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Annomayus. Peanuzayus mooeneti 08udCeHUss KOCMUYECKO20 AnNapama 8 Yclosusx pabomul Hagued-
YUOHHBIX MOOYJell 8 pedicuMe PeanrbH020 BPeMeHU CMAIKUBAEMC ¢ NPUHYUNUATbHOIMU OSPAHUYEHUSMU,
CBA3AHHBIMU C HEOOXOOUMOCMbIO DANIAHCUPOBKU MeHCDY MOYHOCNBIO GbIYUCIEHUL U OOCMYNHOU 8bIYUCTU-
menvHoUu MowHocmvio. QOHOBpeMeHHOe BbINOIHEHUE NAPATICTbHBIX 3a0a, MAaKux Kaxk oobpabomka Hasu-
2AYUOHHBIX UMEPeHUll, onpedeieHue Koopounam obwvexma no cuenaram THCC, guismpayus wymos,
npeodpazosanue OAHHLIX U UX apXusayus, mpedyem ONMUMUSAYUU AN2OPUMMOS O MUHUMUSAYUU 3d-
oepoicek u pecypcozampam. B maxux ycroeusx xiaccuueckue 6blCOKOMOUHble MOOenu, OCHOBAHHbIE HA
CLOJCHBIX OUPPEPEHYUATLHBIX YPAGHEHUAX ULU YYeme MHONCeCMBAd BO3MYUArWUX Hakmopos, Cmaro-
85IMCSL HENPUMEHUMBIMU U3-30 UX 8blMUCIUmMENbHOU émkocmu. [Ipednoscennas 6 pabome moodeib 08udice-
HUsl, BHEOPEHHAR 8 HABULAYUOHHBLE MOOYIU npoussoocmea AO “Koncmpykmopckoe 610po Ha8UeAYUOHHBIX
cucmem” (AO «KBE HABHC»), oemoncmpupyem 3¢hhekmusuviti KOMIPOMUCC. OHA COXPAaHsem 00Cmamou-
HYI0 MOYHOCMb NPOSHO3UPOGAHUSL MPAEKMOPUY, AOANMUPYSCL K OZPAHUYEHUSIM annapamuou niameop-
mbl. Moodenv ocHosana Ha KOMOUHAYUYU KUHEMAMUYECKUX YPABHEHUIL C KOPPEKMUPOBGKAMU, YHUMbI8AIOUU-
MU OCHOGHbBIE OUHAMUYECKUE 8030€lCMBUsl (ePAsUMAYUOHHbIE AHOMANUY, AMMOCHEPHOe CONPOMUBIEHIUe,
enuanue epasumayuu Connya u JIyusl, 0asienue corHeuHo20 c8ema), Ho UCKouaem u30blimounsle pacie-
mol, XapaxmepHule 0151 NOTHOMACWMAOHBIX cumyaayutll. Ycnewnas anpooayust 8 peaibHbiX YCI08UixX 00Ka-
3v18aem, Ymo npeodioHCeHHbll NOOX00 MONHCEM CLYHCUMb 6a301 071 OANbHEeUe20 PA3GUMUs AOPUMMO8
Hasueayuy, 0COOEHHO 8 KOHMEKCme MANblX KOCMUYEeCKUX annapamos ¢ O02PaHUYeHHbIMU pecypcami.
B cmamve npeocmasnenvl guzuueckas u mamemamuueckas NOCMAHOBKA 3A0AYU NPOSHO3A COCMOAHUSA
KOCMUYECKO20 annapama, 4mo no3eoisem Oonee 21y60Ko NOHAMb GUsHIUE PA3TUYHbIX aKmopos Ha moy-
HOCMb Hagueayuu. B 3axarouumenvHol uacmu pabomuvl npusedenvl pe3yibmamovl MOOEeIUpPOBaAHUs OMKIO-
HeHUll napamempos 0ovexma 0Jisk PA3HbIX KIACCO8 opoum, a makdice OanHvle, NOTYUEHHblE 8 X00e 00pa-
OOMKU peanbHblX IeMHbIX UCTBIMAHUL, NOOMEEPAHCOAIOUUE BO3MONCHOCTNL U HEOOX0OUMOCTb Yuéma 8cex
napamempos 0 OOCMUNCeHUs 6blcoKoU moyHocmu Hasueayuy. CO8OKYNHOCMb NPUEEOEHHBIX OAHHBIX
ABAAEMCSL UHPOPMAYUOHHOU OCHOBOU 0151 HACMPOUKU ANOPUMMA NPOSHO3A 8 COOMEEMCMBUL C KOHKPem -
HbIMU MPEOO0BAHUAMU MOYHOCTHU.

Kniouesvie cnosa: CnymHuKoeas Hasuzayusd, annapamypa cnymHuKoeoIZ Haesucayuu, Mo0eib 06u3fC6Hu}l,
mamemamudecKoe MO@@JZMPO@CIHM@, sapvuposarHUue napamempoes.
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Abstract. The implementation of spacecraft motion models under real-time navigation module operation
faces fundamental limitations associated with the need to balance computational accuracy and available
processing power. The simultaneous execution of parallel tasks — such as processing navigation measure-
ments, determining object coordinates via GNSS signals, noise filtering, data conversion, and archiving —
requires algorithm optimization to minimize delays and resource consumption. Under these constraints, clas-
sical high-precision models based on complex differential equations or the inclusion of multiple perturbing
factors become impractical due to their computational intensity. The motion model proposed in this study,
integrated into navigation modules produced by JSC “KB NAVIS”, demonstrates an effective compromise: it
retains sufficient trajectory prediction accuracy while adapting to hardware platform limitations. The model
combines kinematic equations with adjustments accounting for primary dynamic effects (e.g., gravitational
anomalies, atmospheric drag, solar and lunar gravitational influences, solar radiation pressure) but elimi-
nates redundant calculations typical of full-scale simulations. Successful real-world testing proves that this
approach can serve as a foundation for further development of navigation algorithms, particularly for small
spacecraft with limited resources. The article presents the physical and mathematical formulation of the
spacecraft state prediction problem, enabling a deeper understanding of how various factors affect navigation
accuracy. The concluding section provides results from parameter deviation simulations and data from actual
flight tests, confirming the feasibility and necessity of accounting for all parameters to achieve high naviga-
tion precision. The compiled dataset serves as an informational basis for configuring the prediction algorithm
according to specific accuracy requirements.

