Cubupckuil aspokocmuueckuii acypran. Tom 26, N1

YK 519.6
Doi: 10.31772/2712-8970-2025-26-1-60-70

Jonst uutupoBanus: lepcrues I1. A., Cemenkun E. C. CaMOKOHQHUTYpUpYEMbIE aITOPUTMBI TEHETHYECKOTO TIPO-
rpaMMHpPOBaHMsI C aJanTaiyeidl Ha OCHOBe McTropuu ycrexa // Cubupckuii aspokocMuueckuit sxypHan. 2025. T. 26,
Ne 1. C. 60-70. Doi: 10.31772/2712-8970-2025-26-1-60-70.

For citation: Sherstnev P. A., Semenkin E. S. [Self-Configuring Genetic Programming Algorithms with Success
History-Based Adaptation]. Siberian Aerospace Journal. 2025, Vol. 26, No. 1, P. 60-70. Doi: 10.31772/2712-8970-
2025-26-1-60-70.

CamokoH(purypupyemblie aJIrOPUTMbI FT€HETHYECKOT0 POrPAMMHUPOBAHHUS
¢ aJanTanueil Ha 0CHOBE HCTOPHUHM ycCIiexa

IT. A. HlepCTHeBl*, E. C. CeMeHKHUH’

'Cubupcknii heepanbHbIil yHHBEPCUTET
Poccuiickas ®enepanwysi, 660041, r. KpacHosipck, npoct. CBOOOIHBIN, 79
2CI/I6I/IpCKPIﬁ TOCYAApCTBEHHBIM YHUBEPCUTET HAYKH U TEXHOJIOTHM nMeHU akajemuka M. @. PemerHeBa
Poccuiickas @enepanus, 660037, r. Kpacnospck, npocn. uM. ra3. «KpacHosipckuit pabounii», 31
"E-mail: sherstpasha99@gmail.com

Annomayus. B dannotl pabome npedcmagier HOBblll MEMOO CAMOHACMPOUKYU ANCOPUMMO8 2EHEMUYECKO20
npoepammuposanus (I'TI), komopwuii bazupyemca Ha udesix memooda Success History based Parameter
Adaptation (SHA), usnauanvro paspabomarnnoco ons ancopumma oupghepenyuanvroti seomoyuu ({3). Ochos-
Has uoes Memooad 3aKmo4aemcs 8 OUHAMUYECKOM AHATU3Ee UCIMOPUY YCReWHbIX peuleHull 0ia aoanmayuu na-
pamempog aneopumma 8 npoyecce noucka pewienus. /s peanuzayuu 3moti KOHYenyul cxema pabomul Kiaccu-
yeckoeo ITI 6viia moouguyupoearna makum 00pazom, umoodsbl umumuposams cxemy /1D, umo no3e0auno
unmezpuposams mexanusm SHA ¢ 'l Tlonyuennviii ancopumm, obosnauennwviii kax SHAGP (Success-History
based Adaptive Genetic Programming), demMoHcmpupyem Hogble 803MONCHOCU OJis A0anmayuyu napamempos,
MAKUX KaK 8epOsSMHOCIb CKpeWUSaHus u mymayuu. B pabome maxowce npoeedén 0630p cyuecmsyiomux me-
Mo008 camonacmpoliku aneopummos 111, umo no3eonuno 8vlagums ux Kuouesble nPeumMywecmed u 0panute-
HUSL U UCNOTL3068aMb IMmu 3Hanus npu paspabomxe SHAGP. JlonoanumensHo npednodiceivl Hogble Onepamopbl
CKpewusanys, no3eonstiowue OUHAMUYECKU HACTIPAUBAMb 6EPOIMHOCIb CKPEWUBAHUS, YUUMbIBAMb CelleK-
mugHoe OasiieHue Ha OAHHOM dmane, a MaKdice peanrusyroujie MHo2o0pooumenbckoe ckpewusanue. Taxas mo-
oughuxayus no3zeonsem 6onee 2uOKO YNpasisimb NPOYeccom PeKOMOUHAYUU 2eHOMUNOS, VIVUUIAs a0anmue-
HOCMb aneopumma K peuiaemou 3aoaye. /s HACMPOUKYU 8epOAMHOCIEN NPUMEHEHUS PA3TUYHBIX ONePAmopos
(cenexyuu, CKpewusanus, Mymayuu) Ucnob3ylomcs Memoobl CAMOKOHPUEYPUPOBAHUS IB0TIOYUOHHBIX AlI20-
pummos, 6 yacmnocmu, Self-Configuring Evolutionary Algorithm u Population-Level Dynamic Probabilities
Evolutionary Algorithm. B pamkax pabomwt 6vL10 peanuzosarno 08a sapuanma aneopumma — SelfCSHAGP u
PDPSHAGP. D¢ghexmusrocmv npeonodiceHublx aneopummos ovlia nposepea Ha Habopax 3aoay uz Feynman
Symbolic Regression Database. Kadcovlii aneopumm 3anycKancs MHO2OKPAMHO HA KAAHCOOU 3a0aye Os HOTy-
ueHus 00CHOBEPHOU CIAMUCIUYECKOU 8bl00PKU, A Pe3yIbIambl CPABHUBANUCL C UCHONb308AHUEM CIAMU-
cmuueckoeo kpumepus Manna — Yumnu. Dxcnepumenmanshvle OanHble NOKA3AU, YMO NPEONONCEHHbIE ANI20-
pummsl docmuzaiom Ooee 8biCOK020 NOKA3AMES HAOEHCHOCHU N0 CPABHEHUIO C CYIECMBYIOWUMU MEMOOUMU
camonacmpotixu I'Tl, npuuém memod PDPSHAGP Odemoncmpupyem Haunyuuiyio sghpexmusnocms 6onee wem
6 90 % cryuaes. Taxoii yHUBEPCANbHBIU MEXAHUIM CAMOHACPOUKU MOJCEM HAUMU NPUMEHEHUE 8 UIUPOKOM
Habope obracmetl, mMaKux Kax asmomMamusayus MautuHHo20 00yueHus, 00pabomxka 6oIbUX OaHHBIX, UHJICE-
HEPHbIL OU3ALH, MEOUYUHA, A MAKHCE 8 KOCMUYECKUX NPUTONCEHUAX, HANPUMED, NPU NPOEKMUPOBAHUU HABUSA-
YUOHHBIX cUCmeM Ol KOCMUYECKUX annapamos u paspabomye cucmem YnpaeieHus J1emameibHolMu annapa-
mamu. B smux chpepax KpumuuecKu 8axcHbl 8bICOKAA HAOEHCHOCHb AN2OPUMMO8 U UX CHOCOOHOCTL HAXOOUMb
ONMUMATILHBIE PEUIEHUSL 8 CTIONCHBIX MHOLOMEPHBIX NPOCIPAHCINGAX.

