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Annomayus. B nacmosiweii pabome npeonodcer aHATUMUYECKULl Memoo peuieHus 3a0a4u Karubposxu
MazHumomempa 0na modenu, paccmompentoli 6 [1]. Ilpu pewenuu 3a0auu onpedeneHusi KAaubOPOBOYHbIX
napamempos 010Ka MASHUMOMEmpa YHUmvléaemcs, Ymo 018 UMepeHuu ¢ JoOou NpocmpancmeeHHOU
opuenmayuerl O10Ka MASHUMOMEMPA BETUYUHA USMEPSAEMO20 8EKMOPA MASHUMHOU UHOYKYUU COXPAHAEMCS
U AGIAENCS U3BECIMHOU MOOETbHOU 8euyuHOU. Beooumes 6 paccmompenue wmpagpruasn gynxyus 12 nepe-
MEHHbIX, PAGHASI CyMMe K8AOpamog HessA30K. Aneopumm pewenus 3a0a4u KaaubposKy UsMepumenbHolx ocell
O10Ka MacHUMOMempa c00UMCS K HOUCKY MEeMOOOM HAUMEHbUUX K8AOPAMO8 MAKUX 3HAYEHUL NePEeMEHHbIX
omoul GyHKyuU, Komopsle npu 3a0aHHOM HAOOpe 8eKMOpO8 UMePeHUll MACHUMoMempa O00CMagision el
munumym. C amoui yenvio yKa3auuas QyHKyus uccieoyemcs Ha YCI0GHbIN IKCMPeMyM Npu HAAUYUY mpex
ypasnenuti ceéazu. Cocmasnaemcs Qynxyus Jlaspansca u, ucxoos u3 HeobXo0UM020 YCiosus IKCmpemymd
amoul yukyuu, gopmupyemces cucmema 15 ypaenenuii omnocumenvro 15 Heusgecmmuwix. J{oxkasvieaemcs,
Umo dma cucmema umeem uemovipe peuterus. Boisedenvl (hopmybl, NO3608AI0WUE NOTYUUIND KOMNOHEHMbL
Kaxco020 U3 dmux yemsvipex pewleHutl. B xauecmee pewenus 3a0auu KanubposKu MAeHUMOMempa peKoMeH-
oyemcs 8blOpams peuierue YKa3anHoll cucmemvl, docmagisiroujee Munumym Qynkyuu Jlasparnsrca.

Kniouesvie cnoga: xamubposka mazHumomempa, eKmop MAaHUMHOU UHOVKYUU, MemoO HAUMEHbUUX
K8a0pamos, YCi08HbIl IKCMPEMYM DYHKYUU HECKOTbKUX nepeMeHHbIX, QyHryus Jlacpanoica.
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Abstract. In this paper, an analytical method is proposed for solving the problem of magnetometer cali-
bration for the model considered in [1]. When solving the problem of determining the calibration parame-
ters of the magnetometer unit, it is taken into account that for measurements with any spatial orientation of
the magnetometer unit, the value of the measured magnetic induction vector is preserved and is a known
model value. A penalty function of 12 variables equal to the sum of the squares of the residuals is intro-
duced into consideration. The algorithm for solving the problem of calibrating the measuring axes of the
magnetometer unit is reduced to searching, by the method of least squares, for such values of the variables
of this function that, for a given set of magnetometer measurement vectors, provide it with a minimum. For
this purpose, the specified function is examined for a conditional extremum in the presence of three equal-
ity constraints. The Lagrangian function is compiled and, based on the necessary condition for the extre-
mum of this function, the system of 15 equations in the 15 variables is formed. It is proved that the system
has four solutions. Formulas are derived that make it possible to obtain the components of each of these
four solutions. As a solution to the magnetometer calibration problem, it is recommended to choose a solu-
tion to the specified system that provides a minimum of the Lagrangian function.

Keywords: magnetometer calibration, the Earth's magnetic induction vector, the method of least
squares, constrained optimization, Lagrangian function.

Introduction

Magnetometers are part of the orientation and stabilization system of low-orbit small-sized space-
craft. They are widely used due to the fact that they are lightweight, inexpensive and reliable. How-
ever, due to the physical properties of the sensitive element, modern magnetometers require mathe-
matical calibration. At present, various methods for calibrating magnetometers have been proposed,
and a considerable number of scientific papers are devoted to these methods [1-12], in particular, arti-
cle [9], which provides an overview of various methods for performing such operations.