Keywords: satellite navigation, satellite navigation equipment, motion model, mathematical modeling,
parameter variation.

Introduction

Satellite navigation (SN) has become an integral part of modern life. From mobile applications for
city orientation to precise positioning in the maritime, aviation and space industries, SN provides
reliable and accurate determination of location, speed and time [1]. These advantages are especially
useful for autonomous navigation, automatic piloting, mapping and other applications that are just
beginning to develop actively [2].

However, this technology is not perfect and has its own problems that can affect its efficiency and
reliability:

1) signal interference: satellite signals transmitted by navigation systems can be subject to various
interference such as multipath, noise and signalblocking. This can cause signal distortion and reduce
the accuracy of positioning;

2) geographical limitations: in some places on Earth, such as deep valleys, mountainous areas or
densely built-up cities, signals from satellites can be weakened or completely blocked. This leads to
problems in obtaining a reliable navigation signal. A similar problem is observed in outerspace for
spacecraft (SC) in geostationary orbit (GEO), when the available number of visible navigation space-
craft (VNS) is insufficient to accurately determine the state of the spacecraft;

3) dependence on the state of the navigation spacecraft: the SN is completely dependent on the
functioning of global navigation satellite systems (GNSS) [3]. Any errors, technical failures, failures
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in satellite networks or deliberate acts of interference can lead to the unavailability or inadequate op-
eration of the SN.

It should be noted that there are methods and technologies that help to cope with SN problems. For
example, there are interference suppression methods that improve the quality of received signals, pro-
tective measures to reduce the vulnerability of the system, as well as alternative navigation systems,
such as inertial ones. When used in combination with GNSS, the inertial system provides the con-
sumer with coordinate and velocity data in the absence of GNSS signal reception.

Instantaneous (one-time) SWR solution for GNSS is a method that allows determining the position
of an object (the state vector of the object — coordinates, speed and time) in real time. This method
meets the requirements of most ground users, and together with the inertial system allows overcoming
most of the problems of the SN.

Instantaneous SWR solution for objects in near-Earth orbits (NEO) is similar to the “ground” one,
while the feature of orbital motion, which distinguishes it from the motion of ground objects, is high
predictability — high accuracy of the motion forecast, determined through the parameters of gravity of
the Earth, the Moon, the Sun, atmospheric resistance, light pressure, etc.

For navigation on the NEO, the forecast makes it possible to:

1) calculate in real time the motion at intervals of loss of tracking of the signals of the NSC (simi-
lar to the inertial navigation system), and also to forecast (predict) the motion in the future;

2) calculate from instantaneous coordinates and velocities (KS) the average orbit (SRO) on the in-
terval, which can be more accurate than each of the initial instantaneous KS-solutions;

3) use recursive algorithms [4—7], allowing in real time to take into account various sources of er-
rors, such as measurement errors, noise, interspatial interference, systematic errors in the coordinates
of the navigation spacecraft.

Modern research in the field of modeling the orbital dynamics of spacecraft in near-Earth orbits is

faced with the need to balance between the accuracy of forecasting and the computational complexity
due to the specifics of applied problems. The papers [8—9] present simplified models aimed at short-
term forecasting of trajectories of objects in low circular orbit (LCO) and medium-earth orbit (MEO),
which is relevant for the tasks of pointing antennas with a wide coverage angle. In particular, [8] dem-
onstrates the application of the SGP (Simplified General Perturbations) model for calculating the azi-
muth and elevation angle of the spacecraft basedon TLE (Two-LineElements) data, with an estimate of
errors relative to a more accurate model. The study [9] proposes an algorithm for determining the posi-
tion and orientation of the Earth relative to the spacecraft, which is critical for simulating docking
processes. In contrast to the indicated works, the study [10] focuses on the trajectories of interplane-
tary missions (using the example of an expedition to the asteroid Apophis), where the set of disturbing
factors includes the gravitational effects of remote celestial bodies, then on sphericity of the asteroid,
and the pressure of sunlight. In the papers [11; 12] trajectory optimization methods are considered,
including the pseudo-spectral Gaussian method and relativistic propagation models, but their computa-
tional complexity limits their applicability in real time for resource-constrainedsystems.

Complementing existing studies, a new approach to modeling orbital dynamics using machine
learning is proposed in [13] to improve the accuracy of spacecraft trajectory prediction. The authors
demonstrate that the integration of neural networks with classical orbital mechanics methods can sig-
nificantly reduce the computational load while maintaining high prediction accuracy, but all process-
ing occurs outside of real time.

It should be noted that most existing studies ignore GEO, limiting themselves to the navigation
spacecraft and MEO. The objective of this paper is to comprehensively describe the spacecraft
motion model implemented in the navigation modules produced by JSC KB NAVIS, with an emphasis
on analyzing the impact of motion parameter errors on the prediction accuracy for various
orbit classes. The results of numerical modeling of trajectory parameter deviations are presented, as
well as flight test data confirming the need and possibility of taking into account dynamic disturbances
in real time.
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1. Physical model of forecasting the spacecraft state vector

WGS 84 and PZ-90 were chosen as coordinate systems for geodetic support of orbital flights and
solving navigation problems. Both are characterized by the fact that the origin of the system is located
at the center of mass of the Earth. The coordinate axis Z, in accordance with the recommendations of
the International Earth Rotation Service (IERS), is directed toward the middle North Pole. The coordi-
nate axis X lies in the plane of the earth’s equator of the same epoch, forming an intersection with the
plane of the prime meridian established by the same IERS, and determines the position of the zero
point of the adopted counting system. The Y axis complements the coordinate system to the right.