Kniouesvie cnosa: camonacmpoiixa, cenemuyeckoe npozpammuposanue, aoanmayus, camoKoHpuaypu-
poBaHue, CKpewusanue, pecpeccus.

60



Hngpopmamuka, 8bluucaUMeNbHAS MeXHUKA U YNPABJeHUe

Self-Configuring Genetic Programming Algorithms
with Success History-Based Adaptation

P. A. Sherstnevl*, E. S. Semenkin®

'Siberian Federal University
79, Svobodny Av., Krasnoyarsk, 660041, Russian Federation
*Reshetnev Siberian State University of Science and Technology
31, Krasnoyarskii rabochii prospekt, Krasnoyarsk, 660037, Russian Federation
"E-mail: sherstpasha99@gmail.com

Abstract. In this work, a novel method for self-tuning genetic programming (GP) algorithms is pre-
sented, based on the ideas of the Success History based Parameter Adaptation (SHA) method, originally
developed for the Differential Evolution (DE) algorithm. The main idea of the method is to perform a dy-
namic analysis of the history of successful solutions to adapt the algorithm's parameters during the search
process. To implement this concept, the operation scheme of classical GP was modified to mimic the DE
scheme, allowing the integration of the success history mechanism into GP. The resulting algorithm, de-
noted as SHAGP (Success-History based Adaptive Genetic Programming), demonstrates new capabilities
for parameter adaptation, such as the adjustment of crossover and mutation probabilities. The work also
includes a detailed review of existing self-tuning methods for GP algorithms, which allowed for the identi-
fication of their key advantages and limitations and the application of this knowledge in the development of
SHAGP. Additionally, new crossover operators are proposed that enable dynamic adjustment of the cross-
over probability, account for the selective pressure at the current stage, and implement a multi-parent ap-
proach. This modification allows for more flexible control over the process of genotype recombination,
thereby enhancing the algorithm's adaptability to the problem at hand. To adjust the probabilities of apply-
ing various operators (selection, crossover, mutation), self-configuring evolutionary algorithm methods are
employed, in particular, the Self-Configuring Evolutionary Algorithm and the Population-Level Dynamic
Probabilities Evolutionary Algorithm. Within the framework of this work, two variants of the algorithm
were implemented — SelfCSHAGP and PDPSHAGP. The efficiency of the proposed algorithms was tested
on problem sets from the Feynman Symbolic Regression Database. Each algorithm was run multiple times
on each problem to obtain a reliable statistical sample, and the results were compared using the Mann—
Whitney statistical test. The experimental data showed that the proposed algorithms achieve a higher reli-
ability metric compared to existing GP self-tuning methods, with the PDPSHAGP method demonstrating
the best efficiency in more than 90 % of the cases. Such a universal self-tuning mechanism can find appli-
cations in a wide range of fields, such as automated machine learning, big data processing, engineering
design, and medicine, as well as in space applications — for example, in the design of navigation systems
for spacecraft and the development of control systems for aerial vehicles. In these areas, the high reliability
of algorithms and their ability to find optimal solutions in complex multidimensional spaces are critically

important.

Keywords: self-tuning, genetic programming, adaptation, self-configuration, crossover, regression.

Introduction

The field of research related to self-tuning is one of the most relevant areas in the development of
evolutionary algorithms (EA). Self-tuning methods for EA have become an integral part of the
algorithms presented at the IEEE Congress on Evolutionary Computation, one of the leading
international forums on evolutionary computing and computational intelligence [1]. This is due to the
fact that the efficiency of optimization using EA directly depends on the choice of configuration and
numerical parameters, while it is impossible to determine their optimal values for a specific problem in
advance. Self-tuning methods are usually divided into two classes: self-configuring, which adjust the
configuration of the algorithm (options for selection, crossover, and mutation operators), and adaptive,
regulating the numerical parameters of the algorithm (crossover and mutation probabilities, population

61



Cubupckuil aspokocmuueckuii acypran. Tom 26, N1

size). As optimization problems become more complex, the need for more flexible and adaptive EA
increases. This is especially true for genetic programming (GP), which finds application in areas such
as automated machine learning, big data processing, engineering design, and medicine, where high
reliability of algorithms and their ability to find optimal solutions in complex multidimensional spaces
are critical. Similar requirements for adaptability and control accuracy are observed in a number of
technical applications, which also concerns some aspects of rocket and space research.