In the above-mentioned works, the problem of calibrating the magnetometer of a spacecraft was
solved using numerical methods. In this article, an analytical method for solving this problem for the
model considered in [1] is proposed.

1. Model of errors in measurements of magnetic induction vector
We denote by h the value of the measured magnetic induction vector at a certain spatial position of
the magnetometer unit (MU). We use the simplified measurement model considered in [1]:

hy
h=|h, |[=0OPB+b+n. (1)
h

The following notations [1] are used in(1):

B = (B), B,, B3)" is a true magnetic induction vector ;

b = (b1, by, b3)T is a constant vector corresponding to zero offsets for each of the measuring axes of
the MU ;

n is a random vector corresponding to uncorrelated noise for each of the measurement axes ;

P is a matrix, the rows of which are the unit vectors of the measuring axes of the MU, written in the
“base” MU system ;

Q is a diagonal matrix containing on the main diagonal the scaling factors &, ky, k3 for measuring
axes MU i.e.

k 0 0
0=|0 k 0
0 0 &k

In other words, the matrix P describes the non-orthogonality of the MU measurement axes, and the
matrix Q corresponds to scaling along these axes.
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The task of calibrating the MU measuring axes comes down to finding the elements of the matrices
P and Q, as well as the zero offset vector b.

2. Development of an algorithm for determining the calibration parameters of the MU

When solving the problem of MU determining the calibration parameters, we will use the fact that
for measurements with any MU spatial orientation, the value of the measured magnetic induction vec-
tor B is preserved and is a known model value.

We will assume that in flight, as a result of magnetometer measurements at discrete moments in
time, a set of vectors is obtained h”) = (hl(n, h" h3(l))T, [=1, ..., N. Provided there is no measurement
noise, from formula (1) we obtain:

h® =gPB” +b, [=1,...,N, )
where B” = (B,”, B,"", B;")" is the true vector of magnetic induction at the same point in space as the
measured vector h”, /=1, ..., N. We express vectors B" (=1, ..., N) from equalities (2):
0 _ )
B* =S(n" -b). 3)
[=1, ..., N, where
-1 _ —
S=(oP) =P"0". (4)

As noted in [1], without loss of generality, the non-orthogonality matrix P can be represented with
a minimum number of unknown elements as follows:

1 0 0
P =] sing, COSE, 0 ,

sing, COS€,S8ing, COSE,COSE,
where g1, €, &; are small angles. Then the inverse matrix P~ " will take the form

1 0 0
P_l = _0'1 Bl 0 s

0‘10‘3_0‘2[33 _B1a3 BzB3

where o; = tge, B, =sece;, i =1, 2, 3, and since

kK0 0
o'=| 0 k' 0|
0 0 k'
then in accordance with (4) we obtain:
Y, 0 0
S = —o Y, BiY, 0 | ®))

((11(13 — 0,3, )71 By,  B.Bsvs
where y; = k' i=1,2,3.
We rewrite equality (3) taking into account (5):
Bl(l) "1 0 0 hl(l) —b
B |= -0y, By, 0 P =b, |, (6)
B3(l) (al% — 0,3, )"/1 —Biayy,  B.Bsvs h3(l) —b,
=1, ..., N. We write each of the N vector equalities (6) as a system of three scalar equalities:
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" (hl(l) - bl) = Bl(l)’
- h" b )+B,y,(h" —b,)=B"
oY\ | 12\ p 2 > (7

(al% —a,p; )"/1 (hl(l) —b ) —Bioyy, (hz(l) —b, ) +B,B57; (hs(l) —b, ) =By,
=1, ..., N. Due to the first equality of system (7), we rewrite the second equality of this system in the
form

~o, B + B, (hz(l) - bz) =By,

from which we obtain the equality

BiY> (hél) —b, ) =B + B},
as a result of which the third equality of system (7) is written as follows:

—(12[3331(1) - 0‘335[) + 626373 (hgl) - bs) = B§”,

I=1,...,N.
We introduce into consideration a function of twelve variables a;, B;, vi, b; (i =1, 2, 3)

. I:Bl([)_ Yi (}’1([) —b )]2+ I:Bél)+ o BBy, (hél) —b, ):|2+

2
i+ [33([)"' a2B3Bl([)+ 0‘335”_ B.Bsv; (h3(l)_ b, )]
where the variables o, u J3; are related by the trigonometric identity

tg’p =sec’p—1
by the equalities
o B +1=0, (8)

i=1,2,3.

