attention of specialists is not so much the creation of new models, but rather the optimization of
the tactical and technical characteristics of serial types of AAO [1]. An important obstacle when
searching for the reserve functionality of AAQO is manifested in the phenomenon of heating the barrel,
which is cyclically subjected to high thermomechanical loads created by firing modes. The barrel
largely determines the combat properties of the AAO, since it is in the barrel that the ballistic charac-
teristics are realized and the design of all elements of the “cartridge-barrel” system largely depends on
its design. As a result, the scientific and technical task of formalizing the temperature field of the
barrel seems to be a priority task of AAO research.

The physical meanings of the automatic firing process indicate the need for an indispensable de-
scription of the non-stationary heating and cooling of the barrel by solving the differential equation of
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thermal conductivity and the conditions of uniqueness with variable, continuous and discontinuous coef-
ficients [2]. However, the exact solution of the thermophysics equation is limited for a certain range of
problems. Such problems include the multidimensional, nonstationary, nonlinear problem of heat
transfer in a cylindrical wall with a cross section varying along its length. Without dwelling on the di-
verse variations of approximation schemes for the differential heat equation and uniqueness conditions in
various subject areas, we note the most successful approaches developed by domestic and foreign scien-
tists. Thus, in the articles [3—5], experimental research schemes and methods for processing output data
are proposed that provide increased accuracy in determining body temperature and expanded the meas-
urement range; the article [6] presents a unique thermal model developed based on the apparatus of
probability theory; in the article [7], the temperature fields of finned walls of various configurations were
determined by numerical solutions of the multidimensional heat conduction problem; the article [8] pro-
posed tools for mathematical modeling (hereinafter referred to as modeling) of the temperature field in
gas turbine units, taking into account as much as possible the set of parameters in multifactor boundary
conditions of the boundary layer; in the article [9], correlation regression dependencies of the optimal
extrema of loading barrels of small arms and cannon artillery weapons were obtained. Examples of
works on similar topics in the field of aviation artillery science include the articles [10—13].

Despite the fact that in the analyzed works almost all of the presentation of the material, naturally,
is of a purely specific nature, some ideas of colleagues turned out to be useful in achieving the goal of
this work.

Formation of a model scheme for studying the temperature field of the barrel

Obtaining the desired solution to the problem posed in a non-stationary formulation, with thermo-
physical coefficients depending on temperature, is carried out in a sequence that ensures step-by-step
specification of dependent actions.

Since the barrel has the shape of a limited cylinder of finite length, with the structural absence of
heat sources in the internal sections of the barrel, the basic equation of thermal conductivity is pre-
sented in a cylindrical coordinate system in the form [2; 14; 15]:

or (aZT T 10T 1 aZT]
—=a —2+—2+——+—2—2 , (1)
ot oz or" ror r o9

where T — barrel temperature; ¢ — time; a — thermal diffusivity coefficient of barrel steel; z, r, 0, — ra-
dius vector, applicate and polar angle, respectively, of the cylindrical coordinate system.

Coefficient a in the equation (1) is significant for non-stationary thermal processes and character-
izes the rate of change in body temperature:

a=—, ()
cp
where A, ¢, p — coefficients of thermal conductivity, specific heat capacity and density, respectively, of
barrel steel.

If the thermal conductivity coefficient of barrel steel A characterizes the ability of a material to
conduct heat, then the thermal conductivity coefficient of barrel steel a is a measure of the thermal
inertia properties of the body under study. The rate of temperature change at any point in the barrel
will be greater, the greater the value of the coefficient a, which is revealed by the test condition when
operating with formula (2), formed as a table of dependences of the thermal conductivity coefficients A
and specific heat ¢ of the barrel steel on the barrel temperature 7'[16].

The most complete mathematical models of heat exchange processes occurring in various products
with various configurations take into account the presence of uneven space-time fields in the desired
quantities: temperatures of solids, liquids, gases, heat flows, radiation intensities, etc. [6-9]. Such
mathematical models are systems of partial differential equations, integral and integrodifferential
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equations. However, the solution to the problem under consideration is limited to the construction of a
model based on specific assumptions, which is explained by the following reasons:

— direct implementation of complete thermal mathematical models is possible exclusively for ele-
mentary volumes under simple boundary conditions;

— the use of an absolute mathematical model of the functioning of a pulsed heat engine is compli-
cated by the difference in the boundaries of the AAO elements and a large number of not always de-
terministic initial data;

— the issue of harmonizing the accuracy characteristics of physical and mathematical methods with
the available characteristics of computer time, memory and bit grid involves the consistent use of more
simplified, compared to the full, mathematical models that describe the thermophysical loading of the
barrel with varying degrees of detail.

When solving the problem of the most complete and objective determination of the temperature
field of a barrel heated by firing, the following assumptions are made that relate to the basic assump-
tions of the subject area of knowledge:

— the initial temperature of the barrel is approximately equal to the ambient temperature (7, = 7>) or
corresponds to its distribution over the surface of the barrel; subsequent loading with shots is charac-
terized by the presence of a very specific temperature field of the barrel before each shot;

— the material of the barrel steel OXH2M®A is considered isotropic and homogeneous, that is, the
coefficients of thermal conductivity A and specific heat capacity c of the barrel steel do not depend on
spatial coordinates;

—the contact of the cartridge case with the chamber wall is assumed to be ideal, due to the tight
pressing of the cartridge case under the influence of the pressure of the powder gases (hereinafter re-
ferred to as gases) when fired;

— the cartridge is represented as a model temperature concentrator and is simulated by a concen-
trated heat capacity with constant thermophysical characteristics.