Genetic programming algorithm

The GP algorithm is a family of optimization algorithms, evolving programs represented as tree
structures, each internal node of which is an operation, and the end node is an operand [2; 3]. Due to
the flexibility of this coding method, GP can be used to solve problems where the structure of the solu-
tion is unknown in advance or is difficult to describe analytically. GP is most often used to solve prob-
lems of symbolic regression [4; 5], classification [6—8], formation of machine learning models and
optimization algorithms [9—-11], program synthesis and optimization of complex systems [12; 13]. The
stages of GP operation are usually similar to the stages of most EA and include the following steps:
the initial population initialization (full method, growing method, combined method); evaluation of
individuals (calculation of the values of the fitness function (FF) of each individual in the population);
selection of individuals that will form a new generation using a genetic selection operator (propor-
tional, rank, or tournament selection); recombination of the selected individuals to create offspring by
applying a genetic crossover operator (single-point, standard, or even crossover); mutation of the off-
spring individuals by applying a genetic mutation operator (point, growth, exchange, or compression);
replacement of the previous generation with offspring. Then the transition to the stage of evaluation of
individuals occurs and the cycle is repeated [3].

Overview of self-tuning methods for genetic programming algorithms

Many different self-tuning methods have been developed and studied for GP. Thus, in [14], one of
the first methods of self-configuration of GP was proposed, referred to as Population-Level Dynamic
Probabilities (PDP), in which, when creating an individual, genetic operators are selected randomly
from a given set of options. In this case, the probability of selecting an operator is dynamically ad-
justed in the process of finding a solution so that successful individuals have a greater chance of being
selected in the future. The success of an operator is defined as the achievement of a better FF value by
the offspring it created than by the parent. One of the problems of this method is the uncertainty in the
choice of a parent for comparison with an offspring. As a rule, the choice is made randomly. Despite
this, PDP is successfully used for self-tuning not only GPs, but also other EAs [15; 16]. Another effec-
tive self-tuning method was proposed in [17]. The method is called SelfCEA (Self-Configuring Evolu-
tionary Algorithm) and is similar to PDP in many ways — it also dynamically changes the probabilities
of applying genetic operators, but based on the average FF value achieved by the operator. The prob-
ability of applying an operator that, on average, produces individuals with a higher FF value increases
[5; 18]. In another method proposed in [19], each individual is assigned its own probabilities of apply-
ing each type of operator, and then, based on feedback from the quality of the solutions created, the
probabilities are increased or decreased by a predetermined value. The method showed a significant
increase in the reliability of the GP compared to fixed probabilities for geometrically semantic GP, but
its efficiency for a standard tree-based GP (Tree-based GP) has not been proven. In addition to the me-
thods of self-configuring GP, methods for adapting the numerical parameters of the EA were also pro-
posed. Thus, in [20] the SAGP algorithm is described, which configures the probabilities of crossover
and mutation based on the average values of the tree sizes in the previous and current generations.
This allows avoiding tree growth and obtain interpretable dependencies, but can lead to an excessive
reduction in the complexity of the functions being created. The authors of the article [21] proposed the
CF-GP (Adaptive Crossover + Adaptive Function List) algorithm, which combines adaptive control of
crossover probabilities and dynamic removal of ineffective functions from the functional set. How-

62



Hngpopmamuka, 8bluucaUMeNbHAS MeXHUKA U YNPABJeHUe

ever, the work lacks a detailed statistical analysis of the results, which makes it difficult to assess its
effectiveness.

Proposed approach
The scheme of adaptation based on the history of successful applications (SHA) has proven itself

as a highly effective method for adjusting the probabilities of crossover and mutation, which is con-
firmed by successful experimental results [22; 23] and its regular application in various algorithms,
including genetic algorithms (GA). For example, in [24], the application of SHA to GA allowed creat-
ing SHAGA, which demonstrates higher reliability compared to SelfCGA on real and pseudo-boolean
optimization problems. The achieved results give reason to believe that the application of SHA in GP
will lead to similar improvements. This will require changing the GP operation scheme. At each gen-
eration, genetic operators are sequentially applied to each i-th individual from the population. First,
parents are selected by selection — since the i-th individual already serves as the first parent, one less is
selected than in the standard scheme. Then the i-th individual is crossed with the selected parents, after
which the mutation operator is applied to the resulting offspring. This change in the algorithm design
is introduced to integrate the SHA method, which adapts the mutation and crossover probabilities
based on the criterion: if the offspring FF value is higher than that of the i-th solution, the current pa-
rameter setting is considered successful.

In addition, it is necessary to change the operation of the crossover operator. In the standard GP
scheme, the crossover operator determines whether an offspring will be created, and if not, then no
crossover occurs. In the SHA method, for each bit with probability CR, it is chosen whether to trans-
mit it from the parent or the mutant, which is similar to the uniform crossover operator, but with a dy-
namically changing probability different from the fixed one equal to 0.5. Additionally, when modify-
ing the crossover operator in GP, it is necessary to provide the possibility of selective pressure at this
stage and the choice of more than two parents [18]. The crossover process is organized in two stages:
first, for each gene with probability CR, it is determined whether it will be inherited from the first par-
ent (the current solution) or other parents. If a gene is selected from the first parent or there are only
two parents, the algorithm moves on to the next gene. Otherwise, at the second stage, a selection is
made among the remaining parents taking into account their FF values, which corresponds to the ap-
proach described in [18].

