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Аннотация. Автономная навигация играет важную роль во многих областях и приложениях,  

в значительной степени опираясь на измерения Глобальной системы позиционирования (ГПС), ко-

торая в некоторых районах может быть недоступна. Это напрямую влияет на работу автоном-

ной навигации, что, в свою очередь, приводит к проблемам, связанным с её функциями. В данном 

исследовании использована обобщённая регрессионная нейронная сеть (ОРНС или GRNN), являю-

щаяся вариацией радиально-базисных нейронных сетей, для компенсации измерений ГПС в условиях 

её отсутствия с целью повышения точности параметров автономной навигации (в первую очередь 

положения и скорости) объекта. ОРНС интегрирована со слабо связанной обобщённой фильтра-

цией Калмана (ОФК). Были оценены параметры положения, скорости, ориентации и смещения 

сенсоров. Оценка предложенного метода проводилась с использованием набора данных из интер-

нета. Были созданы две симуляции отсутствия измерений ГПС (периоды отсутствия составили 

40 и 30 с) для оценки поведения ОРНС. Результаты показали, что использование ОРНС в условиях 

отсутствия ГПС является эффективным и надёжным решением, превосходящим метод слабо свя-

занного ОФК. 

 

Ключевые слова: автономная навигация, глобальная система позиционирования, обобщённая 

регрессионная нейронная сеть, слабо связанная обобщённая фильтрация Калмана. 
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Abstract. Autonomous navigation is very important in many fields and applications and it specifically 

depends on global positioning system (GPS) measurements which may not be accessible in some areas. 

This will directly affect the autonomous navigation and sequentially this will lead to problems according to 

the function of autonomous navigation. In this research, generalized regression neural network (GRNN) 

which is a variation to radial basis neural networks, was used to compensate global positioning system 

(GPS) measurements in case of GPS absences to increase accuracy of autonomous navigation parameters 

(basically location and velocity) of object. GRNN is integrated with loosely coupled Extended Kalman Fil-

ter (EKF). Location, velocity, orientation parameters and biases of sensors are estimated. The evaluation 

of this methods was conducted using dataset from Internet, two simulations for the GPS measurements out-

ages were made (first outage periods were 35 and 60 seconds) to evaluate the behavior of GRNN, the re-

sults shows that using GRNN in GPS absence is effective and robust, it outperformed the only loosely cou-

pled EKF method.  

 

Keywords: Autonomous Navigation, Global positioning System, generalized regression neural network, 

Loosely Coupled Extended Kalman Filter (EKF). 

 

Introduction 

In the field of application of artificial intelligence (AI) methods in various fields of applied sci-

ences, many AI technologies have been developed and applied for autonomous navigation of mobile 

objects. This integration is extremely effective because the main task of autonomous navigation is to 

calculate navigation parameters of mobile objects, such as location (position) and speed at each mo-

ment in time. The basis of autonomous navigation is data from inertial sensors such as accelerometers 

and gyroscopes, which make up inertial navigation systems (INS). Data from the Global Positioning 

System (GPS) and other sensors such as odometers and vision sensors can also be used [1; 2]. GPS 

data contains location and velocity information, but it has a number of disadvantages: GPS signals are 

sometimes unavailable in some environments; signal interference may occur in important locations; 

signal delays or low frequency may limit GPS accuracy; vulnerability to signal spoofing and jamming; 

dependence on satellite infrastructure, limited functionality indoors and in other environments [3]. To 

overcome these shortcomings, the integration of GPS data with inertial sensors was developed. Such 

integration can be implemented in the form of an extended Kalman filter (EKF), and other approaches. 

A loosely coupled integration methodology using EKF has been implemented between GPS, acceler-

ometers and gyroscopes [4]. This approach is called GPS/INS integration. It provides reliable calcula-

tion of navigation parameters in cases where GPS signals are delayed for a certain period of time. 

However, if this period is too long, the integration may produce inaccurate calculations. Moreover, 

inertial sensors have a number of disadvantages, such as offset, scale error, installation error, and 

other. 

Generalized regression neural network (GRNN)) is a variation of radial basis neural networks. 

GRNN was developed by D. F. Specht in 1991. It can be used for regression, prediction and 

classification, and also serves as a good solution for online dynamic systems. GRNN is an advanced 
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neural network technique based on radial basis functions with a non-iterative parameter estimation 

procedure. Although it cannot be strictly classified as a nonparametric method, due to its flexibility in 

approximating complex dependencies, it exhibits characteristics inherent in such approaches [5; 6]. 

The main objective of the article is to use a generalized regression neural network (GRNN) to im-

prove the performance of the GPS/INS system in conditions of GPS signal outages, as well as their 

absence or interruptions. 