The first and second assumptions about the mechanism of heat transfer in the barrel allow us to as-
sume that there are no temperature fluctuations 7 on the outer and inner surfaces of the barrel sections
after the shot. Then the isothermal surfaces remain cylindrical, having a common axis with the pipe,
and the barrel temperature 7 will change only in the radial and longitudinal directions, that is, 0T/00 =
0 and &°7/60° = 0 [2; 14]. Of the three coordinates written in equation (1) for the three-dimensional
case, when considering the applied axisymmetric problem of determining the temperature field of the
barrel, two coordinates z and » will remain. In addition, since the barrel is a body of rotation and is
symmetrical about the longitudinal axis, after some transformations carried out for the convenience of
data grouping, formula (1) is reduced to the equation for finding a two-dimensional temperature field

of the barrel on the plane (0, z, ):

1oT o(oT) 10( oT

— == ||| 3)
a ot az(azj r@r( arj

It should also be noted here that the accepting of the extreme two assumptions determines the need,
discussed above, to take into account in equation (3) the dependence of the thermal conductivity coeffi-
cients A and specific heat capacity ¢ of barrel steel, included in formula (2), on the barrel temperature 7
when studying applied issues of safe placement of the next cartridge in the barrel heated by shooting.

The basic differential equation of thermophysics (3) establishes a connection between temporal and
spatial changes in temperature at any point in the barrel at which the phenomenon of thermal conduc-
tivity occurs. A differential equation of the form (3) can have an infinite number of solutions. Isolating
from this set a solution that reflects the conditions of thermal interaction in the barrel and specifies the
problem posed was carried out by adding geometric, boundary and physical conditions of uniqueness
to equation (3). The boundary conditions of uniqueness are further understood as a set of initial and
boundary conditions.
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When arguing the geometric conditions of unambiguity, the world's lightest 30-millimeter aircraft
gun GSh-301 with a unique single-barrel automation circuit, which is in service with most modern
aircraft and is planned to equip future aircraft weapons systems, was chosen. Since the barrel is a
symmetrical body of rotation relative to the longitudinal axis, the introduction into consideration of a
truncated region consisting of internal I';, external I'; and vertical boundaries I';, I'y located on one
side of the longitudinal axis of the trunk is quite sufficient. Fig. 1 shows a diagram of the axial sym-
metry of the AAO type GSh-301 barrel in a cylindrical coordinate system (0, z, r,), specifying the dia-
gram presented in article [17] by including the boundary designations I'; — I'4, required for further
clarifications. As before, the z axis coincides with the longitudinal axis of the barrel, and the tempera-
ture distribution in each calculated cross section of the barrel is symmetrical relative to the channel
axis T = T(r).
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0.02— I r

I

0,01—

0 >
| | | | |

0 0,3 0,6 0,9 1,2 1,5

Puc. 1. Cxema oceBoif cummeTpun cTBoja aBuannoHHoi mymky ['H-301

Fig. 1. Scheme of axial symmetry of the GSh-301 aircraft gun barrel

In the process of applying AAO, the flight of an aircraft, as a rule, is carried out in a quasi-steady
mode v, = const and, based on the first assumption, the initial conditions of the problem are written in
the form:

T(z, r,0) =T, = const . @)

The boundary conditions for the simulated process must reflect the conditions of thermal interac-
tion between the environment and the surface of the body. In general, boundary conditions can be
specified in several ways. In the theory of heat transfer, boundary conditions of four types are
distinguished [2; 14]. First type boundary conditions are specified in the form of temperature distribu-
tion on the surface of bodies. A mathematical description of heat transfer by first type boundary condi-
tions is used for given temperature changes at the boundaries of bodies or very intense thermal con-
ductivity on surfaces, when the temperatures of the surfaces are close to each other. The range of such
practical problems is limited, and first type boundary conditions are used mainly in estimation calcula-
tions. Boundary conditions of the second kind are specified by the distribution of heat flux density on
the surface of the body. The physical essence of the heat exchange conditions corresponding to second
type boundary conditions reflects the heating and cooling of bodies through radiation, when heat ex-
change occurs mainly according to the Lambert-Beer law with uniform heating of the surface of the
body. Third type boundary conditions are specified in the form of a dependence of the heat flux den-
sity due to thermal conductivity from the body on the temperatures of the body surface and the envi-
ronment. The mathematical description of the processes of heating and cooling a body is carried out
by Newton's law. Analytical expressions for boundary conditions of the third kind have found wide
application in studies of heat transfer at the boundaries of materials and substances. Fourth type
boundary conditions (conjugation conditions) are specified as conditions for the continuity of the tem-
perature field and conservation of energy on the contact surfaces of multilayer structures.