The proposed modification of the crossover operator in SHAGP allows implementing multi-parent
crossover with the ability to regulate its intensity using the CR parameter and taking into account the
selective pressure at the crossover stage. In addition, it is possible to use classical operators (single-
point and standard), where the procedure is performed without the previously described changes, but is
initiated with the CR probability; if the crossover does not occur, the operator returns the first parent
(the current solution). According to [18], when using multi-parent crossover, the optimal number of
parents for most operators is 2 and 7, and for the tournament one — 3 and 7. However, in this algo-
rithm, additional selective pressure is applied at the crossover stage using the selection operator at the
second stage, so the total number of parents increases by 1 compared to the original implementation.

This modification allows using different variants of crossover operators: single-point, standard,
uniform equiprobable with two parents, uniform equiprobable with three parents, uniform equiproba-
ble with eight parents, uniform proportional with three parents, uniform proportional with eight par-
ents, uniform rank with three parents, uniform rank with eight parents, uniform tournament with three
parents, uniform tournament with eight parents. The selection operator can be any. In this study, the
following are used: proportional, rank, tournament with a tournament size of 3, 5 and 7 individuals.
The following mutation operators are used: point, growing, exchange, compression.

Since the algorithm has 160 possible configurations, the problem of determining the optimal setting
for each problem to be solved arises. In this case, it is advisable to use self-configuring GP methods
that dynamically adjust the parameters during operation, providing greater reliability than with random
selection.

63



Cubupckuil aspokocmuueckuii acypran. Tom 26, N1

By combining all the described modifications (change in the GP operation scheme, modified cross-
over operator, adaptation based on the history of successful applications and self-configuring meth-
ods), we obtain a single algorithm — a self-configuring GP algorithm with adaptation based on the his-
tory of successful applications (Self-Configuring SHAGP). The pseudocode of the proposed algorithm
is presented below:

1. Initialization.
1.1. Generate the initial population of binary trees randomly.
1.2. Calculate the FF value for each individual.
1.3. Initialize the parameter history:
1.3.1. Fill the H MR array (for the mutation probability) with values 0.1.
1.3.2. Fill the H CR array (for the crossover probability) with values 0.9.
1.3.3. Set the history index k = 0.
1.4. Initialize the probabilities of applying the operators for each type:
1.4.1. P sel (selection operators) — equally likely across all variants.
1.4.2. P cross (crossover operators) — equally likely across all variants.
1.4.3. P_mut (mutation operators) — equally likely across all variants.
2. Main loop (for each generation):
2.1. For each individual i:
2.1.1. Randomly choose an index r from the range [0, H size].
2.1.2. Set MR i using the Cauchy distribution with center H MR[r] and scale 0.1.
2.1.3. Set CR i using the Normal distribution with center H CR[r] and standard deviation
0.1.
2.1.4. Choose a selection operator variant using the probability distribution
P sel.
2.1.5. Choose a crossover operator variant using the probability distribution P_cross.
2.1.6. Choose a mutation operator variant using the probability distribution
P mut.
2.1.7. Apply the chosen selection operator to select parents.
2.1.8. Apply the selected crossover operator to the ith individual (the first parent) and the
other parents, producing an offspring with probability CR_i.
2.1.9. Apply the selected mutation operator to the resulting offspring with probability MR _i.
2.1.10. Calculate the FF value of the offspring.
2.2. Replacement:
2.2.1. For each individual i: if the FF value of the offspring is better than that of the i-th indi-
vidual, replace the i-th individual with the offspring.
2.3. Updating the parameter history:
2.3.1. For all individuals for which the replacement occurred, collect the MR and CR values
used, as well as the FF value improvements.
2.3.2. Update H MR[k] and H CR[k] using the weighted average of the successful values.
2.3.3. Setk=k+1or0ifk>H size.
2.4. Update operator application probabilities:
2.4.1. Update the application probabilities of the genetic operators P _sel,
P _cross and P_mut, using the self-configuration method.
2.5. Update the globally best individual.
2.6. Ifthe stopping criterion is not met, then go to 2.1.
3. Termination:
3.1. Return the best individual found and the statistics of the algorithm's operation.

Let us discuss the workflow of Self-Configuring SHAGP. Firstly, initialization is considered. The
algorithm starts with generating a random population of binary trees and calculating their FF values.
The initial parameters are fixed: the H MR array is filled with the value 0.1, the H CR array is filled
with the value 0.9, and the probabilities of applying the operators (P_sel, P_cross, P mut) are set equal
to those in the original implementation of the SelfCGP and PDPGP methods. Then, forming a new

64



Hngpopmamuka, 8bluucaUMeNbHAS MeXHUKA U YNPABJeHUe

generation is discussed. Before creating a descendant, an index r is randomly selected from the pa-
rameter history for each individual. Based on it, the MR and CR values are generated: MR is deter-
mined using the Cauchy distribution with the center H MR]r] (0.1) and the scale 0.1, CR is deter-
mined by the normal distribution with the center H CR[r] (0.9) and the standard deviation 0.1. The
selection, crossover, and mutation operators are selected based on the probabilities of their application,
and a new descendant is formed with their help. Next, we will discuss adaptation of parameters. When
replacing individuals, successful MR and CR values are saved for subsequent adaptation. Parameters
are updated based on the weighted average of successful values. Finally, self-configuration of opera-
tors is considered. After the formation of a new generation, the probabilities of applying genetic opera-
tors are updated using the selected self-configuration method.