The difference between the two coordinate systems consists in the values of the set of constants.
WGS 84 is mainly used, so an example is given for this coordinate system:

— angular velocity of Earth rotation o,=7.292115x107 rad/s;

— Earth radius R, (semi-major axisa, ) = 6378137 m;

— gravitational constant p = 398600.4418x10° m’/s;

— eccentricity of the Earth’s orbit 6.69437999013%10°.

It is assumed that the spacecraft is not subject to control effects, i.e. it does not use control engines
and has a constant mass. Thus, the position and velocity of the spacecraft at any given moment will be
affected by the following components:

1) the force of attraction of a spherical and homogeneous model of the Earth;

2) the centrifugal force and the Coriolis force caused by the rotation of the Earth and the motion of
the spacecraft;

3) the anomalous force of attraction of the Earth caused by the difference between the Earth and a
spherical and homogeneous mass [14];

4) atmospheric resistance;

5) the attraction of the Sun;

6) the attraction of the Moon;

7) the pressure of sunlight.

2. Mathematical formulation of the problem of forecasting the state vector of the spacecraft

2.1. General system of equations

Forecasting the parameters of the spacecraft motion on the orbit from the moment of time #0 to the
moment ¢ is performed by numerically integrating the following differential equations of motion in a
rectangular geocentric coordinate system (RCS) to determine the position coordinates (x, y, z) and ve-
locity components (V;, V), V2)

dx:V

ot , 1
=V (1)
dy
==V, 2
=V (2)
dz
“_y, 3
=V 3)
7=_r_3,x+m3.x+2.@3.Vy+xa+xs+xc+xm+xl, (4)
7:_],_3'y+m3-y+2-oo3-Vx+ya+ys+yc+ym+y1, ©)
v, 0
L=z I +E +Z +E, +Z), 6
dt F3 a s c m / ()
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where r = \/xz +y? +z% is the radius vector of the spacecraft position; X,,¥,,2, are the components
of the acceleration vector caused by the difference between the Earth model and a spherical one;
X,,¥,,Z, are the components of the acceleration vector caused by aerodynamic braking of the space-
craft in the Earth’s atmosphere; X,,y, ., Z_ are the components of the acceleration vector caused by the
attraction of the Sun; X,,,y,,, Z,, are the components of the acceleration vector caused by the attraction
of the Moon; X,,¥,, Z, are the components of the acceleration vector due to the pressure of sunlight.

The force of attraction of a spherical and homogeneous model of the Earth corresponds to the first
term in equations (4)—(6). The centrifugal force corresponds to the second, and the Coriolis force to
the third term of formulas (4)—(5).

2.2. Determination of spacecraft accelerations caused by geopotential
The components of the spacecraft acceleration vector caused by the difference between the Earth
model and a spherical one are first determined in the topocentric coordinate system (TCS) through the

geopotential coefficients [14], after which they are transformed into RCS components ¥,y ,, Z,, :

X _xz ¥
i, T (g
. *Z X .
vl =-2 2= 2K, |, )
) roor-n n .
Z4 U?»
_zoon
roog

where UF,U¢,UK. are the components of the acceleration vector in the TCS: by radius vector r, by

latitude ¢ and longitude A; r; = NESE
The components of the acceleration vector Ur,qu),ljx are determined as the sums of the trigono-

metric series:

N n _
U, =u/r22(ae /r)"(n—i—l)z AP

n=2 m=0

N n
U¢ =u/r22(ae /r)" zAnm By
n=2 m=0

N n
'y | n D
U =———) (a,/r) mB,, P,
top 'COS%Z:; W;

where
sinp=z/r,
coshp=r/r,
A, =C,  -cos(m-L)+S, -sin(m-L),
B, =S, -cos(m-L)—C, -sin(m-L).
C,,..S, are the normalized coefficients of the expansion of the Earth’s potential.

The trigonometric functions of angles that are multiples of A are calculated using the formulas
sin(m - L) =sin(L) - cos([m —1]- L) + cos(A) - sin([m —1]- 1),
cos(m-A)=cos(A)-cos([m—1]-A)—sin(A)-sin([m —1]- 1),

cosh=x/n,sinA=y/n.
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The normalized Legendre polynomials P, are functions ofsin(¢) ,cos(¢)and are determined using

the following recurrent dependencies:

I_JM ‘,22n+1 cos(d)) Y Lm-1> n=m>1,

— 2-n+1 ) = 1 1

By = oL (V21 sin(@) - B, — [ D ) s m,
n-—m ’ 2-n-3

P =0, m>n.

nm

Initial values: By, =1,B, = V3sin¢, B, = J3coso.
The derivatives of the normalized Legendre polynomials P > m With respect to ¢ are determined by

the following recurrent dependencies:

=, 2-n+1 =, . —

P, - (cos(®) By 1 —sin(@)- B, 1), n=m>1,

B, = 2“1sz@M@memum)f"m;”me Pl n>m,
n - n

P =0, m>n.

nm

Initial values: By, =0, B, =~/3 - cos($), B, =—/3 -sin(¢).

2.3. Determining spacecraft accelerations due to atmospheric braking
The components of the acceleration vector X,,V,,Z caused by aerodynamic braking of the space-
craft in the Earth’s atmosphere [14] are calculated using the formulas

X,==S,-p-V-V,,
Y =-Sp-p- V-V, ®)
Z,=-S,-p-V-V,
where p is the density of the upper atmosphere from the national standard model (GOST R
25645.166-2004); V=,/Vx2 +Vy2 +VZ2 is the magnitude of the spacecraft velocity vector;

S, =C.S,, /2mis the ballistic coefficient; m is the spacecraft mass; C, is the aerodynamic drag coefti-
cient; S, is the spacecraft midsection area.
The values of the aerodynamic coefficientC, and the midsection areasS,, are determined by the

size and shape of a specific spacecraft.