In research practices heat transfer in solid bodies flown around by gas flows, setting third type
boundary conditions at the boundary between the body and the flow has found wide application. Also
taking into account the fact that the barrels are not thermally insulated, when solving the problem of
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determining the temperature field of the barrel of the GSh-301 aircraft gun, we will set the boundary
conditions in the form of ambient temperatures and the laws of heat exchange between this environ-
ment and the surface of the barrel, depending on the design characteristics and conditions functioning.
At the inner I'; and outer I', boundaries of the barrel, we will set the dependence of the thermal con-
ductivity coefficient of the barrel steel A on the gas temperature 7 and air temperature 75, respectively.
At the inner boundary I'; of the barrel, convective heat exchange will take place between hot gases
and the barrel channel:

oT
ko =0,(1,-T), (5)

where r, — inner barrel radius; o; — heat transfer coefficient from gases to the bore.

Here and below, the dependence of the quantities under consideration on the current time ¢ is obvi-
ous.

We note that to calculate the boundary conditions of heat transfer in the barrel channel, it is neces-
sary to determine the intra-ballistic parameters of gases from the solution to the main problem of in-
ternal ballistics, set out in article [18].

At the outer boundary I'; of the barrel, convective heat exchange occurs between the incoming air
and the outer surface of the barrel:

oT
—7»05 =a,(T-T,), (6)

where 7, — thickness (outer radii) of barrel elements; o, — heat transfer coefficient from the outer sur-
J

face of the barrel to the air.

The development of a mathematical model of heat exchange inside and in the vicinity of the barrel
during near-wall flows of coolants, which makes it possible to determine the heat transfer coefficients
from gases to the barrel channel o, and from the outer surface of the barrel to air a,, present in formu-
lae (5) and (6), respectively, is the subject of the article [13 ].

In accordance with the second assumption, the vertical boundaries of the barrel I'; and I, are con-
sidered adiabatic, that is, the heat flow through these boundaries can be neglected:

oT

0z

o T
0 0z

=0, (7)

z=l

where / — barrel length.

During bursts of shots, the channel and the outer surface of the barrel have quite high temperatures,
so it is necessary to take into account the design features of the AAO reference sample. Modeling of
the process of functioning of the standard cooling system of the GSh-301 aircraft gun is realized by
introducing a local heat transfer coefficient.

In order to increase the accuracy of modeling the temperature field of the barrel, the influence of
the cartridge case located in the chamber during the shot was taken into account. Based on the third
assumption, it is possible to schematize heat transfer by describing the phenomenon of thermal
conductivity. Since the thickness of the shell wall is relatively small, it is assumed that it will instantly
warm up to the gas temperature when firing 7. The boundary condition on the surface of the chamber
at characteristic points of the barrel, where direct contact of the cartridge case with the wall occurs, is
formulated as first type boundary condition [2; 14]:

T(z=0..0,175r=0)=1,. (8)

The nonstationary temperature field of the barrel is definable with the known differential equation
of the process (3) and given additional conditions (4) — (8), which completely determine the boundary
value problem:
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LT _8(0r),10(,41),
a ot 0z\ oz rorC or )’

or

A, —| =0 (L-T);
(¢ 57’,0 1(1 )
oT
—?xcgr =0,2(T—T2), )
Yj
arl ot g,
oz z=0 oz z=l

7(z=0..0,175;r =0) =T} ;
T(z,r,0)=T, =const.

Thus, with a number of simplifying assumptions, the problem of loading the barrel is formulated in
a complete form. However, as noted in the papers [2; 14; 19-22], the objective lack of an exact ana-
lytical solution to direct, multidimensional, unsteady, nonlinear heat transfer problems in areas with a
complex boundary configuration leads to the need to use numerical methods.

Synthesis of a finite-difference scheme for calculating the temperature field of the barrel

For most structures of complex shape, which also includes the shaft design, the system of eigen-
functions and the spectrum of eigenvalues of the corresponding homogeneous problem are not known
and not tabulated [19]. Therefore, for such bodies, in this case, it is convenient to use the finite
difference method as the most universal [19-22].

The area of continuous change of the argument is replaced by a discrete set of points, the intersec-
tions of which form nodes, that is, the construction of a difference grid (hereinafter referred to as the
grid), as well as the reduction of the system of partial differential equations (9) to a finite-difference
scheme, that is, the composition of a system of finite-difference algebraic (hereinafter referred to as
difference) equations are performed by analogy with the techniques described in the publication [17].
Some of the author's duplication of information is mediated by the concentration of classical physical
and mathematical meanings of the question of heating and cooling the barrel.

The area Q7 of continuous change in the arguments of the desired value T is replaced by a certain
finite set of points lying in this region. The grid points for forming the finite difference of the function
of the integer argument 7}; along the z axis are designated by k, and similar points along the r axis are
designated by j. In accordance with the specifics of the problem being solved, the region Q7 is trans-
formed into the area for calculating the temperature 7}; at kj -points of the barrel sections. In accor-
dance with the selected coordinate system (0, z ,) in the direction of the z axis, the barrel is divided
into 9 equal parts 8 =// Az, and in the direction of the r axis into v equal parts v =r, / Ar, where Az, Ar
are grid steps at the corresponding coordinates; r, — maximum barrel thickness. To do this, 3 — 1 rays
are drawn in the direction perpendicular to the z axis and v — 1 rays are directed in the direction
perpendicular to the 7 axis, as shown in Fig. 2. As a result of this partition, we have a grid consisting
of a set of internal (in Fig. 2 indicated by ®) and boundary (in Fig. 2 indicated by *) nodes. Since, in
the case under consideration, Az =1/8 = const and Ar = r,,/ v = const, then the set of nodes z;, defined
by points with numbers k=0, 1, 2, ..., Ky and the set of nodes 7;, defined by points with numbers j = 0,