Study of the efficiency of self-configuring genetic programming algorithms

To test the proposed method, the Feynman Symbolic Regression Database [25] was used, contain-
ing 120 equations of varying complexity with the number of unknowns from 1 to 9. These equations
cover a wide range of physical phenomena, including mechanical, electromagnetic, quantum and
thermodynamic processes. Each of the tested self-configuring algorithms had the same set of types of
genetic operators and a functional set. All algorithms were given the same number of generations
(1000) during which they worked, and the population size (100).

The following algorithms participated in the study: SelfCGP is a version of GP based on SelfCEA
with an extended set of operators, including selective pressure; PDPGP is an algorithm using the PDP
mechanism for tuning operators with selective pressure; PDPSHAGP is a PDP modification of the
SHAGP algorithm, implementing dynamic adaptation of crossover and mutation probabilities;
SelfCSHAGP is a version of SHAGP based on SelfCEA.

For each of 120 equations, a sample of 1000 points randomly distributed in space was used. The
details of the sample formation are described in [25]. After that, the data was divided into a training
(750 points) and a test (250 points) sample. To take into account the stochastic nature of evolutionary
algorithms, 100 runs were carried out for each problem, while the best value of the R* metric was
saved at each run [26]. To confirm the statistical significance of the differences in the results of the
algorithms, the Mann-Whitney statistical criterion with a significance level of 0.05 was used.

When comparing the results of solving regression problems using a large number of problems, the
issue of interpreting the value of the determination coefficient R” arises, which can take negative val-
ues and thereby shift the average indicators and distort the evaluation of the methods. Often, a reliabil-
ity indicator is used to solve this issue - the proportion of successfully found solutions, where success
is determined by reaching a predetermined error threshold. However, this approach may lead to loss of
information, since the result strongly depends on the chosen threshold. More informative is the calcu-
lation of reliability at different threshold values. Figure 1 shows a graph of the values of reliability av-
eraged over 120 equations at different threshold values (from 0 to 1 with a step of 0.01) for each of the
tested methods.

The graph (Fig. 1) shows how the reliability of different methods changes with increasing thresh-
old. PDPSHAGP (orange dotted line) shows the best results, remaining higher than the others
throughout the range. SelfCSHAGP (red dotted line) is also higher than the others, but the curve falls
off faster. PDPGP (blue solid line) and SelfCGP (green dash-dotted line) are noticeably inferior, espe-
cially at high threshold values. The average reliability values calculated for all thresholds and prob-
lems are: SelfCGP — 0.742; PDPGP — 0.773; Self CSHAGP — 0.797; PDPSHAGP — 0.848.

Fig. 2 shows pie charts constructed based on the results of a statistical test performed to compare
the SelfCSHAGP and PDPSHAGP algorithms with other self-tuning algorithms. The diagrams are
divided into three categories: “superior” (green sector) — the number of functions where the first algo-
rithm showed the best results; “no difference” (gray sector) — statistically insignificant differences;
“inferior” (red sector) — cases where the second algorithm demonstrated the best results.

65



Cubupckuil aspoxocmuueckuii scypHan. Tom 26, N2 1

Dependence of reliability on R? threshold

1.0 1 DT e
0.8 A
2 0.6
E
B
2 0.4+ Methods
—— PDPGP
0.2 4 ==~ PDPSHAGP
—-= SelfCGP
004 SelfCSHAGP
0.0 0.2 0.4 0.6 0.8 1.0

R2 Threshold

Puc. 1. 3aBUCUMOCTD HAJIS)KHOCTH OT MMOPOTOBOTO 3HAUCHHsI KO3 PHUIIMEHTA IeTePMHUHAIIMH

Fig. 1. Dependence of reliability on the threshold value of the coefficient of determination

The diagrams show that both algorithms using SHA (SelfCSHAGP and PDPSHAGP) outperform
their competitors in most test functions. SEIfCSHAGP confidently outperforms SelfCGP (80 vs. 2) and
significantly wins over PDPGP (41 vs. 3), although the share of problems where the differences were
statistically insignificant is quite large (38 and 76, respectively). PDPSHAGP demonstrates even high-
er results: the algorithm outperforms SelfCGP (109 vs. 4) and PDPGP (92 vs. 2) with an insignificant
number of draws, which indicates its leadership among the compared algorithms.

SelfCSHAGP vs SelfCGP SelfCSHAGP vs PDPGP Categories

71 No significant difference
Method A is better

B0 Method A is worse

Puc. 2. Pe3yJ'II)TaTI>I CpaBHCHUS MCTOJOB CaMOHaCTpOfIKH
C UCIIOJIb30BAHUEM CTATUCTUYCCKOT'O TECTa

Fig. 2. Results of comparing self-tuning methods using a statistical test
Conclusion
This paper presents and studies a self-configuring GP algorithm with parameter adaptation based

on the history of successful applications. The algorithm allows configuring both the parameters of the
crossover and mutation probabilities, and the variants of genetic operators. Particular attention is paid

66



Hngpopmamuka, 8bluucaUMeNbHAS MeXHUKA U YNPABJeHUe

to the modified crossover operator, which is distinguished by the ability to adapt the intensity of cros-
sover by adjusting the probability of its application, applying selective pressure at this stage, and using
multi-parent crossover. As part of the study, the algorithm is implemented in two versions that differ
in the self-configuration method: SelfCSHAGP and PDPSHAGP. The results of comparative experi-
ments on regression problems showed that the proposed algorithms outperform earlier approaches on
most test problems, and in the remaining cases demonstrate comparable performance. The most effec-
tive implementation was the one using the PDPEA method for operator tuning.