2.4. Determining spacecraft accelerations due to solar gravitation

The components of the acceleration vector 176 =(X,, y,, Z,), caused by disturbances from the Sun
[14], are determined using the following formulas:
p(E-F) pF

- -3 -
o= I

]/'c:

where ., 1s the product of the gravitational constant and the mass of the Sun; 7, is the vector of the

Sun’s position relative to the Earth; 7 is the vector of the object’s position relative to the Earth.

The calculation of the ecliptic and geocentric coordinates of the Sun [15] uses the mean elements of
the Sun’s orbit as constants, determined for the J2000 epoch. The estimated calculation error is no
more than 10 arc minutes.
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The rectangular equatorial coordinates of the Sun are calculated using the radius vector, longitude,
and inclination of the ecliptic to the equator. When calculating the coordinates of the Sun on the cur-
rent date, its elliptical motion is taken into account. The radius vector of the Sun and the longitude of
the Sun on the current date are determined through series by the mean anomaly. The mean anomaly on
the current date is determined from the mean anomaly for the J2000 epoch, taking into account the
mean motion for the J2000 epoch and the time in Julian centuries from the J2000 epoch. The inclina-
tion of the ecliptic to the equator on the current date is determined from the inclination of the ecliptic
at J2000 and the change ininclination over time in Julian centuries from the J2000 epoch.

The coordinates of the Sun in the rectangular geocentric coordinate system on the current date are
determined from the equatorial coordinates by rotating with the Greenwich hour angle. The Greenwich
hour angle on the current date is determined without taking into account the movement of the poles,
precession and nutation from the Greenwich hour angle at the J2000 epoch, taking into account its
change for the time after the J2000 epoch.

The equatorial coordinates of the Sun are determined by the following formulas:

x = r-cos(L),
r-sin(L)-cos(EPS),
r-sin(L)-sin(EPS),

<
Il

N
Il

where r is the distance to the Sun:
r=[149,619 —2,499-cos(M) —0,021-cos(2- M)]-10°,
M is the mean anomaly:
M = 357°,528+35999°,05x T,
L is the longitude of the Sun taking into account precession:
L=282°94 + M + [6892"-sin(M)+72"xsin(2-M)] / 3600 + 1°3972-T,
EPS is the inclination of the ecliptic to the equator:
EPS =23°,43929111 — 46",8150-T — 0",00059-72 + 0",001813-7",
T is the time in Julian centuries from the J2000 epoch.
The coordinates of the Sun (the Sun vector Ry =[xg yg zs]) in the rectangular geocentric coordi-
nate system are determined by the formulas
xg = x-cos(Tgr) + y-sin(Tgr),
yg = y-cos(Igr) — x-sin(Tgr),
Zg =z,
where Tgr is the Greenwich hour angle from the J2000 epoch:
Tgr = 280°,46061837504 + 360°,9856473662862-d ,
i = Tgr / 360,
RAD =180 /=,
Ter = (Tgr — i-360) / RAD ,if Tgr < 0,then Tgr = Tgr + 2m,
d = (MJD — 51544) + (FMJD-86400 —dUTC) / 86400 — 0,5 ;
MJD is the number of days from the beginning of the J2000 epoch,
FMJD is the number of seconds from the beginning of the epoch,
dUTC is the time correction to the UTC scale.
The calculation of the equatorial coordinates of the Sun was verified using the Astronomical Year

book of the USSR for 1983 and control points from the NASA website. Examples of the calculation
are presented in Table 1.
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Table 1
Evaluation of the error in calculating the coordinates of the Sun

Calculation of the equatorial coordinates of the Sun on 21.11.2010 12:00:00
Equatorial coordinates of the X, km Y, km Z, km
Sun
NASA website —7.6318610 E+07 —1.1610898 E+08 —5.0335183 E+07
Calculation by formulas —7.6038571 E+07 —-1.1626342 E+08 —5.0402949 E+07
Calculation error 0.0280039 E+07 0.0015444 E+08 0.0067766 E+07
Max error 0.3269033 E+06 km=0.00218=7.5 arc minutes

Calculation of the equatorial coordinates of the Sun on 21.06.2011 12:00:00
Equatorial coordinates of the X, km Y, km Z, km
Sun
NASA website 9.9620932 E+05 1.3947997 E+08 6.0467823 E+07
Calculation by formulas 6.4872767 E+05 1.3948265 E+08 6.0468820 E+07
Calculation error 3.4748165 E+05 0.0000268 E+08 0.0000997 E+07
Max error 0.347493 E+06 km = 0.00232 = 8.0 arc minutes

2.5. Determining the spacecraft accelerations due to the attraction of the Moon
The components of the acceleration vector ij;n =(X,, ¥,, Z,), caused by disturbances from the

Moon [14], similar to the Sun, are determined by the following formulas:

;E :um‘(rm_r)_um'|:m ,

m BT -
f-r T
where p,, is the product of the gravitational constant and the mass of the Moon; 7, = (x,,, ¥,
z,,) 1s the vector of the Moon’s position relative to the Earth; 7 is the vector of the spacecraft’s posi-

tion relative to the Earth.

To calculate the coordinates of the Moon [15], it is necessary to know the current time in the for-
mat of year, month, day, hour, minute, second, correction to the UTC (US) time zone.

