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Annomayus. A6moHoMHAA HABUSAYUS USPAEM BAJICHYIO PONb 80 MHOUX 00NACMAX U NPUTONCEHUSX,
6 3HAYUMENbHOU Cmenenu Onupascy Ha usmepenusi I nobanvuou cucmemol nozuyuonuposanus (I'TIC), ko-
mopas 8 HeKOMOPbIX PAUOHAX MOdicem Oblmb HeOOCMYNHA. DMO HANPAMYIO lusem Ha pabomy aémoHoM-
HOU Haguzayuu, 4mo,  c8oi0 ouepedb, NPUBOOUM K NPOOIeMAM, C8A3AHHbIM C e€é (ynukyusmu. B dannom
uccne008anHuU UCnOIb308ana 0006wénnas peepeccuonnas nevpounas cemv (OPHC unu GRNN), ssnsio-
wasca sapuayuell paouaibHO-0a3UCHbIX HellpOHHbIX cemell, 051 komnencayuu usmepenui I'TIC 8 ycrogusix
€€ omcymcmeus ¢ Yeavio NOSbIUEHUs MOYHOCIU NAPAMEMPO8 A8MOHOMHOI Hasuzayull (8 nepayio ouepeds
nonodxcenuss u ckopocmu) oovekma. OPHC unmezpuposana co ciabo ceészannot 060owénnou puibmpa-
yueti Kaimana (ODK). Boliu oyenenvl napamempvl NOAONCEHUS, CKOPOCHMU, OPUESHMAYUU U CMEWeHUs.
cercopos. OyeHKa npeonoAHCeHHO20 Memooa NPosoOULACs C UCNONb30BAHUEM HADOPA OAHHBIX U3 UHMED-
Hema. bvinu cozdanvl 06e cumynayuu omcymcemeus: usmeperuii ITIC (nepuodvl omcymcemeusi cocmaguniu
40 u 30 c) ons oyenxu noseoenuss OPHC. Pesynvmamol noxazanu, umo ucnoivzosarnue OPHC 6 yciosusx
omcymcemeus I'TIC aensemcst 3¢pghekmusHbIM U HAOEHCHBIM peuleHueM, NPEBOCX00AWUM Memood c1abo cés-
s3anno20 ODK.

Kurouesvle crosa: aemonomuas Hasueayus, 2no0AnbHASL CUCEMd NOZUYUOHUPOBAHUs, 0000UWEHHAS
pezpeccuonnas HelupoHHas cemn, c1abo ceszantas 06oowénnas purvmpayus Kaivana.
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Abstract. Autonomous navigation is very important in many fields and applications and it specifically
depends on global positioning system (GPS) measurements which may not be accessible in some areas.
This will directly affect the autonomous navigation and sequentially this will lead to problems according to
the function of autonomous navigation. In this research, generalized regression neural network (GRNN)
which is a variation to radial basis neural networks, was used to compensate global positioning system
(GPS) measurements in case of GPS absences to increase accuracy of autonomous navigation parameters
(basically location and velocity) of object. GRNN is integrated with loosely coupled Extended Kalman Fil-
ter (EKF). Location, velocity, orientation parameters and biases of sensors are estimated. The evaluation
of this methods was conducted using dataset from Internet, two simulations for the GPS measurements out-
ages were made (first outage periods were 35 and 60 seconds) to evaluate the behavior of GRNN, the re-
sults shows that using GRNN in GPS absence is effective and robust, it outperformed the only loosely cou-
pled EKF method.

Keywords: Autonomous Navigation, Global positioning System, generalized regression neural network,
Loosely Coupled Extended Kalman Filter (EKF).

Introduction

In the field of application of artificial intelligence (AI) methods in various fields of applied sci-
ences, many Al technologies have been developed and applied for autonomous navigation of mobile
objects. This integration is extremely effective because the main task of autonomous navigation is to
calculate navigation parameters of mobile objects, such as location (position) and speed at each mo-
ment in time. The basis of autonomous navigation is data from inertial sensors such as accelerometers
and gyroscopes, which make up inertial navigation systems (INS). Data from the Global Positioning
System (GPS) and other sensors such as odometers and vision sensors can also be used [1; 2]. GPS
data contains location and velocity information, but it has a number of disadvantages: GPS signals are
sometimes unavailable in some environments; signal interference may occur in important locations;
signal delays or low frequency may limit GPS accuracy; vulnerability to signal spoofing and jamming;
dependence on satellite infrastructure, limited functionality indoors and in other environments [3]. To
overcome these shortcomings, the integration of GPS data with inertial sensors was developed. Such
integration can be implemented in the form of an extended Kalman filter (EKF), and other approaches.
A loosely coupled integration methodology using EKF has been implemented between GPS, acceler-
ometers and gyroscopes [4]. This approach is called GPS/INS integration. It provides reliable calcula-
tion of navigation parameters in cases where GPS signals are delayed for a certain period of time.
However, if this period is too long, the integration may produce inaccurate calculations. Moreover,
inertial sensors have a number of disadvantages, such as offset, scale error, installation error, and
other.