The obtained results confirm the prospects of the approach and allow outlining further directions
for its development: analysis of the algorithm’s efficiency in solving problems of other classes (for
example, in the formation of machine learning models) and the integration of additional self-tuning
methods, including population size adjustment.

Bbuaarogapuoctu. Pabota BeInoiHeHa mpu noanepkke Munoo6pHayku Poccun B pamkax ['ocyanap-
cTBeHHOTO 3a7aHus B chepe Hayku (mpoekt Ne FEFE-2023-0004).
Acknowledgment. This research was funded by the State Assignment project Ne FEFE-2023-0004.

bubauorpaduyeckue cChIKU

1. IEEE Congress on Evolutionary Computation [Dnextponnsiii pecypc]. 2025. URL:
https://www.cec2025.org/ (nara obpamenus: 08.01.2025).

2. Koza J. R. Genetic programming: on the programming of computers by means of natural selec-
tion. Sixth printing, 1998, Massachusetts Institute of Technology, 609 p.

3. Kuranga C., Pillay N. A Comparative Study of Genetic Programming Variants // Artificial Intel-
ligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science. 2023. Vol. 13588,
P. 377-386. DOI: 10.1007/978-3-031-23492-7 32.

4. Genetic Programming-based Feature Selection for Symbolic Regression on Incomplete Data.
Evolutionary Computation / B. Al-Helali et al. 2024. P. 1-27.

5. Karaseva T. S., Mitrofanov S. A. Self-configuring genetic programming algorithm for solving
symbolic regression problems // IOP Conference Series: Materials Science and Engineering.
Krasnoyarsk, 16—18 April 2020. 2020. Vol. 862. P. 52—-69. DOI: 10.1088/1757-899X/862/5/052069.

6. Traffic Classification in Software-Defined Networking Using Genetic Programming Tools / S. Marga-
riti, I. Tsoulos, E. Kiousi, E. Stergiou // Future Internet. 2024. Vol. 16. P. 338. DOI: 10.3390/f116090338.

7. Maurya P., Kushwaha A., Prakash O. Medical Data Classification Using Genetic Programming;:
A Systematic Literature Review // Expert Systems. 2025. Vol. 42, No. 3. DOI: 10.1111/exsy.70007.

8. A Genetic Programming Approach to Binary Classification Problem / L. Santoso, B. Singh,
S. Rajest et al. EAI Endorsed Transactions on Energy Web, 2020. DOI: 10.4108/eai.13-7-2018.165523.

9. A hyper-heuristic approach to automated generation of mutation operators for evolutionary pro-
gramming / L. Hong, J. Drake, J. Woodward, E. Ozcan // Applied Soft Computing. 2018. Vol. 62.
DOI: 10.1016/j.as0¢.2017.10.002.

10. Scott E. 'Siggy, Bassett J. Learning Genetic Representations for Classes of Real-Valued Opti-
mization Problems. 2015. DOI: 10.1145/2739482.2768460.

11. Hyper-heuristic approach: automatically designing adaptive mutation operators for evolution-
ary programming / L. Hong, J. R. Woodward, E. Ozcan et al. / Complex Intell. Syst. 2021. Vol. 7.
P. 3135-3163. DOI: 10.1007/s40747-021-00507-6.

12. Trajectory optimization method for spacecraft orbit transfer with finite thrust. Xinan Jiaotong
Daxue Xuebao / C. Wang, Y. Qu, Z. Lu et al. // Journal of Southwest Jiaotong University. 2013.
Vol. 48. P. 390-394. DOI: 10.3969/j.issn.0258-2724.2013.02.030.

13. Semenkin E., Semenkina M. Spacecrafts' control systems effective variants choice with self-
configuring genetic algorithm // ICINCO 2012 — Proceedings of the 9th International Conference on
Informatics in Control, Automation and Robotics. Rome, 28-31 July 2012. 2012. Vol. 1. P. 84-93.

67



Cubupckuil aspokocmuueckuii acypran. Tom 26, N1

14. Niehaus J., Banzhat W. Adaption of Operator Probabilities in Genetic Programming // Genetic
Programming. EuroGP 2001. Lecture Notes in Computer Science. 2001. Vol. 2038. P. 325-336. DOI:
10.1007/3-540-45355-5_26.

15. Jlumuuckuii JI. B., Kymuapesa T. B. HccrnemoBanue Moaeneld u mporeayp cCaMOKOH(HUTypa-
I[UHM TEHETHYECKOTO MPOrPaMMHUPOBAHUS 151 POPMUPOBAHHUS JCPEBHCB MPUHSATHS PEIICHHH B 33aUax
WHTEJUIEKTYaIbHOTO aHaiu3a AaHHbIX // Bectauk Cubl’AY. 2016. T. 17, Ne 3. C. 579-586.

16. Murpodanos C. A., Cemenkun E. C. [luddepenimanpaas BONIONUSI B alTOPUTME 00yIEHUS
JICpeBbEB NMPUHATHS pelneHuit / Cubupckuii xypHail Hayku B TexHooruid. 2019. T. 20, Ne 3. C. 312-
319. DOI: 10.31772/2587-6066-2019-20-3-312-319.

17. Semenkin E. S., Semenkina M. E. Self-configuring Genetic Algorithm with Modified Uniform
Crossover Operator / LNCS. 2012. Vol. 7331. P. 414-421.