The calculation procedure and formulas are as follows:

conversion of the current date and time to time in Julian centuries T from the epoch J2000 similar
to the Sun;
calculation of the average longitude of the Moon e/0 (in degrees):

el0 = 21831617 + 481267.88088-T — 1.3972-T7;
average anomaly of the Moon e/ (indegrees):
el =134.96292 + 477198 / 86753-T;
average anomaly of the Sun elp (in degrees):
elp= 357.528 + 35999.04944-T ;
mean angular distance f of the Moon from the ascending node (in degrees):
f = 93.27283 + 483202.01873-T;
difference between mean longitudes of the Sun and Moon (in degrees):
d = 297.85027 + 445267.11135-T;

true ecliptic longitude of the Moon (epoch J2000) differs from mean longitude by periodic terms
Lon and dlon (in degrees):

Lon = el0+dlon
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dlon = [22640-sin(el) + 769 -sin(2-el)—4586-sin(el — 2-d)+
+2370-sin(2-d)— 668 -sin(elp) —412-sin(2- f)—212-sin(2-e/ —2-d) .
—206-sin(el +elp —2-d)+192-sin(el +2-d)~165-sin(elp—2-d) + 148-sin(el—elp) ~
— 125-sin(d) — 110-sin(el +elp)—55-sin(2- f —2-d)] / 3600

true ecliptic latitude of the Moon Lat (epoch J2000) (in degrees):

Lat = [18520-sin(f + Lon — el0 + q) — 526-sin(f — 2-d) + 44-sin(el + f — 2-d) —
— 31-sin(—el + f — 2-d) — 25-sin(—2-el + f) — 23-sin(elp + [ — 2-d)
+ 21-sin(—el + f) + 11-sin(—elp + f — 2-d)] / 3600,

where ¢ = 412 / 3600-sin(2- /) + 541 / 3600-sin(elp) ;
distance Rse from the center of the Earth to the Moon (in meters):
Rse = [38500 — 20905-cos(el) — 3699-cos(2-d — el) — 2956-cos(2-d) —
—570-cos(2-el) +46xcos(2el — 2d) — 20x5cos(elp — 2d)—
—171xcos(el + 2d)+ 2— 152xcos(el + elp — 2d)]x1000;

true ecliptic longitude of the Moon taking into account precession (indegrees):
Lon = Lon + 1.3972xT ;
inclination of the ecliptic to the equator Obe (in degrees):
Obe = 2343929111 ;

ecliptic coordinates of the Moon xse, yse, zse:

xe = Rse-cos(Lon)-cos(Lat),

ye =Rse-sin(Lon)-cos(Lat),

ze = Rse-sin(Lat);
equatorial coordinates of the Moon xse, yse, zse:

xse = xe

yse = ye-cos(Obe) — ze-sin(Obe),

zse = ze-cos (Obe) + ye-sin(Obe);
coordinates of the Moon in the rectangular geocentric coordinate system:

x,, = xse-cos(Tgr) + yse-sin(Tgr),

Y = yse-cos(Tgr) — xse-sin(1gr),

z,, =zse,

where the Greenwich hour angle 7gr from the J2000 epoch is calculated using formulas similar to the
Sun.

2.6. Determining the spacecraft accelerations due to solar radiation pressure
To calculate the spacecraft accelerations due to the action flight pressure [14], it is necessary to
know the effective reflection coefficient Crefl, which depends on the cross-sectional area, mass and

other properties of the surface. The components of the acceleration vector 17, =(%, ¥, Z,), caused by

solar radiation pressure are determined by the following formula:
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1.4959787 108 Jz (F-7)
7| A

where |17C| is the distance from the Sun to the spacecraft.

ingreﬂ‘(

2.7. The fourth-order Runge-Kutta method
The numerical integration of the system of ordinary nonlinear differential equations of spacecraft
motion (1)—(6) of the form y} = f;(t,; 1,32, 3, V4, Vs, V6) 18 carried out by the fourth-order Runge-

Kutta method with a constant step [16] (j = 1,..., 6 is the number of equations describing the space-
craft motion).

For the k-th step and the j-th equation, it denote
Vi =)y S =11 Yik> Yars V3> Var» Vs Vo) -
At the k+1 integration step, the value of the sought functions is calculated using the formula:
Viknt =Yk th16-(k;+2-ky; +2-ky; +ky;) s
where £ is the integration step,

ki; = 1 Viks Yaro Vi Yak» Vi Yoi)s

h h h h h h h

ky; =1 +E9y1k +5'k11vy2k +5"‘127J’3k +5"‘13»J’4k +E"‘14»J’5k +5"‘15»J’6k +E‘k16)a
h h h h h

ky; =1 (8 +E’y1k +E'k217J’2k +E'kzzaJ’3k +5'k23»J/4k +5‘k24aJ/5k +5'k25’y6k +Ek26)9

ky;=fi(Q +hoyy +h-ky, o +hokeyy, vy +hekay, yay +heksy, s + hekys, o +hkyg)

With numerical integration over a large number of steps, there is a significant loss of accuracy due
to the accumulation of rounding errors. It is believed that the accumulation of rounding errors in coor-
dinates is proportional to the number of integration steps raised to the power of 3/2:

el =3’ - g(0),

where €(0) is the calculation accuracy at each step.

3. Errors in predicting the spacecraft motion along the NEO in the presence of errors

The above prediction equations were programmed in the MATLAB environment and the calcula-
tions were performed:

— for NEO with a period of revolution around the Earth of 1.5 hours and an orbital altitude above
sea level of 500 km;

— SRO with a period of 12 hours and an altitude of 20,000 km;

— GEO with a period of 24 hours and a naltitude of 35,777 km.

The results of the prediction from the harmonics of the Earth’s potential to the 64™ order, taking in-
to account accelerations from the Sun and the Moon, with a zero ballistic coefficient and a zero effec-
tive reflection coefficient, were used as reference data.

The motion parameters (including the starting point of the prediction) were varied, and the predic-
tion error was estimated. The set of data obtained allows, in the first approximation, based on the per-
missible prediction error, to estimate the accuracy with which the parameters used in the prediction
should be known.

3.1. Forecast errors from the error in the initial position
In order to estimate the effect of the error in coordinates and velocities along different axes, a uni-
form distribution of the displacement of the initial state vector with the specified modulus was speci-
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fied separately for coordinates (Table 2) and velocities (Table 3) and then the maximum result of the
forecast error was selected.