The algorithm for solving the problem of calibrating the MU measuring axes is reduced to search-
ing by the least squares method [13] taking into account (8) such values of variables a;, B;, v, b; (i = 1,
2, 3), which, for a given set of measurement vectors, {h} (I=1, ..., N) provide a minimum of the
function F. For this purpose, it is necessary to investigate the function F for a conditional extremum
[14] in the presence of three constraint equations (8).

We compose the Lagrange function

F:q>+23:7u,.(a,-2—ﬁf+1) ©)

i=1

fifteen variables a;, B, Vi, bi, A; (i = 1, 2, 3) and we write down the necessary condition for the local
extremum of this function :
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N
AL L) LR
N
I
N
; sol; ;[BU)+ alBl(l)_ Biv2 (hél) —b, ):| Bl(l) +he =0,
N
%g_gl = —yzlz:‘[Bz”)wL 0,8~y (W ~b,) | (1" ~b,) 2., =0,
N
; SZ B2 B+ BB (1 =) | (=) =0,
N
Yo ZZ::[BM o8- pyv, (1" ~b,) | =0,
N
L B o, (55| =0 19
LS b st -5} 250
) I=1
N
;. S}i - BzB3Z[B(I)+ BB+ s B~ BBy, (h([) b )](hél)_ b3)= 0
L S 0 0 ()]0,
N
%a%i ;[3”4 a,B,B+ 0, B BB, vs (h(” b )]Bzm +250, =0,
O S B+ B+ B B, (Kb, ) [, B By, (-b,)] -2, =0.
20p, &
OF 2 =B +1=0, i=12,3.
o,

It is required to find the stationary points of the function F, i.e. the solution of the system of equa-
tions (10). Let us introduce the following notations:

o :iBim’ H, :ihi(l)’ F :i(hi(l))z’ D, ZZN:Bi(l)hf('l)’ G, =G, :ZB(”BU)’ Lj=1,2,3.
=1 =1 =1 1=

1=1

Taking into account these notations, for convenience we will divide the system of equations (10)
into three nonlinear systems — a system of equations for two unknowns by, y;:

D, = Cyb, +(=F, +2H,b — Nb* )y, =0,
{[C1+(Nb1—H1)yl]~/1=0, (an
a system of equations for five unknowns by, o, B1, Y2, A
(Cb, = D,)Byy, +(G,, +4,)o, + G, =0,
| Dy = Coby +(Dyy = Ciby Yoy +(=F, +2H b, = Nb) By, v, + 1B, =0,

[Dzz ~Cb, +(D, =Cb, ), +(_Fz +2H,b, _szz)Ble]Bl =0, (12)
[Cz +C, +(sz _Hz)Bﬁ'z}Ble =0,
B =40’ +1
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and a system of equations for eight unknowns. b3, oy, 03, B2, B3, V3, A2, As:

[ Gis + GyyayBs + Gpyay +(Ciby — Dy )BoBsys |Bs + 2, =0,

[D33 = C3by +(Dy3 = Ciby )0y +(Dyy = Coby o + (_F3 +2H;b; — Nby® )323373}33“/3 +A,p, =0,
| Dy = Cyby +(Dis = Ciby ) s +(Dys = Coby ) + (—F + 2Hby = Nby* )BoBavs |BoBs =0,

[ 5+ ClogBs + Cyo5 +(Nby — Hy )B,Bsvs |BoBsvs =0,

Gas + G 0yB3 + Gpp03 +(Coby — Dy )BoBsy; + Agay =0,

[ Gz + GyyayBs + Gpyos +(Ciby — Dy )BoBsys |oty —AsBs —

_[D33 = C3by +(Dy3 = Ciby ) ayfy +( Dy = Cyby )i + (_F3 +2H;3b; ~ Nb32)|32|33Y3 }3273 =0,

B, =yo’+1, i=23.

In writing the expressions B; through o; in the last equations of systems (12) and (13), we used the
fact that ; = sec g; > 0 due to the obvious inequalities—n/2 < g; <7/2,i =1, 2, 3. We solve each of the
systems of equations (11), (12), (13).