 

Literature Review 

GRNN has not been previously applied in this area, although neural networks in general have been 

actively used. For example, in [7] the authors applied a stable extended Kalman filter (SEKF) to over-

come the low accuracy of the GPS/INS algorithm during GPS outages. They developed a low-cost 

method for GPS/INS integration and compensation of algorithm errors in the absence of GPS signals. Their 

approach compensated for the impact of gross errors in INS observations by using an artificial neural network-

based integration method to fill in missing position information. A well-trained neural network predicted and 

compensated for errors in interrupted position signals. The effectiveness of the proposed method was assessed in 

field tests using specially developed equipment, GPS and INS sensors. The results showed a 67% improvement 

in positioning accuracy for each axis in the outage periods. The proposed algorithm is capable of improving the 

accuracy of the integrated GPS/INS system to meet navigation requirements. 

[8] proposed a new approach to autonomous navigation of drones along pre-defined routes using only visual 

data from the on-board camera, without relying on GPS. The method is based on a deep convolutional neural 

network (CNN) combined with a regressor to generate control commands for the drone. To increase the 

adaptability of the system to real conditions, additional auxiliary navigation paths were used, forming a 

“navigation corridor” to increase the volume of data. The proposed algorithm replaces a human operator, 

improves the accuracy of GPS-based map navigation, eliminates problems associated with the substitution of 

GPS signals, and allows navigation in conditions without GPS signals. The approach was tested in two scenarios 

using the Unreal Engine-based drone simulator AirSim. The results were promising: the average lateral deviation 

was less than 1.4 m, and the minimum distance to the control points was less than 1 m. 

Several studies have applied AI methods in the field of navigation, including adaptive neuro-fuzzy 

inference system (ANFIS) in [9], radial basis neural networks (RBNN) in [10; 11]. 

GRNN was also used in navigation systems. For example, in [12] it was used to fill missing values 

in datasets for data analysis and machine learning. GRNN takes into account the relationships between 

data better than statistical methods such as using means or medians. GRNN has been proven to be 

more effective than statistical methods, especially on large datasets. This research demonstrates using 

GRNN to compensate for GPS signals when they are delayed or absent for various reasons. 

 

Methods 

The system description  

The orientation of a mobile object can be described using Euler angles or quaternions. The main 

advantage of using quaternions is the linearity of kinematic equations in the quaternion representation, 

as well as the absence of singularities [13]. The state vector x  in the EKF contains orientation pa-

rameters (quaternions), the object's location ( LlA : latitude, longitude, altitude), the object's velocity 

( nedV : North, East, Down), as well as the gyroscope and accelerometer offsets. The Kalman filter con-

sists of two main phases: prediction and correction. The prediction phase uses information about pre-

vious values of the state vector to make an a priori estimate of the new state vector. The correction 

phase uses GPS signal measurements to correct the state vector. A complete description of the system 

equations and EKF is presented in [14]. 

 

Integration of GPS/INS and GRNN 

GPS/INS integration is performed at every sampling cycle. When GPS signals are present, position 

and velocity information is obtained from the GPS data and used in the EKF correction phase. Let the fre-
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quency of data from GPS be RGPS, and the frequency of data from accelerometers and gyroscopes is Rag. 

Since Rag is greater than RGPS, the prediction phase of the Kalman filter will be executed more often than 

the correction phase. If the GPS signal is delayed, the integration error will accumulate, leading to an in-

crease in the error in determining the navigation parameters. 

GRNN is used in the correction phase if GPS data are not available. In the presence of a GPS signal, 

the GRNN is trained and updates its parameters. Fig. 1 shows the complete integration scheme. 

 

 

 
 

Рис. 1. Схема сочетания ГПС/ИНС и ОРНС 
 

Fig. 1. Flowchart of combination GPS/INS and GRNN 

 

 

During the training phase, the GRNN uses input data and required output values obtained from 

available GPS measurements. It results in a trained GRNN model that, in the absence of GPS meas-

urements, is used to estimate the measurements to compensate for the unavailability of GPS. 

GRNN 

GRNN is a one-way artificial neural network model consisting of four layers: input layer, sample 

layer, adder layer, and output layer. Unlike a backpropagation AI network, iterative training is not re-

quired. Each layer of the structure contains a different number of neurons and is connected sequen-

tially to the next layer [15]: 

– the first layer is the input layer. The number of neurons in this layer corresponds to the number of 

data characteristics; 

– sample layer. The number of neurons is equal to the number of data in the training set. The neu-

rons of this layer calculate the distances between the training data and the test data. The obtained re-

sults are passed through a radial basis function (activation function) with parameter σ, after which the 

values of the weights are determined; 

– the summatory layer consists of two parts: the numerator and the denominator. The numerator in-

cludes the sum of the products of the training outputs and the activation function results (weights). The 

denominator is the sum of all weight values. This layer passes the numerator and denominator to the 

next output layer; 
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– output layer. It Contains one neuron that computes the output value by dividing the numerator of 

the summatory layer by its denominator. 