Table 2
Forecast error from errors in the initial coordinates
NKO. Orbital period: T = 1.5 h. Altitude 500 km. Forecast error, m:
Error modulus, Forcast interval, h
m 0.5 1.0 1.5 3.0 6.0
0.5 2.1 5.5 8.0 15.7 30.8
2 9.7 27.3 36.6 73.1 145.6
10 39.2 101.7 144.6 286.5 566.9
30 118.5 267.2 301.0 619.4 1256.9
MEQO. Orbital period: T = 12 h. Altitude 20,000 km. Forecast error, m:
Error modulus, Forcast interval, h
m 0.5 1.0 1.5 3.0 6.0 12.0 24.0
0.5 0.5 0.5 0.7 1.8 5.6 8.7 17.7
2 2.0 2.2 2.5 6.0 18.2 38.6 76.3
10 10.4 12.1 15.7 38.3 120.9 202.6 407.0
30 322 39.4 51.8 122.9 399.0 730.2 1461.4
CEO. Orbital period: T =24 h. Altitude 35,777 km. Forecast error, m:
Error modulus, Forcast interval, h
m 0.5 1.0 1.5 3.0 6.0 12.0 24.0
0.5 0.5 0.5 0.6 0.9 2.6 10.0 18.7
2 2.0 2.0 2.2 2.9 7.3 29.4 559
10 10.1 10.6 11.3 16.3 433 166.2 310.6
30 30.6 324 35.5 53.9 145.1 555.2 1036.8
Table 3
Forecast error from initial errors in velocities
NKO. Orbital period: T = 1.5 h. Altitude 500 km. Forecast error, m:
Error modulus, Forcast interval, h
m/s: 0.5 1.0 1.5 3.0 6.0
0.0001 0.3 1.4 1.7 34 6.8
0.0005 1.9 6.9 8.6 17.0 33.6
0.0020 7.7 28.1 34.7 68.7 135.8
0.0050 19.8 67.2 86.1 170.2 336.3
MEQO. Orbital period: T = 12 h. Altitude 20,000 km. Forecast error, m:
Error modulus, Forcast interval, h
m/s: 0.5 1.0 1.5 3.0 6.0 12.0 24.0
0.0001 0.1 0.3 0.6 1.4 6.7 12.4 24.5
0.0005 0.9 1.9 3.1 9.3 34.5 65.7 130.1
0.0020 3.6 7.7 12.7 343 131.4 261.4 517.3
0.0050 9.1 19.2 30.6 94.5 352.4 621.9 1232.9
CEO. Orbital period: T =24 h. Altitude 35,777 km. Forecast error, m:
Error modulus, Forcast interval, h
m/s: 0.5 1.0 1.5 3.0 6.0 12.0 24.0
0.0001 0.1 0.3 0.5 1.2 3.6 14.7 25.8
0.0005 0.9 1.8 2.8 6.4 19.6 74.6 129.4
0.0020 3.6 7.3 11.1 24.9 76.5 268.1 507.2
0.0050 9.0 18.3 28.3 64.9 180.2 625.7 1277.6
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In real conditions, position and velocity errors act in a complex manner. Based on the initial errors
and the required forecast interval, the data below can be used to estimate the need to take into account
other forecast parameters and their accuracy.

3.2. Forecast errors from different numbers of considered geopotential harmonics
The anomalous force of gravity of the Earth (7) depends on the number of considered geopotential

harmonics. The error in calculating coordinates taking into account different numbers of harmonics of
the Earth’s potential from the initial coordinates and velocities is presented in Table 4.

To achieve minimal forecast errors for NKO, it is necessary to take into account the largest number
of harmonics of the Earth’s potential. With increasing orbital altitude, the required number of harmon-
ics decreases, but 8 harmonics is the necessary minimum.

Table 4
Forecast errors from the number of considered geopotential harmonics
NKO. Orbital period: T = 1.5 h. Altitude 500 km. Forecast error, m:
Number of har- Forcast interval, h
monics: 0.5 1.0 1.5 3.0 6.0
32 1.1 1.4 1.4 4.4 14.4
16 5.3 14.8 24.4 19.0 25.2
8 20.8 65.1 66.7 140.2 197.2
2 100.2 236.6 236.6 451.9 626.1
MEQO. Orbital period: T = 12 h. Altitude 20,000 km. Forecast error, m:
Number of har- Forcast interval, h
Monics: 0.5 1.0 1.5 3.0 6.0 12.0 24.0
32 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.1 0.3 0.8
2 0.1 0.7 1.5 5.6 12.4 27.6 32.0
CEO. Orbital period: T =24 h. Altitude 35,777 km. Forecast error, m:
Number of har- Forcast interval, h
monics: 0.5 1.0 1.5 3.0 6.0 12.0 24.0
32 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.1
2 0.1 0.1 0.1 0.1 0.6 33 21.3

3.3. Atmospheric drag influence

The atmospheric state was taken into account according to GOST R 25645.166-2004. The varia-
tion of the ballistic coefficient Sb in (8) has a stronger effect in low orbit [17] due to the denser atmos-
phere. Therefore, several NKOs were additionally considered (Table 5). Sb is linearly related to accel-
eration, which means thati n (1)—(6) the coordinate error will have the same dependence, despite the
orbit nonlinearity, which is shown for one NKO.

Table 5
Atmospheric drag influence
Sb Forcast interval, h
0.5 | 1.0 | L5 | 3.0 | 6.0
NKO. Orbital period: T = 1.45 4. Altitude 200 km. Forecast error, m:
6.25¢-05 1.3 11.8 36.6 143.5 570.6
6.25¢-04 13.6 118.9 366.5 1437,7 5722.7
6.25¢-03 136.2 1191.2 3683.4 >10000 >10000
6.25¢-02 1364.6 >10000 >10000 >10000 >10000
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End of table 5
Sb Forcast interval, h
0.5 | 1.0 | L5 | 3.0 | 6.0
NKO. Orbital period: T = 1.49 h. Altitude 288 km. Forecast error, m:
6.25¢-03 | 7.8 | 67.8 | 190.0 | 7668 | 3098.1
NKO. Orbital period: T = 1.50 h. Altitude 500 km. Forecast error, m:
6.25¢-03 | 0.1 | 0.8 | 3.1 | 12.2 | 489
NKO. Orbital period: T = 1.68 h. Altitude 600 km. Forecast error, m:
6.25¢-03 | 0.1 | 0.2 | 0.7 | 2.7 | 109
NKO.Orbital period: T = 1.76 h. Altitude 1000 km. Forecast error, m:
6.25¢-03 | 0.0 | 0.0 | 0.1 | 0.1 | 04

The weakening of the influence of the ballistic coefficient with increasing orbital altitude is shown
in Table 5. It is also noticeable that an increase in the ballistic coefficient by an order of magnitude
leads to an increase in the forecast error by an order of magnitude.