1,2, ...,J,,1is a uniform spatial grid in the area QTkv .
g

Unlike the previous version [17], here we consider two possible approaches to setting geometric
conditions for uniqueness when the boundary nodes of the grid do not coincide with the boundaries of
the barrel. One of them is the introduction of additional nodes at points where the grid lines do not
coincide with the elements of the trunk geometry. The second approach is that the geometry of the
trunk is approximated by lines passing through the boundary nodes of the grid, and the geometric
conditions of uniqueness are transferred to these lines. Due to the inexpediency of introducing
additional nodes, which leads to a significant complication of the problem of constructing a difference
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scheme, the second approach turned out to be more preferable, since it does not introduce additional
difficulties in writing difference equations. The approximation of the trunk geometry is realized by
conditionally dividing it into a finite number of sections, each of which is characterized by length and
thickness, which are reduced to spatial grid steps Az and Ar along the z and r axes, respectively.

D Sy e e e

Puc. 2. Cerounas cxema crBona aBuarmonnoi mymku ['111-301

Fig. 2. Grid diagram of the GSh-301 aircraft gun barrel

By analogy with the grid for the spatial domain Q, , a temporary grid of the domain Q_, for cal-

culating the value T " is introduced in the set of nodes t;,, defined by points i =0, 1, 2, ..., I,, where i
and /, are the current and boundary, respectively, grid points for the formation of the finite difference
barrel temperature T over time . The time grid step ¢ is designated At.

The solution to the non-stationary problem of thermal conductivity in the barrel predetermines the
unconditional intersection of one-dimensional spatial grids in each direction with a time grid in the
following form:

(21 T)s Zpn= 2, +A2,7,, =T, + AT,
=Qp % Q= k=012, Ky3i=0,1,2,...I,; ;

| %0 = 0,zgg=15M,7y =0,7, =1

Ty T

r (10)
(rj,ti), Fia="; +Ar,1,, =1; + AT}

Q =0, xQ,=|j=012,,J,:i=012..1; ,

= 15-107m, 7y = 42107 M, 1, = 0,7, =1.

Expression (10) forms a stencil of a space-time grid,
the diagram of which along the longitudinal coordinate
z is shown in Fig. 3.

To construct difference analogues of differential
operators of the system of equations (9), the method of
formally replacing derivatives with finite-difference
relations was used. This method is the most justified
and applicable in problems of this class and is based on
the Taylor series expansion of fairly smooth functions,
which, as a rule, allows one to preserve the local
properties of differential equations [15]. In addition,
the method of approximating derivatives by Taylor

fecedecadacadaaa

S~ N

Puc. 3. K BbIOOpY IpOCTpaHCTBEHHO-BPEMEHHOM
CeTKH (Ha pUMepe MPOCTPAHCTBEHHON KOOD/IH- series has two main advantages:
HATHI Z ¥ BPEMEHH {) — when the size of the unit cell tends to zero, the dif-

Fig. 3. On the choice of a space-time grid ference equation is reduced to a differential equation,
(on the example of the spatial coordinate z that is, the compatibility of the equations is ensured,
and time £) which is an important criterion for stability;
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— Difference equations of any degree of accuracy can be obtained by adding or removing the re-
quired number of terms in the approximating series, and if mathematical verification is necessary, the
accuracy of the approximation is estimated from the discarded terms of the series.

The most natural way to replace the derivative is based on defining the derivative (for example,
with respect to the z coordinate) as a limit [15; 19]:

oT 1
—=1 T Az)-T —.
> A;gqo[ (z+Az) (Z)]Az (11)

If we fix the step Az in equality (11), we obtain an approximate formula for the first derivative ex-
pressed in terms of finite differences.

For the so-called right difference relation or “forward” difference:

o [T(z+A2)-T(2)]

oz

1
- (12)

Similarly, the left difference relation (the “backward” difference) is introduced, written in the form:

oT 1
—=|T(z2)-T(z—Az)|—. 13
ATl (13)
When solving heat conduction problems, it is necessary to approximate the second derivative. For
the second derivative, a linear combination of relations (12) and (13) is considered:
o°T 1
—=|T(z+Az)-2T(2)+ T(z - Az)|—. 14
S [7( )=2T(2)+T( )] = (14)
Each transition to one step “forward” is conventionally designated by “+1”, and “backward” by “-
17. Then, for the k grid point of the formation of a finite difference in the value of 7}; along the z axis,
the right difference relation (12) is transformed to the form:

oT 1
=TT (15)

The left difference relation is transformed similarly (13):

or 1
Pl Ut/ we (16)

The difference analogue of the second derivative, corresponding to formula (14), is represented by
the relation

T 1
EZ(Tku_sz +Tk—1)g- (17)

The formulas (11) — (17) and their justifications are also valid when replacing the derivative with
respect to coordinate 7 in the system of equations (9) by difference relations. In this case, in analogue
equations, instead of the variable z, the variable » will be present, and the index k£ will be replaced by
the index j. We will keep in mind the discovered analogies further, sometimes without resorting to
direct detailing of the difference scheme for the spatial variable 7.