First, we note that the inequality is valid

(13)

—F, +2H,b, — Nb* #0, (14)

i=1, 2, 3. Indeed, the discriminant of the quadratic equation is — F; + 2H;b; — Nb? =0 with respect to
the unknown b;, being equal to
N 2 N )
5,=4H? —4NF, =4 (Zh}”j -NY(nP) ],

=1 I=1

is negative due to the obvious consequence

N 2 N 5
(zhle N3 (H0)
I=1 I=1
of the Cauchy—Bunyakovsky inequality [15] (here the sign “<” is used instead of “<”, since at least
one of the terms 4", ..., BV is obviously not equal to zero), therefore the quadratic equation under
consideration has no real roots, i = 1, 2, 3.

We solve the system of equations (11). Taking into account inequality (14), we express v; through
b, from the first equation of this system:
__ Dy~- Ciby

F, —2H b + Nb>

Y1

Substituting the obtained expression for v, into the second equation of system (11) and taking into
account the inequality y, = &, ' # 0, after simple transformations we arrive at an equality,

b = C\H - DyH,
1 CH, —ND;,’

taking into account which the equality written above for y1 is reduced to the form

_GH, - NDy,
' H2-NF,

Thus, the solution to the system of equations (11) is found.
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We consider the system of equations (12). Since v, =k, ' # 0, the second equation of this system
can be written as

AP
Dy, = Cyby +(Dyy = Ciby )y +(_Fz +2H b, _szz)Bﬂz +—=0, (15)

2

since 1 = sec g, # 0, the third equation of system (12) is equivalent to the following equation:
Dy, = Cyby +(Dyy = Ciby oy + (_Fz +2H,b, — by’ )Bﬂz =0. (16)

From (15), taking into account (16), we obtain that A;B;y,” ' = 0 and then, by virtue of the inequality
B1 # 0, we have

A =0. (17)

The inequality D;, — C;b, # 0 holds, since a direct check shows that the value b, = D,C;~ ! which
is the root of the equation D, — C1b, = 0, does not satisfy the equations of system (12)

First, we consider the case H, — Nb, #0, i.e. b, £ H,N '. We express Py, from (16), as well as from
the first (taking into account equality (17)) and fourth (taking into account the inequality By, # 0) eq-
uations of system (12):

(D, = Ciby) oy + Dy, = Coby By, = Gy +Gyy By, = Go, +C,

F, —2H,b, + Nb,* Dy, = Cib, H,~Nb, (18)

By, =

As proven, the denominator of the fraction in the second of the equalities (18) is not equal to zero,
the denominator of the fraction in the first of the equalities (18) is different from zero by virtue of (14).
From the first and third equalities (18) follows the equation

Coy +C, _ (Dy, —Cyby) 0oy + Dy, — Cyb,
H, — Nb, F, —2H,b, + Nb,’

B

we express b, through a:

_ (Dlez _Cle)OH +DypH, -G,k
2" (NDy, - CH, oy + NDy, — CyH, (19)

Similarly, from the second and third equalities (18) follows the equation

Ca, +C, G0 +Gpy
H,-Nb, Dj,-Cb,’

we express b, through a:

_ (GllHZ ~-CDy,)o, +GH, -C,D,

b. =

Equating the right-hand sides of equalities (19) and (20), after simple transformations we obtain a
quadratic equation with respect to a; :

| G2 (B, = DioHy) + GGy (Hy? = NE, )+ D (NDy, = G, ) o +
+[2C1C2 (C\Fy, =Dy Hy ) +(NDy, = CiH, ) (G Dy, + C2D12)+(H22 _NF2)(C1G12 + CZGII):|0'1 T (21

+C, (GF, = Dy Hy )+ GGy (Hy? = NF, )+ Cy Dy, (NDy, = G H, ) = 0.
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The discriminant of equation (21) is equal to
2
A= [(ND12 —CH,)(CDyy ~CyDy )+ (Hy? = NE )(GGry — GGy )J :

and the roots of this equation are calculated using the formulae

Cl
G (CF, = Dy Hy )+ Gyy (Hy” = NE, )+ Dy, (NDy, = G H, ) (22)
1= .
i C\(C/F, = DyH, )+ Gy, (H,® = NF, )+ Dy, (NDy, ~C,H,)

We note that the values (22) of the unknown o, are not the roots of the denominators of the frac-
tions in equalities (19) and (20). Substituting the first of the values (22) of the unknown ol into the
fourth equation of system (12), taking into account the inequality By, # 0, we arrive at the equality H,
— Nb, = 0, which contradicts the case under consideration.