Due to the absence of an atmosphere above 3,000 km, there is no effect on the forecast error for
MEO and GEO. However, for NKO taking into account the ballistic coefficient is necessary, and for
elliptical orbits combining the properties of NKO and MEO, it is necessary within the specified alti-
tude.

3.4. Forecast errors due to the Sun’s gravity

In assessing the influence of the Sun’s gravity on the forecast of the spacecraft position, two pa-
rameters are considered (Table 6):

— the error in determining the angular position of the Sun. In order to set the angular error in the
coordinates of the Sun (the error in the influence of gravity), the coordinates were shifted by a uni-
formly distributed random value so that the shift angle was equal to the specified value, then the max-
imum result of the forecast error was selected among equal values of the shift angle;

— the error in determining the distance to the Sun due to the periodic (yearly) change in the radius
of the Earth’s orbit from 147.098 to 152.098 thousand km.

The forecast error is also given in the case when the influence of the Sun’s gravity is not taken into
account.

It follows from the data in Table 6 that the variation in the object-Sun distance due to the position
of the object in orbit can practically be ignored.

Table 6
Owmubku Nporuo3a ot nputsixenns CoJHua

NKO. Orbital period: T = 1.5 h. Altitude 500 km. Forecast error, m:

Forcast interval, h
Error parameter 0.5 1.0 15 3.0 6.0
0.1 0.0 0.0 0.0 0.0 0.1
Angle, degrees 0.5 0.0 0.1 0.1 0.1 0.1
2 0.1 0.2 0.2 0.2 0.3
10 0.5 1.0 1.0 1.4 2.5
20 0.0 0.0 0.0 0.0 0.0
Distance, thousand km 100 0.0 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.1 0.1
2.500 0.0 0.1 0.1 0.2 0.4
Excluding ;C 0.6 2.2 2.3 4.1 7.6
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End of Table 6
MEQO. Orbital period: T = 12 h. Altitude 20,000 km. Forecast error, m:
Error parameter Forcast interval, h
0.5 1.0 1.5 3.0 6.0 12.0 24.0
0.1 0.0 0.0 0.1 0.2 1.0 2.2 2.6
Angle, degrees 0.5 0.1 0.2 0.5 1.1 4.6 8.5 14.9
2 0.2 0.6 1.4 4.9 18.5 33.7 58.3
10 1.0 3.9 8.5 25.2 74.2 173.4 222.3
20 0.0 0.0 0.0 0.0 0.1 0.2 0.3
Distance, 100 0.0 0.0 0.0 0.2 0.6 0.8 1.6
thousand km 500 0.0 0.1 0.2 0.8 3.2 3.9 7.9
2.500 0.1 0.4 0.9 4.1 16.4 19.8 40.6
Excluding ,7( 2.0 7.9 17.6 78.9 3144 379.3 778.3
CEO. Orbital period: T =24 h. Altitude 35,777 km. Forecast error, m:
Error parameter Forcast interval, h
0.5 1.0 1.5 3.0 6.0 12.0 24.0
0,1 0.021 0.084 0.2 0.7 2.2 9.9 433
Angle, degrees 0,5 0.114 0.455 1.0 4.0 13.4 52.4 210.3
2 0.401 1.578 3.5 13.1 39.9 189.2 755.1
10 1.756 6.871 15.4 62.6 216.0 940.6 3986.0
20 0.0 0.0 0.0 0.1 0.2 0.9 0.976
Distance, 100 0.0 0.0 0.1 0.3 0.8 4.5 4.9
thousand km 500 0.0 0.2 0.4 1.3 4.5 22.8 24.6
2.500 0.2 0.8 1.8 6.5 21.6 109.5 118.1
Excluding ’-;C 4.5 17.4 38.2 135.2 451.0 2284.5 2464.0

3.5. Forecast errors due to the Moon’s gravity

In assessing the influence of the Moon’s gravity on the forecast of the spacecraft’s position, two
parameters are considered (Table 7):

— the error in determining the angular position of the Moon, similar to the Sun;

— error in determining the distance to the Moon due to periodic changes in the radius of the lunar

orbit from 356.410 to 406.740 km.

The forecast error is also given in the case where the influence of the Moon’s gravity is not taken

into account.

Table 7
Forecast errors due to the Moon’s attraction
NKO. Orbital period: T = 1.5 h. Altitude 500 km. Forecast error, m:
Error parameter Forcast interval, h

0.5 1.0 1.5 3.0 6.0
Angle, degrees 0.1 0.0 0.0 0.0 0.0 0.0
0.5 0.1 0.1 0.1 0.1 0.2
2 0.2 0.3 0.3 0.4 0.6
10 1.2 1.6 1.9 3.6 6.5
200 0.0 0.0 0.0 0.0 0.0
Distance, 1.000 0.0 0.1 0.1 0.1 0.2
thousand km 5.000 0.1 0.3 0.3 0.5 0.9
25.000 0.3 1.4 1.5 2.6 4.9
Excluding ;7;'1 1.3 5.9 6.1 10.8 20.4
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End of Table 7

MEQ . Orbital period: T = 12 h. Altitude 20,000 km. Forecast error, m:
Forcast interval, h

Error parameter 0.5 1.0 15 3.0 6.0 12.0 24.0

0.1 0.0 0.1 02 0.7 3.0 5.4 6.0

Angle, 05 02 0.6 1 3.0 11.9 21.9 31.8
degrees 2 0.6 2.1 44 14.0 69.4 121.1 133.1
10 2.6 9.7 203 73.0 2554 5703 5703