When constructing relations that approximate the time derivative 07/0¢ in the system of equations
(9), it is permissible to use temperature values at kj-points of the barrel sections at different times:
Tkji» Trjicts Trjios ... . However, in the practice of solving most applied problems of thermal conduc-
tivity, in the vast majority of cases, exclusively two-layer (in time ¢) difference schemes are used, ap-
proximating the values of the desired temperatures at the current i-th and previous (i — 1) time point.
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Much less frequently, the temperature values at the (i — 2)™ moment of time are taken into * account
by obtaining three-layer difference schemes [19-22].

When obtaining variants of two-layer difference schemes, the time derivative is approximated by

the “backwards” time difference:
or RN
P =(T"-T )Ar' (18)

Spatial differential operators in a two-layer difference scheme are also approximated based on the
temperature values T}, at kj -points of the barrel sections at the i-th and (i — 1) * moments of time. In
this case, two limiting cases are possible.

In the first case, only the temperature values 7}; at kj -points of the barrel sections for the current i
moment of time are involved in the approximation. Thus, for the spatial variable z, the one-
dimensional space-time approximation of the first differential operator to the system of equations (9)
will have the form:

T Do
62_2:(Tk+1 - 2T +TH)E- (19)

In the second case, during approximation, only the temperature values T}; at &j -points of the barrel
sections for the previous time point (i — 1) * are used:
azT _ Ti*l 2Ti71 Ti71 1 20
7_(k+1_ et k—l)g' (20)
In accordance with options (18) — (20), we present two types of difference equations that approxi-
mate the first equation of system (9) in a one-dimensional version:

-1 poa ]

;%:(Tk+l—2Tk +Tk71)g; (21)
Ti _Ti—l . . .

%% (@~ 7] é. 22)

A difference equation of the form (22) makes it possible to express the solution to the problem of
thermal conductivity in the wellbore in explicit form on the i time layer through the known solutions
on the previous (i — 1)1* layer. Difference equation (22) forms an explicit difference scheme. Algo-
rithms for the numerical calculation of the system of equations (9) using an explicit difference scheme
are quite compact when programming, but they impose requirements on computer time.

The difference scheme specified by a difference equation of the form (21) is more complicated,
since each difference equation of the form (21), in addition to the unknown solution for the .-th spatial
point, includes two more sought-after solutions for the neighboring (k — 1)-th and (k + 1)-th spatial
points. All the sought solutions turn out to be “tied” with each other into a common non-degenerate
system of difference equations. Thus, in this case, at each i-th time layer, the solutions are determined
not by explicit formulas of the form (22), but from the solution of the system (Ky — 1) of difference
equations, as a result of which the difference scheme specified by the difference equation of the form
(21) is implicit. Effective algorithms for solving the system of equations (9) using an implicit differ-
ence scheme are much more complicated than numerical algorithms using an explicit difference
scheme, but the time for solving the problem can be significantly reduced by a rational choice of steps
Az, Ar and Art.

The obvious difference in the behavior of the solutions obtained in cases of implementation of the
template in Fig. 3 using explicit (22) and implicit (21) difference schemes, a proper physical and
mathematical explanation can be given. The value of the time derivative with an explicit difference
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scheme (22) is calculated from the values of the desired function at the beginning of the time interval,

therefore the increment (7 — 7, ) does not depend on the obtained values, and the absolute value of

this increment is proportional to the step. As a result, at some critical step At, new values 7T, kl can be

obtained that contradict the physical meaning of the problem (for example, a drop in the barrel tem-
perature 7 on the i-th time layer compared to the (i — 1)-th time layer with continued exposure to gas

temperature T;). In the implicit difference scheme (21), the increment (7, k’ -7 kH) depends on all val-

ues 7, k’ on the new time layer, that is, there is a kind of “feedback” that does not allow obtaining ab-

surd increments of the grid function. However, the practice of solving real problems does not at all
exclude the advisability of including an explicit difference scheme in the stencil shown in Fig. 3.
Firstly, when describing the fast processes under study, the advantage of the implicit scheme, which
consists in a more free choice of the value of the time step At, may not appear. Secondly, explicit
schemes are more resource-intensive, especially when calculating on computers with several parallel
processors, which are widely used nowadays.

Due to the uniformity of the grid over all spatial coordinates, the fact of difference approximation
of the differential operator for the variable » for each value of z at any local point, both along an iso-
lated coordinate » and when solving a problem with a time variable ¢ simultaneously, can be shown in
a similar way.

One of the most important achievements of computational mathematics is the development of vari-
ous difference schemes for solving multidimensional partial differential equations of thermophysics
[19-22]. The desire to obtain a close approximation of the problem of temperature loading of the
barrel to its possibly existing exact analytical solution was facilitated by selection and some techniques
for transforming the longitudinal-transverse difference scheme of the Peaceman-Rackford two-
dimensional sweep method. The main advantages of the preferred explicit-implicit difference scheme
include: a combination of the strengths of explicit difference schemes (low computer time consump-
tion at the time step At) and implicit difference schemes (unconditional stability, that is, the ability to
ensure the accuracy of the solution at any degree of mesh detail); possibility of application to multidi-
mensional areas and co-occurring processes; adaptability to compiling efficient machine codes on
high-speed computers with a sufficiently large amount of RAM.