GRNN mathematical equation is as follows: 
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Where ( )Y x  is the predicted value for the input data (in our case, Y  is a vector of six components: 

three are for location and three – for velocity; ky  is the activation weight for the template layer neu-
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where kd  – is the square of the Euclidean distance between the training samples kx  and the input data 

x. 
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The parameter σ determines how much the weights kW  differ. If σ is big, all kW  becomes ap-

proximately equal and the expression approaches the usual mean ky . If σ is small, the sum will be 

strongly influenced by the terms with the biggest kd , which will change the result. Parameter σ has an 

impact on the weight of each term in the sum. If σ is changed, the relative importance of the different 

ky  will change, it will lead to a different result. Therefore, σ plays a key role in the expression and 

cannot be excluded. 

At the k-th cycle kx  contains: 

– 3 accelerometer data components (at cycles , 1, 2, 3k k k k− − − ); 

– 3 gyroscope data components (at cycles , 1, 2, 3k k k k− − − ); 

– 3 velocity data components (at cycles 1, 2, 3, 4k k k k− − − − ); 

– 3 coordinate components LlA  (at cycles 1, 2, 3, 4k k k k− − − − ). 

The total input size is 12 × 4 = 48. 

At the training stage, the output data contains: 

– 3 velocity components (at cycle k ); 

– 3 coordinate components LlA  (at cycle k ). 

The total output size is 6. Figure 2 presents GRNN structure. 

Dataset 

The dataset contains all the necessary information, including data from accelerometers, gyroscopes 

and GPS. The GPS data rate is 10 Hz, and the accelerometer and gyroscope data rate is 100 Hz. 

Research findings 

To evaluate and simulate the absence of the GPS signal, two signal interruption periods were cre-

ated on two different cycles with different durations: the first interruption lasted 40 s, and the second 
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lasted 30 s. This dataset does not contain any altitude variations. The total experiment time is 760 s. 

The results of the experiment are presented in Fig. 3–6. 

 

 
 

Рис. 2. Общая структура ОРНС 
 

Fig. 2. General structure of GRNN 

 

 
 

 
 

Рис. 3. LlA  и скорость 
 

Fig. 3. LlA  and velocity 
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Рис. 4. Горизонтальная ошибка пути 
 

Fig. 4. Horizontal path error 

 

 

 

 

 
 

Рис. 5. Ошибка в LlA и скорости 
 

Fig. 5. Error of LlA and velocity 
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Рис. 6. Путь 

Fig. 6. The path 

The table shows the numerical comparison of the results. 

Comparison of the results 

The first dataset 

Parameter Error EKF EКF-GRNN Improvement, % 

Average 1 0,3 70 
Height (m) 

RMSD 10 0,3 97 

Average 1 0,59 41 
nV  (m/s) 

RMSD 5,49 2,99 45,53 

Average 1,84 0,11 94,14 
eV  (m/s) 

RMSD 10,09 1,58 84,34 

Average 0,01 0,02 – 
dV  (m/s) 

RMSD 1,89 0,22 88,35 

Average 31,78 22,82 28,19 
Horizontal error (M) 

RMSD 169,13 47,88 71,69 

Note. RMSD – root mean square deviation. 

Discussion 

Taking advantage of the GRNN training procedure allows to determine the optimal value of the pa-

rameter σ. The best practice is to find the value at which the mean square error (MSE) is minimal. 

Training is performed using the input data to find σ corresponding to the minimum MSE value. The 

results show that the GRNN-EKF method is superior to the method using only EKF, and the accuracy 

of determining navigation parameters is significantly improved. This performance improvement is due 

to the main advantages of the estimation performed by GRNN, which are always able to converge to a 

global solution and do not get stuck in a local minimum, unlike standard feedforward networks trained 

using backpropagation. 
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In addition, the input data contains features based on previous values of the target data (this means 

previous LlA  values and velocities), as well as inertial measurement data of the object, which directly 

influence the target output values of GRNN. This allows GRNN to model nonlinear dependencies be-

tween input data and target output data. GRNN also has got the ability to speed up the learning proc-

ess, permitting the network to learn faster. GRNN is trained using a one-pass method, taking only a 

fraction of the time required to train standard feedforward networks using the backpropagation 

method. The parameter σ, called Spread, is the only free parameter in the network, which is often de-

termined by cross-validation in various applications of GRNN. 

Application areas of the results include target tracking, surveillance of inaccessible areas and in-

formation gathering. 

 

Conclusion 

The research demonstrated that using a generalized regression neural network (GRNN) to compen-

sate for missing GPS data effectively improves the accuracy of autonomous navigation parameters 

such as position and speed. The integration of GRNN with loosely coupled Kalman filtering showed 

robust results, outperforming the traditional EKF-only approach. This is confirmed by the successful 

simulation of the absence of GPS data, which makes the proposed method promising for application in 

conditions of the absence or delay of GPS signals. 

 

Data availability: The information is presented as raw data and true calibration parameters 

(https://github.com/Shelfcol/gps_imu_fusion/tree/main) 
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