200 0.0 0.0 0.1 0.4 12 14 3.0

Distance, 1000 | 00 02 0.4 18 62 6.9 152
thousand km | 5.000 | 02 0.8 19 8.6 302 34.0 745
25.000 | 12 5.0 11.4 513 178.9 200.1 442.6
Excluding 7, 51 20.4 46.6 2108 758.7 885.9 1855.5

CEO. Orbital period: T =24 h. Altitude 35,777 km. Forecast error, m:
Forcast interval, h

Error parameter

0.5 1.0 15 3.0 6.0 12.0 24.0
0.1 0.0 0.1 0.2 0.7 3.0 18.6 244
Angle, 0.5 0.1 0.3 0.8 27 12.6 92.4 140.7
degrees 2 0.5 2.0 43 15.8 71.1 4520 590.0
10 2.8 11.1 24.5 89.3 4135 2373.7 40522
200 0.0 0.0 0.1 03 1.2 5.0 15.7
Distance, 1.000 0.0 0.2 0.4 1.5 6.1 25.1 78.0
thousand km [~ 5.000 0.2 0.9 1.9 7.7 30.7 1272 394.8
25000 | 03 12 2.6 10.3 412 170.8 530.3
Excluding 7, 59 229 50.6 204.8 831.2 33553 | >1.0000

The influence of the Sun and Moon on the spacecraft depends on the type of orbit — low or high.
For NKO, the accuracy of calculating the position of the Moon and the Sun may not be critical, mini-
mal accuracy is required to achieve optimal results. For high orbits, the influence of the secelestial
bodies becomes much more significant, requiring more accurate models and calculations. When mov-
ing in orbits that have the properties of CEO and NKO, for example, high elliptical, it is necessary to
take into account the features of each orbit depending on the phase of the object’s motion.

3.6. Effect of solar radiation pressure
Varying the effective reflection coefficient Crefl relative to the zero value gives the following re-
sults (Table 8).

Table 8
Crefl forecast errors
NKO. Orbital period: T = 1.5 h. Altitude 500 km. Forecast error, m:
Forcast interval, h
C 9
refl 0.5 1.0 15 3.0 6.0
10° 0.0 0.1 0.3 0.6 0.9
10~ 0.2 0.9 3.0 5.7 9.3
10° 1.6 9.4 30.4 57.0 93.1
10° 16.0 94.3 303.8 570.3 931.0
MEQO. Orbital period: T = 12 h. Altitude 20,000 km. Forecast error, m:
Forcast interval, h
C 9
refl 0.5 1.0 15 3.0 6.0 12.0 24.0
10° 0.0 0.1 0.1 0.55 2.6 8.4 16.9
CEO. Orbital period: T =24 h. Altitude 35,777 km. Forecast error, m:
10° | 0.0 | 0.1 | 0.1 | 06 | 20 | 132 [ 612
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When forecasting motion along NKO, it should not be forgetten to exclude accelerations due to
light pressure in areas where the Sun is shadowed by the Earth.

As in the case of the ballistic coefficient, an order of magnitude increase in the effective reflection
coefficient error increases the forecast error by an order of magnitude, which is also confirmed by the
linear dependence in (9) and does not depend on the orbit nonlinearity.

4. Using the forecast model when processing real data

During the flight tests of the object on the NKO, a set of instantaneous KS-solutions was obtained
using satellite navigation. Due primarily to the errors in the ephemeris and time support of GNSS, the
sequence of instantaneous KS solutions should be a sawtooth broken line around the real trajectory.
Therefore, the standard was the SRO calculated from instantanecous KS-solutions by the least squares
method using the forecast (to reduce individual KS solutions to a common moment) and subsequent
“reproduction” of the calculated SRO by all the original instantaneous KS-solutions.

The forecast parameters were selected based on the data given above in Section 3 for a forecast in-
terval of 4.5 hours, an expected accuracy of the instantaneous position of 15 m (36) and an acceptable
forecast error of no more than 2 m:

— harmonics of the Earth’s potential up to the 32" order;

— taking into account accelerations from the gravity of the Sun and the Moon without errors;

— ballistic coefficient 0.000625;

— effective reflection coefficient 107

The graph of deviations of instantaneous KS-solutions from the calculated SRO is shown in the
figure.
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Graph of deviation of change of instantaneous KS-solutions of the object on NKO
from the calculated SRO (3 seconds — 4.5 hours)

The figure shows that the nature of instantaneous KS-solutions corresponds to the expected; there
is no obvious deterioration inaccuracy overtime, which indicates the correct choice of motion forecast
parameters. The error of real KS-solutions relative to the calculated SRO is 15 m and 4 cm/s (3 o).
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Conclusion

The results presented in the work demonstrate that the task of developing a spacecraft motion
model for navigation modules operating in real time has been successfully solved. The proposed
model provides an effective compromise between the accuracy of trajectory prediction and computa-
tional complexity, which is especially important for devices with limited resources.

The main results of the work are the following:

— development of a model based on kinematic equations with adjustments that take into account the
main dynamic effects (gravitational anomalies, atmospheric drag, the influence of the Sun and Moon
gravity, sunlight pressure);

— successful testing of the model in real conditions, confirming its applicability for navigation
tasks, especially for small spacecrafts;

— results obtained by varying the model parameters, which demonstrate the effect of incomplete
data on the parameters and motion conditions of the spacecraft, the navigation of which is carried out
using satellite navigation equipment.

This article serves as a basis for further study of methods and algorithms aimed at determining the
location based on current navigation data. It should be noted that the motion model is the basis on
which the Kalman filter can be effectively used as a navigation algorithm [18], allowing to improve
the accuracy and reliability of navigation systems.

In the future, it is possible to further improve the model and optimize the computational processes,
for example, through the study and transition to regular quaternion equations in other variables [19].
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