The course of the two-dimensional physical process of heating and cooling the barrel at each time
step At in spatial steps Az and Ar is delivered as a result of the sequential implementation of one-
dimensional processes, each of which begins from the distribution of the temperature field of the bar-
rel that arose after the end of the previous one-dimensional process. Based on this representation,
called splitting [20; 22] modeling of one-dimensional processes is carried out implicitly, and the se-
quential action of processes is taken into account in an essentially explicit way. Given the given
boundary conditions and the same initial temperature 7 at all points in the region of a complex-shaped
barrel, the optimal solution is achieved by reducing the multidimensional problem at each time step At
to a set of one-dimensional problems solved by the sweep method.

The specificity of the stability of the implicit approximation of locally one-dimensional problems
with any division of the time step At determined the method for increasing the accuracy of the forma-
tion of an array of barrel temperatures 7. The essence of the method is to select a template on the time
grid containing a half-integer layer:

T2 = T,-+12— "£=0,5-4r, (23)

as shown in fig. 4.

Then, taking into account difference equations (21) and (22), difference relation (23), as well as the
discussed spatial analogies, the finite-difference approximation of the first equation of system (9) ac-
cording to the longitudinal-transverse difference scheme for the direction z for any value of » will be
look like:

727



Cubupckuil aspoxocmuueckuil scypHan. Tom 24, N2 4

i+1/2 j i+1/2 i+1/2 i+1/2 i i i
1T =Ty Toen; =205 +Tocn | Milegen =0 1) + 15Ty

a 0,5-At (AZ)2 r; (AI")2 (24)

Ti+l- *
el
Tii0s — >
zZ
T ® °

Puc. 4. K Bb160py BpeMeHHOI0 111a010Ha IPOAOIbHO-NONEPEYHOM Pa3HOCTHON CXEMBI
MeTozoM AByMepHOil nporonku ITucmena — Pakdopaa

Fig. 4. To the choice of the time template of the longitudinal-transverse difference scheme
by the method of two directions of Peaceman — Rackford

The boundary and initial conditions along the z coordinate for each fixed value of r are approxi-
mated as follows
— initial condition:
i=0 T)=T,
o (25)
i>0  T;=T.".
— boundary conditions:
i+1/2 _ itl/2
Ty =T,

i+1/2 _ ri+1/2
TKSJ _T(Ks—l)j'

(26)

When synthesizing a modified two-layer difference scheme, the solution to the non-stationary heat
conduction problem on a separate layer can be considered as the initial condition for subsequent lay-
ers. Consequently, we write the finite-difference approximation of the first equation of system (9) for
the direction 7 for any value of z in the following form:

i+1/2 i j+1 i+1 i+1 i+1/2 i+1/2 i+1/2
157" =Ty rTiGey U+ 0T +r0T G N Ty, =205~ + T
] 2 2 :
a 0,5-At r(Ar) (Az)

27

The boundary and initial conditions along the z coordinate for each fixed value of r are approxi-
mated as follows:
— initial condition:

T =T + T — solution to the equation (24); (28)
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— boundary conditions:

i+l i+l

" k1 . k2 =g, (Tl’z]’:l _Tkil+l)’
(29)

Ti+l _ i+l
Y k(Jy-1) Ky =q Ti+l _ i+1
c Ar 2\ "k, 2%k

Eliminating possible discrepancies, we note that in difference relation (29) 7, ,j{” and 7, ,j{” denote,

respectively, the temperatures of gases and air at the k-th spatial grid point on the (i + 1)-th time layer.
From equations (24), (27) it is clear that in the constructed difference scheme the transition from
the i-th to the (i + 1)-th time layer occurs in two stages with steps of 0.5 At = 0.5 (147 — 1;). Along with

the main values of the grid function 7, ,; and T, kj.” , intermediate values Tkjﬂ/z, are introduced which

are formally considered as the values of Tj; at (t;s; — 27;412). Relation (24) contains three unknown
quantities 71(’}{?{)_2[,7};+1/2,]1(2+711/)_2j, values 7, ki( o L ,;,
integrating systems of equations of internal and intermediate ballistics [18]. That is, by relation (24)
the difference scheme is classified as implicit in the z coordinate and explicit in the » coordinate. For
any value of r, the numerical solution can be found by sweeping in the z direction. The desired tem-
perature values 7j; at kj -points of the barrel sections are related to each other “horizontally” and “ver-
tically”. Moreover, the unknowns of any internal horizontal straight line “interact” on the time half-

layer exclusively with the unknowns of two adjacent straight lines — the upper and lower ones. Next,

T, ki( -1y can be determined on the initial layer by

using relation (27), which contains three unknown quantities 7,7, ", 7}, (the values

T(’,:l/)zj , Tkj”/z , T(’;ll/)i are recorded by sweeping in the z direction at values of r), the difference scheme

is translated into a form that is implicit in the » coordinate and explicit in the z coordinate. Therefore,
the final distribution of temperature 7}; at kj-points of the barrel sections is found by sweeping in the
direction r at any value of z, where the transition between time layers is also performed in half-steps in
the longitudinal and transverse directions, respectively, along the rows and columns on the grid.