18. Semenkin E., Semenkina M. Self-configuring genetic programming algorithm with modified
uniform crossover // Evolutionary Computation (CEC), 2012 IEEE Congress on Evolutionary Com-
putation, June 2012. P. 1-6. DOI: 10.1109/CEC.2012.6256587.

19. Self-tuning geometric semantic Genetic Programming / M. Castelli, L. Manzoni, L. Vanneschi et al. /
Genetic Programming and Evolvable Machines. 2016. Vol. 17, No. 1. DOI: 10.1007/s10710-015-9251-7.

20. Oh S., Suh W.-H., Ahn C.-W. Self-Adaptive Genetic Programming for Manufacturing Big Da-
ta Analysis / Symmetry. 2021. Vol. 13, No. 4. P. 709. DOI: 10.3390/sym13040709.

21. Al-Madi N., Ludwig S. Adaptive Genetic Programming applied to Classification in Data Min-
ing. Fourth World Congress on Nature and Biologically Inspired Computing (IEEE NaBIC’12), Mex-
ico City, Mexico, November 2012. DOI: 10.1109/NaBIC.2012.6402243.

22. Tanabe R., Fukunaga A. Success-history based parameter adaptation for Differential Evolution
// 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2013, P. 71-78. DOL
10.1109/CEC.2013.6557555.

23. Renkavieski C., Parpinelli R. L-SHADE with Alternative Population Size Reduction for Un-
constrained Continuous Optimization. Computer on the Beach, September 2020, P. 351-358. DOI:
10.14210/cotb.v11nl.p351-358.

24. Stanovov V., Akhmedova S., Semenkin E. Genetic algorithm with success history based pa-
rameter adaptation // IJCCI 2019 — Proceedings of the 11th International Joint Conference on Compu-
tational Intelligence: 11, Vienna, 17-19 September 2019. Vienna : 2019. P. 180-187. DOI:
10.5220/0008071201800187.

25. Marian S., Tegmark M. E. Al Feynman: A physics-inspired method for symbolic regression //
Science Advances. 2020, Vol. 6, No. 16. DOI: 10.1126/sciadv.aay2631.

26. Rights M. D., Sterba S. K. A framework for effect size measures in multilevel models: A re-
view and recommendations // Psychological Methods. 2019. Vol. 24, No. 3. P. 289-315.

References

1. IEEE Congress on Evolutionary Computation (CEC) [Electronic resource]. 2025. Available at:
https://www.cec2025.org/ (accessed: 08.01.2025).

2. Koza J. R. Genetic programming: on the programming of computers by means of natural selec-
tion. Sixth printing, 1998, Massachusetts Institute of Technology, 609 p.

3. Kuranga C., Pillay N. A Comparative Study of Genetic Programming Variants. Artificial Intelli-
gence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science. 2023. Vol. 13588,
P. 377-386. DOI: 10.1007/978-3-031-23492-7 32.

4. Al-Helali B. et al. Genetic Programming-based Feature Selection for Symbolic Regression on
Incomplete Data. Evolutionary Computation, 2024, P. 1-27.

5. Karaseva T. S., Mitrofanov S. A. Self-configuring genetic programming algorithm for solving
symbolic regression problems. IOP Conference Series: Materials Science and Engineering. Kras-
noyarsk, 16—18 April 2020. 2020, Vol. 862, P. 52069. DOI: 10.1088/1757-899X/862/5/052069.

6. Margariti S., Tsoulos L., Kiousi E., Stergiou E. Traffic Classification in Software-Defined Networking
Using Genetic Programming Tools. Future Internet. 2024, Vol. 16, P. 338. DOI: 10.3390/£116090338.

68



Hngpopmamuka, 8bluucaUMeNbHAS MeXHUKA U YNPABJeHUe

7. Maurya P., Kushwaha A., Prakash O. Medical Data Classification Using Genetic Programming;:
A Systematic Literature Review. Expert Systems. 2025, Vol. 42, No. 3. DOI: 10.1111/exsy.70007.

8. Santoso L., Singh B., Rajest S., Rajan R., Kadhim K. A Genetic Programming Approach to Bi-
nary Classification Problem. EAI Endorsed Transactions on Energy Web, 2020. DOI: 10.4108/eai.13-
7-2018.165523.

9. Hong L., Drake J., Woodward J., Ozcan E. A hyper-heuristic approach to automated generation
of mutation operators for evolutionary programming. Applied Soft Computing. 2018, Vol. 62. DOI:
10.1016/j.as0¢.2017.10.002.

10. Scott E. 'Siggy, Bassett J. Learning Genetic Representations for Classes of Real-Valued Opti-
mization Problems. 2015. DOI: 10.1145/2739482.2768460.

11. Hong L., Woodward J. R., Ozcan E. et al. Hyper-heuristic approach: automatically designing
adaptive mutation operators for evolutionary programming. Complex Intell. Syst. 2021, Vol. 7,
P. 3135-3163. DOI: 10.1007/s40747-021-00507-6.

12. Wang C., Qu Y., Lu Z., An H., Xia H., Ma G. Trajectory optimization method for spacecraft
orbit transfer with finite thrust. Xinan Jiaotong Daxue Xuebao. Journal of Southwest Jiaotong Univer-
sity. 2013, Vol. 48, P. 390-394. DOI: 10.3969/j.issn.0258-2724.2013.02.030.