Generalized regression neural network (GRNN)) is a variation of radial basis neural networks.
GRNN was developed by D. F. Specht in 1991. It can be used for regression, prediction and
classification, and also serves as a good solution for online dynamic systems. GRNN is an advanced
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neural network technique based on radial basis functions with a non-iterative parameter estimation
procedure. Although it cannot be strictly classified as a nonparametric method, due to its flexibility in
approximating complex dependencies, it exhibits characteristics inherent in such approaches [5; 6].

The main objective of the article is to use a generalized regression neural network (GRNN) to im-
prove the performance of the GPS/INS system in conditions of GPS signal outages, as well as their
absence or interruptions.

Literature Review

GRNN has not been previously applied in this area, although neural networks in general have been
actively used. For example, in [7] the authors applied a stable extended Kalman filter (SEKF) to over-
come the low accuracy of the GPS/INS algorithm during GPS outages. They developed a low-cost
method for GPS/INS integration and compensation of algorithm errors in the absence of GPS signals. Their
approach compensated for the impact of gross errors in INS observations by using an artificial neural network-
based integration method to fill in missing position information. A well-trained neural network predicted and
compensated for errors in interrupted position signals. The effectiveness of the proposed method was assessed in
field tests using specially developed equipment, GPS and INS sensors. The results showed a 67% improvement
in positioning accuracy for each axis in the outage periods. The proposed algorithm is capable of improving the
accuracy of the integrated GPS/INS system to meet navigation requirements.

[8] proposed a new approach to autonomous navigation of drones along pre-defined routes using only visual
data from the on-board camera, without relying on GPS. The method is based on a deep convolutional neural
network (CNN) combined with a regressor to generate control commands for the drone. To increase the
adaptability of the system to real conditions, additional auxiliary navigation paths were used, forming a
“navigation corridor” to increase the volume of data. The proposed algorithm replaces a human operator,
improves the accuracy of GPS-based map navigation, eliminates problems associated with the substitution of
GPS signals, and allows navigation in conditions without GPS signals. The approach was tested in two scenarios
using the Unreal Engine-based drone simulator AirSim. The results were promising: the average lateral deviation
was less than 1.4 m, and the minimum distance to the control points was less than 1 m.

Several studies have applied Al methods in the field of navigation, including adaptive neuro-fuzzy
inference system (ANFIS) in [9], radial basis neural networks (RBNN) in [10; 11].

GRNN was also used in navigation systems. For example, in [12] it was used to fill missing values
in datasets for data analysis and machine learning. GRNN takes into account the relationships between
data better than statistical methods such as using means or medians. GRNN has been proven to be
more effective than statistical methods, especially on large datasets. This research demonstrates using
GRNN to compensate for GPS signals when they are delayed or absent for various reasons.

Methods

The system description

The orientation of a mobile object can be described using Euler angles or quaternions. The main
advantage of using quaternions is the linearity of kinematic equations in the quaternion representation,
as well as the absence of singularities [13]. The state vector x in the EKF contains orientation pa-
rameters (quaternions), the object's location ( L/A4 : latitude, longitude, altitude), the object's velocity
(V,eq - North, East, Down), as well as the gyroscope and accelerometer offsets. The Kalman filter con-

sists of two main phases: prediction and correction. The prediction phase uses information about pre-
vious values of the state vector to make an a priori estimate of the new state vector. The correction
phase uses GPS signal measurements to correct the state vector. A complete description of the system
equations and EKF is presented in [14].

Integration of GPS/INS and GRNN

GPS/INS integration is performed at every sampling cycle. When GPS signals are present, position
and velocity information is obtained from the GPS data and used in the EKF correction phase. Let the fre-
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quency of data from GPS be Rgps and the frequency of data from accelerometers and gyroscopes is Ryg.
Since R, is greater than Rgps, the prediction phase of the Kalman filter will be executed more often than
the correction phase. If the GPS signal is delayed, the integration error will accumulate, leading to an in-
crease in the error in determining the navigation parameters.

GRNN is used in the correction phase if GPS data are not available. In the presence of a GPS signal,
the GRNN is trained and updates its parameters. Fig. 1 shows the complete integration scheme.

Puc. 1. Cxema coueranns ['TIC/MHC u OPHC

Fig. 1. Flowchart of combination GPS/INS and GRNN

During the training phase, the GRNN uses input data and required output values obtained from
available GPS measurements. It results in a trained GRNN model that, in the absence of GPS meas-
urements, is used to estimate the measurements to compensate for the unavailability of GPS.