The problem of optimal selection of grid steps Az, Ar, At and thus the number of its nodes is not
easy. On the one hand, the greater the accuracy required, the finer the step is desirable. On the other
hand, too small a step significantly increases the requirements for the speed and memory capacity of
computers. Obviously, there must be some meshes with an optimal number of nodes. We will optimize
the grid based on the conditions for the best convergence of the results of the numerical calculation
with the likely existing true analytical solution and borrowed experimental data.

First of all, in order to most accurately determine the temperature field of the barrel, it is advisable
to solve the problem taking into account the configuration of the rifling, since their presence leads to
uneven temperature distribution along the perimeter of the rifled part of the barrel bore [9; 10]. The
initial requirement of incomparably small size Ar of the grid pitch along the r axis in relation to the
height of the rifling field is obvious. In general, the value Ar of the grid step along the » axis is as-
signed according to the approximate dependence of the stationary and linear components [23]:

A-AT
Ar = s
al(Tl—TO—AT)

where AT — temperature gradient on the heat exchange surface (for AAO AT <323 K).

Since the velocity of the projectile (gases) when fired v; in time ¢ and along the barrel length /
gradually increases, reaching the value v, at the muzzle of the barrel, this feature does not allow con-
structing a uniform grid in time At, since along the barrel length / the grid step size Az along the z axis
will also increase. This, in turn, can lead to the fact that the accuracy of the solution results obtained at

different points in the area of discrete changes in the arguments Qrk. of the value 7); will differ sig-

nificantly from each other, which is unacceptable. Taking into account also the fact that calculations at
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each i-th time layer are performed both on the basis of the value of the previous (i — 1)-th and the pre-
vious (i — 0.5)-th time layer, the error will accumulate quite quickly. In order to eliminate this event,
when calculating the heating of the barrel during the time of movement of the projectile (gases) along
the barrel bore ¢, it is advisable to use a variable time step At # const, assigned when solving the main
problem of internal ballistics [18]. Further, during the aftereffect period #, and in the time intervals
between bursts of shots At, a constant time step At = const is established, assigned, in turn, for the pe-
riod of intermediate ballistics:

0,0002—, if £<t,;
A%
At= ; (30)
0,0002—, ift>t,.
1%

pie

In contrast to the spatial grid, the set of nodes t;, defined by points i =0, 1, 2, ..., /, is a non-uniform
temporary grid in the area (2 i

The justification for the value Az of the grid step along the z axis, providing the desired accuracy,
of the solution was made using the stability condition for the explicit components of the difference
scheme (24)—(29) [20; 22], including, among other things, the constancy of the time step At of the
lower part of formula (30):

(Az)’

A >2a, for At=const, a = const. 31
T

Formula (31) shows a strict connection between the value Az of the grid step along the z axis and
the values At of the grid step over time ¢, since the accuracy of solving the problem directly depends
on the correct choice of the latter. From the stability condition (31) follows a guide to action - the re-
finement of the spatial grid must be accompanied by the refinement of the time grid. For example,
when the number of spatial nodes z; increases by 4 times, it is necessary to increase the number of
time steps ¢ of the difference grid At by 16 times. Previously, the need to comply with condition (31)
led to the fact that when determining the step size At in solving real non-stationary problems of ther-
mophysics, it was not possible to proceed only from the nature of the physical process being studied.
This in some cases led to unacceptable costs of machining time. In addition, with an unreasonably
large number of time nodes t;, a rounding error was observed, which occurs during numerical calcula-
tions in calculating machines of early generations.

The stability property of the explicit part of the difference scheme (24) — (29) has also been estab-
lished in practice, by ascertaining the absence of “divergent mode” of the numerical solution in the
process of trial calculations.

When considering the approximation property of the formed difference scheme (24)—(29), a special
concept of the so-called total approximation was introduced [20; 22] of locally one-dimensional dif-
ference schemes, which is as follows. Each of the intermediate difference equations (24) or (27) sepa-
rately may not have the approximation property. However, the discrepancy arising at the first time
half-step, as a rule, is compensated at the second time half-step with the correct combination of spatial
steps Az, Ar and time step At, so that in general the approximation error is obtained, tending to zero at
the given degree of detail of the space-time grid.

Such a way of discretizing the computational domain should be recognized, although labor-
intensive, but also the most acceptable for solving an applied problem of thermophysics.

Thus, a discrete set of grid points is characterized by coordinates and parameters:

z, =(k—1)-Az, Az=0,001m, k=1,151;
ri=n+(j—1)-Ar, Ar=0,125-10" M, j = 1,161;

T, =(—1)-Ar,
Ti10 =0,5-A1,i=0,1.
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Thus, the resulting expressions (24)—(29) constitute a method for numerically solving the boundary
value problem (9) for determining the grid temperatures of the barrel Tj'k Taking into account

nonlinearity of the first kind in the numerical solution of the system of equations (9) is organized by an
iterative process, in which the determination of the next approximation is carried out by including a
linear solution, in which the coefficients of thermal conductivity A and specific heat ¢ of barrel steel
are calculated from the values of barrel temperatures 7 found on previous iteration. The formation of a
non-stationary temperature field of the GSh-301 aircraft gun barrel is generally feasible by software

organization of a matrix of values T]lk when studying the application modes of AAO.