13. Semenkin E., Semenkina M. Spacecrafts' control systems effective variants choice with self-
configuring genetic algorithm. ICINCO 2012 — Proceedings of the 9th International Conference on
Informatics in Control, Automation and Robotics. 2012, Vol. 1, P. 84-93.

14. Nichaus J., Banzhaf W. Adaption of Operator Probabilities in Genetic Programming. Genetic
Programming. EuroGP 2001. Lecture Notes in Computer Science. 2001, Vol. 2038, P. 325-336. DOI:
10.1007/3-540-45355-5_26.

15. Lipinskiy L. V., Kushnareva T. V. [A study of models and procedures of self-configuring ge-
netic programming for forming decision trees in data mining tasks]. Vestnik SibSAU. 2016, Vol. 17,
No. 3, P. 579-586 (In Russ.).

16. Mitrofanov S. A., Semenkin E. S. [Differential evolution in the decision tree learning algo-
rithm]. Siberian Journal of Science and Technology. 2019, Vol. 20, No. 3, P. 312-319. DOL
10.31772/2587-6066-2019-20-3-312-319 (In Russ.).

17. Semenkin E. S., Semenkina M. E. Self-configuring Genetic Algorithm with Modified Uniform
Crossover Operator. LNCS. 2012, Vol. 7331, P. 414-421.

18. Semenkin E., Semenkina M. Self-configuring genetic programming algorithm with modified
uniform crossover. Evolutionary Computation (CEC), 2012 IEEE Congress on Evolutionary Compu-
tation, June 2012, P. 1-6. DOI: 10.1109/CEC.2012.6256587.

19. Castelli M., Manzoni L., Vanneschi L., Popovi¢ A. et al. Self-tuning geometric semantic Ge-
netic Programming. Genetic Programming and Evolvable Machines. 2016, Vol. 17, No. 1. DOL:
10.1007/s10710-015-9251-7.

20. Oh S., Suh W.-H., Ahn C.-W. Self-Adaptive Genetic Programming for Manufacturing Big Da-
ta Analysis. Symmetry. 2021, Vol. 13, No. 4, P. 709. Available at: DOI: 10.3390/sym13040709.

21. Al-Madi N., Ludwig S. Adaptive Genetic Programming applied to Classification in Data Min-
ing. Fourth World Congress on Nature and Biologically Inspired Computing (IEEE NaBIC’12). Mex-
ico City, Mexico, November 2012. Available at: https://doi.org/10.1109/NaBIC.2012.6402243.

22. Tanabe R., Fukunaga A. Success-history based parameter adaptation for Differential Evolu-
tion. 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2013, P. 71-78. DOLI:
10.1109/CEC.2013.6557555.

23. Renkavieski C., Parpinelli R. L-SHADE with Alternative Population Size Reduction for Un-
constrained Continuous Optimization. Computer on the Beach, September 2020, P. 351-358. DOL:
10.14210/cotb.v11n1.p351-358.

24. Stanovov V., Akhmedova S., Semenkin E. Genetic algorithm with success history based pa-
rameter adaptation. IJCCI 2019 — Proceedings of the 11th International Joint Conference on Compu-
tational Intelligence: 11, Vienna, 17-19 September 2019. Vienna, 2019, P. 180-187. DOI:
10.5220/0008071201800187.

69



Cubupckuil aspokocmuueckuii acypran. Tom 26, N1

25. Marian S., Tegmark M. E. Al Feynman: A physics-inspired method for symbolic regression.
Science Advances. 2020, Vol. 6, No. 16, P. 2631. DOI: 10.1126/sciadv.aay2631.

26. Rights M. D., Sterba S. K. A framework for effect size measures in multilevel models: A re-
view and recommendations. Psychological Methods. 2019, Vol. 24, No. 3, P. 289-315.

© Ilepctres I1. A., Cemenkun E. C., 2025

IlepcTHes ITaBen AJieKcaHAPOBHMY — aclUpaHT Kadeapbl IPOrpaMMHON MHXXEHEPUH, HHKEHEP-UCCIE0BaTeNb
IlenTpa uckyccTBeHHOro uHTeIekTa; Cubupckuil penepanbublii ynusepcureT. E-mail: sherstpasha99@gmail.com.

CemenknH EBrennii CTanuciaBoBHY — JOKTOp TeXHHYECKUX Hayk, mpodeccop; kadeapa CHCTEMHOTO aHAIH3a
U uccienoBaHusi omnepanuii, CUOMPCKUII rOCyapCTBEHHBI YHUBEPCUTET HAYKM W TEXHOJOTMH HMMEHH aKaJeMHuKa
M. @. PemerneBa. E-mail: eugenesemenkin@yandex.ru. https://orcid.org/0000-0002-3776-5707

Sherstnev Pavel Aleksandrovich — graduate student, Research Engineer; Artificial Intelligence Center, Siberian
Federal University. E-mail: sherstpasha99@gmail.com.

Semenkin Evgeniy Stanislavovich — Dr. Sc., Professor, Department of Systems Analysis and Operations Re-
search; Siberian State University of Science and Technology. E-mail: eugenesemenkin@yandex.ru.
https://orcid.org/0000-0002-3776-5707

Cratbs nmocrynuna B peaakuuio 24.02.2025; npunsita k nyonukamnuu 04.03.2025; onyonukosana 11.04.2025
The article was submitted 24.02.2025; accepted for publication 04.03.2025; published 11.04.2025

Cratbs focTynHa no nuueHsum Creative Commons Attribution 4.0
The article can be used under the Creative Commons Attribution 4.0 License