GRNN

GRNN is a one-way artificial neural network model consisting of four layers: input layer, sample
layer, adder layer, and output layer. Unlike a backpropagation Al network, iterative training is not re-
quired. Each layer of the structure contains a different number of neurons and is connected sequen-
tially to the next layer [15]:

— the first layer is the input layer. The number of neurons in this layer corresponds to the number of
data characteristics;

— sample layer. The number of neurons is equal to the number of data in the training set. The neu-
rons of this layer calculate the distances between the training data and the test data. The obtained re-
sults are passed through a radial basis function (activation function) with parameter o, after which the
values of the weights are determined;

— the summatory layer consists of two parts: the numerator and the denominator. The numerator in-
cludes the sum of the products of the training outputs and the activation function results (weights). The
denominator is the sum of all weight values. This layer passes the numerator and denominator to the
next output layer;
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— output layer. It Contains one neuron that computes the output value by dividing the numerator of
the summatory layer by its denominator.
GRNN mathematical equation is as follows:

N
Zk:IJ’kK(xaxk)

Y(x)= ,
> Kx)

(1

Where Y(x) is the predicted value for the input data (in our case, ¥ is a vector of six components:
three are for location and three — for velocity; y, is the activation weight for the template layer neu-
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The parameter ¢ determines how much the weights W, differ. If o is big, all W, becomes ap-
proximately equal and the expression approaches the usual mean y, . If ¢ is small, the sum will be
strongly influenced by the terms with the biggest d, , which will change the result. Parameter ¢ has an
impact on the weight of each term in the sum. If o is changed, the relative importance of the different
v, will change, it will lead to a different result. Therefore, ¢ plays a key role in the expression and
cannot be excluded.

At the k-th cycle x, contains:

— 3 accelerometer data components (at cycles k,k—1,k—2,k—3);

— 3 gyroscope data components (at cycles k,k —1,k—2,k—3);

— 3 velocity data components (at cycles k —1,k—2,k—3,k—4);

— 3 coordinate components LI4 (at cycles k—1,k—2,k -3,k —4).

The total input size is 12 x 4 =48.

At the training stage, the output data contains:

— 3 velocity components (at cycle & );

— 3 coordinate components LIA4 (atcycle k ).

The total output size is 6. Figure 2 presents GRNN structure.

Dataset

The dataset contains all the necessary information, including data from accelerometers, gyroscopes
and GPS. The GPS data rate is 10 Hz, and the accelerometer and gyroscope data rate is 100 Hz.

Research findings

To evaluate and simulate the absence of the GPS signal, two signal interruption periods were cre-
ated on two different cycles with different durations: the first interruption lasted 40 s, and the second
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lasted 30 s. This dataset does not contain any altitude variations. The total experiment time is 760 s.
The results of the experiment are presented in Fig. 3—6.

Puc. 2. O6mas ctpykrypa OPHC

Fig. 2. General structure of GRNN

Puc. 3. LI4 u ckopocTb

Fig. 3. LI4 and velocity
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Puc. 4. T'opuzoHTanpHas omuoOKa myTu

Fig. 4. Horizontal path error

Puc. 5. Ommbka B LIA u ckopocti

Fig. 5. Error of LI4 and velocity
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Puc. 6. [1ytp

Fig. 6. The path

The table shows the numerical comparison of the results.

Comparison of the results

The first dataset
Parameter Error EKF EKF-GRNN Improvement, %
. Average 1 0,3 70
Height .
cight (m) RMSD 10 03 97
V. (ms) Average 1 0,59 41
RMSD 5,49 2,99 45,53
v, (vs) Average 1,84 0,11 94,14
RMSD 10,09 1,58 84,34
v, (ms) Average 0,01 0,02 -
RMSD 1,89 0,22 88,35
. Average 31,78 22,82 28,19
H tal M
orizontal error (M) RMSD 169,13 47,88 71,69

Note. RMSD — root mean square deviation.

Discussion

Taking advantage of the GRNN training procedure allows to determine the optimal value of the pa-
rameter 6. The best practice is to find the value at which the mean square error (MSE) is minimal.
Training is performed using the input data to find o corresponding to the minimum MSE value. The
results show that the GRNN-EKF method is superior to the method using only EKF, and the accuracy
of determining navigation parameters is significantly improved. This performance improvement is due
to the main advantages of the estimation performed by GRNN, which are always able to converge to a
global solution and do not get stuck in a local minimum, unlike standard feedforward networks trained
using backpropagation.

167



Siberian Aerospace Journal. Vol. 26, No. 2

In addition, the input data contains features based on previous values of the target data (this means
previous LI/A values and velocities), as well as inertial measurement data of the object, which directly
influence the target output values of GRNN. This allows GRNN to model nonlinear dependencies be-
tween input data and target output data. GRNN also has got the ability to speed up the learning proc-
ess, permitting the network to learn faster. GRNN is trained using a one-pass method, taking only a
fraction of the time required to train standard feedforward networks using the backpropagation
method. The parameter o, called Spread, is the only free parameter in the network, which is often de-
termined by cross-validation in various applications of GRNN.

Application areas of the results include target tracking, surveillance of inaccessible areas and in-
formation gathering.

Conclusion

The research demonstrated that using a generalized regression neural network (GRNN) to compen-
sate for missing GPS data effectively improves the accuracy of autonomous navigation parameters
such as position and speed. The integration of GRNN with loosely coupled Kalman filtering showed
robust results, outperforming the traditional EKF-only approach. This is confirmed by the successful
simulation of the absence of GPS data, which makes the proposed method promising for application in
conditions of the absence or delay of GPS signals.

Data availability: The information is presented as raw data and true calibration parameters
(https://github.com/Shelfcol/gps_imu_fusion/tree/main)
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