In the papers [19-22] it was proven that in the presence of approximation and stability, conver-
gence of all types of difference schemes will always take place. However, this fact does not exclude
the scientific and methodological significance of the procedure for checking the improvement in the
convergence of the results of modeling the thermophysical loading of the system in comparison with
the known results.

Checking the reliability of the thermophysical model of barrel loading

Applied research into the quality of AAO is preceded by checking the developed model for the
adequacy of reflecting the simulated thermophysical processes occurring in a gas-dynamic pulse ma-
chine. Establishing the set of properties of the model that determine its suitability for conducting
diverse numerical experiments is possible by comparing the modeling results with experimental data,
as well as with the known averaged results of some theoretical works that are closest to the
experimental data. This approach can significantly increase the reliability of the conclusions.

Based on these positions, the verification of the degree of objective representation by the calcula-
tion results of the actual values of the main parameter was carried out by numerical modeling of the
process of heating and cooling of the barrel surface worked out at the test site during and after shoot-
ing a combat set of 75 rounds. The content of firing modes and conditions for the use of AAO are lim-
ited to the type of information that does not require further specifications. The combined results of the
full-scale experiment and calculation are shown in the form of graphs of the dependence of the barrel
temperature 7 on time ¢ in Fig. 5.
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Fig. 5. Dependence of the barrel temperature of the GSh-301 aircraft gun in the area of the compensator
on time when firing a combat set of 75 rounds of ammunition
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Analysis of the results obtained shows that there is a fairly good correlation between experiments
and calculated data. Satisfactory agreement between the modeling results and the experimental data is
confirmed by the fact that the averaged relative error in determining the barrel temperature 7 in the
reference section does not exceed 0.6 %. In most works in the field of aviation artillery science, in-
cluding the works of the co-author of the article, the discrepancy between this value in numerical and
full-scale experiments is about 10 % [9; 11].

Thus, an increase in the accuracy of simulating thermal loading of the barrel by 9.4 % was
achieved:

— taking into account the nonlinearity of the thermophysical properties of the barrel steel material
A (1), «T);

— choosing the values (probably close to optimal) of the grid steps Az, Ar in the corresponding co-
ordinates z, », as well as the size of the step At in time ¢ in the thermophysical model of barrel loading;

— an effective combination of the advantages of explicit and implicit difference schemes in the
constructed explicit-implicit difference scheme for finite-difference approximation of the heat transfer
problem in a body with a complex geometric shape.

The formalization of thermophysical processes of heat propagation in a thermally loaded AAO
element is logically completed by a package of application programs designed to calculate the thermal
state of the barrel during firing and determine safe firing modes for a range of flight conditions of the
carrier aircraft [24]. Algorithms for the numerical calculation of the system of equations (9) using the
corresponding finite-difference scheme (24) — (29) were debugged using the Microsoft Developer Stu-
dio software product, the Fortran Power Station 4.0 environment and the FORTRAN 90 algorithmic
language.

Prospects for further improvement of the model

The software organization for calculating the temperature field of the barrel when using AAO
comes down to multiple (according to firing modes) solution of the system of equations (24)—(29) with
the initial distribution of the barrel temperature 7, which is established at the beginning of the next
shot and is determined by solving the same system of equations (24)—(29) for the previous shot. The
proposed tools make it possible to adequately simulate the temperature field of the barrel under vari-
ous firing conditions and create a basis for the composition of the maximum effective firing modes.

At the same time, there are practical applications of medium-sized special mechanical engineering,
for which some of the assumptions adopted in the paper have to be removed. Thus, when analyzing
the heating of a barrel in the area of gas outlet openings of gas automatics or muzzle devices, it is nec-
essary to take into account local heat flows in the elements connected to the barrel. Then we should
move on to a much more complex three-dimensional formulation in coordinates (0, z, 7, 8). The need
to solve three-dimensional heat transfer problems is not excluded when analyzing the effectiveness of
cooling fins or grooves, the thermal state of the rifling, and taking into account the technological varia-
tion in the thickness of the barrel. In addition, when studying the mechanism of barrel wear when ana-
lyzing the thermally stressed state of a thin surface layer of metal adjacent to the channel surface, it is
inevitable to take into account the dependence of the thermophysical characteristics of the barrel steel
on not only temperature, but also on spatial coordinates. In practical calculations, it is increasingly
necessary to abandon the assumption of the constancy of the thermophysical characteristics of the car-
tridge. Calculations based on the so-called “instantaneous” values of the thermophysical characteris-
tics of the elements of ammunition located in the barrel during breaks between automatic firing help to
clarify the thermodynamic state of the “cartridge-barrel” system and more closely link it with the
combat properties of the AAO.

To obtain more complete information about the accuracy characteristics of the model, it is advis-
able to additionally conduct a series of flight experiments that provide natural conditions for thermal
loading of the barrel. Then the assessment of the averaged relative error in modeling the heating and
cooling of the barrel will undoubtedly be more objective.
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Conclusion

By matching the accuracy characteristics of physical and mathematical methods for solving heat
transfer problems and related problems with the colossal characteristics of speed, memory and bit grid
of modern computer machines, a model of increased accuracy was synthesized, which differs from the
known ones by the variable selection of the pitch of the template-grid of the barrel of the GSh-301 air-
craft gun. The applied significance of the model is demonstrated by the availability of methods for its
adaptation to solving other problems of thermodynamics and mechanics of the strength of barrels.
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