Now H, — Nb, =0, i.e. b, = H,N '. Taking into account the inequality By, # 0, from the fourth eq-
uation of system (12) we obtain that o, = — C,C, ', i.e. the found value of al coincides with the first of
the roots (22) of equation (21). It is easy to show that equalities (19) and (20), proven under the as-
sumption b, # H,N~ ! are also valid forb, = H,N ' . In the case b, = HoN ', the first two equalities from
(18) also hold, since no restrictions on the value of the unknown b, were taken into account when de-
riving them.

From the above reasoning it follows that the system of equations (12) has two solutions. The com-
ponents of both solutions of the specified system are obtained in the following order:

— the values of the unknown a, are found by formulae (22);

— the values of B; corresponding to the found values of o, are calculated by the formula written as
the last equation of the system (12);

— the values of b, — by any of the formulae (19), (20);

— the values of y, — by any of the two formulae

(D, =Ciby) 0y + Dy, = Cyby v = G0, + Gy,
i (Fz —2H,b, + szz) ? Bi (D1, —Ciby)’

Yo =

which follow respectively from the first and second equalities (18);

— the value of the unknown A, in both solutions of the system of equations (12) due to (17) is taken
to be equal to zero .

We move on to finding solutions to the system of equations (13). Due to the inequalities y; = k3~
b4 0, B, =sece, # 0 and B; = sec &3 # 0 the second and third equations of this system can be written as

AP
Dy3 = Csby +(Dy3 = Ciby )Py +( Doy = Gybs oz + (_F3 +2H;by — Nby’ )BzB3Y3 +ﬁ =0, (23
3Y3

D3y = C3by +(Dy3 = Ciby )0y + (Dy3 = Coby )t + (_Fa +2H;by — Nby’ )325373 =0 (24)
respectively. From (23), taking into account (24), we obtain: A,8,(Bsys) "' = 0. Consequently, the equal-
ity is valid

Ay =0. (25)

Then the first equation of system (13), taking into account the inequalityP; # 0, can be written in
the form

G5 + G oyf; + Gho, + (Cle - D5 )325373 =0. (26)
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From the sixth equation of system (13), taking into account (24) and (26), we find — A;B; = 0, from
which the equality follows

Ay =0. (27)

The inequalities H; — Nb; # 0, D;; — C;b; # 0 take place, since a direct check shows that neither the

root by = H;N ' of the equation H; — Nb; = 0, nor the roots b; = D;Ci ! of the equations D;; — C;b; =0
satisfy the equations of system (13),i=1, 2.

Taking into account equalities (25), (27) and inequalities B, # 0, B3 # 0, y3 # 0, we express B.psV3
from the first, third, fourth and fifth equations of system (13):

Dy; —Ciby + (D13 -Cib, )%B3 + (D23 - C,b; )%
F, —=2H b, + Nb,
Gy + G053 + Gy, ‘
D,y - Cyb,

G5 + G 0,B; + 6o,
Dy; - Cib,

BaBsvs =

s BaBsvs = )
B.Bavs = C; + Co,B5 + C,o, B,Bay: = (28)
2P3Y3 H, - Nb, > PabsTs3

As proven, the denominators of the fractions in the first, third and fourth equalities (28) are not
equal to zero, the denominator of the fraction in the second equalities (28) is different from zero by
virtue of (14). From the first and third equalities (28) follows the equation

Gz + Gy 10Bs + Gpos _ G + CiayPs + Coo,

b

from the second and third equalities (28) follows the equation

Dyy —Ciby + (D13 - Cib; )0‘2[33 + (D23 - C,b; )0‘3 _ G+ CoyBy + Gy,

F, —2Hb, + Nb, H, — Nb,

b

from the third and thorthequalities (28) follows the equation

G+ GogBs + Cya3 Gy + Gp0,fs + Gy ‘
H; — Nb; D,; = Cyby

From the last three equations we express o,3; through o3 and bs:

_ [G12 (H3 _Nb3)_C2 (D13 _C1b3)}0‘3 +G3 (H3 —Nb3)—C3 (D13 _C1b3)

o B = B 29
" G, (Dis ~Ciby) =Gy, (H; — Nby) )
; [(H3—Nb3)(D23— Coby)~ Gy N~ 2H3b3+F3)]a3+(H3— Nby)(Dys—Cby )~ C Nby 2= 2Hby B3
OaP3= > (30)
G (Nb® ~2t3by + 1) ~(Hy = Nby ) (D = Ciy)
o0PB; = [CZ (D23 _C2b3)_G22 (H3 _Nb3):|0‘3 +G (D23 _C2b3)_G23 (H3 _Nb3) 1)
o Glz(H3_Nb3)_C1(D23_C2b3)

By equating the right-hand side of equality (29) to the right-hand sides of equalities (30) and (31),
after simple transformations we obtain the equations

{|:C2(C1b3 _D13)2+ Gy, (Nb3 _H3)(C2b3 _D23)_G12(Nb3 _H3)(C1b3 _D13) _C1(C1b3 _D13)(C2b3 _D23)+
+(C1G12_ Can)(Nb}z_ 2H by +F, )}%_(Nbf —2H3b, +F3)(C3G11— C1G13)_C1 (C1b3 _D13)(C3b3 _D33)_

—Gis (N@ _H3)(C1b3 _D13)+G11(Nb3 _H3)(C3b3 _D33)+C3(C1b3 _D13)2}(H3 —Nb3)=0,
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{[(CzGu ~CGy)(Cby—Dy3) Jr(GnGzz -G’ )(Nb3 —Hy)+(CGp = GG, )(Coby — Dy )]0‘3 +
+(C3Gpp, = GGy )(Cbs = Di3) +(G1 Gy = GpGi3 ) (N — Hy ) +(CiGis = GGy ) (Caby — Dis )} (5~ Nby) =0,
from which we express 03 through b3, having previously divided both parts of each of them by (H; —
Nb3):

_ (H3b3 _F3)(C1G13 - C3G11)+(Nb3 _Hs)(D33G11 _D13G13)+(C1b3 _D13)

o C3D13 - C1D33)
,=
(Hsby — F)(CyGyy = Gy ) +(Nby — Hy )(Dy3Gyy — Dy3 Gy ) +(Cibs = Dyy)

> (32
C1D23_C2D13) (32)

(D3 = Coby )(CGy3 = GGy ) +(Nby — Hy)(GiyGis = G1iGos ) +(Cibs — Dy
(Dy3 = Coby )(C,Gyy = Gy ) +(Nby _H3)(G11G22 _G122)+(C1b3 — Dy

(C1G23 B C3G12 ) )
C2G12 _C1G22) (33)

3:

NI —_~|

Having equated the right-hand sides of equalities (32) and (33), after the simplest transformations
we arrive at a quadratic equation with respect to b,

b’ +Aby+Q =0, (34)

the coefficients of which are determined as follows:
I'= |:G13 (C1H3_ ND; ) +G (C1D13_ G H, ) +Ds; (NGII_ C12 )}[Gzz (NGII - C12 ) +Gy, (C1C2 - NG12) +

+C, (GG = 16 ) ]+] G (NG, = G2 )+ G (CGro GGy ) + Gis (GG, NGy, || D (€2 = NG, ) +
+C, (G Hy = C\Dy3 ) + Gy (NDy; ~ C1H3):|’

A= [GB (CH3=NDy3) + G (CDy3= Gy Hy ) + Dy, (NGH— G’ )}[G22 (CiD;3=Gy 1 Hy ) + Gy (G Hy=CyDy3 ) +
+D53(C,Gy— GG ) |+ B (CGGii— G Gis ) + Dy (CD3— Gy Hy ) + Dy (G Hy— G Dy3 ) || Gy (GG~ NGy ) +
+Gy (NG, - C?)+ G, (GG —CZGH)}{GB (NG, ~C?)+ Gy (GG €6y )+ G (GG, —NGlz)}x

X[ F(CGp—G,Gi\) +Diy(CoDy5— G Hy ) + Doy Gy Hy= CuDy3 ) [+] Giol GisHy— CyDys ) + G G Dy Gy Hy ) +

+Dy (G,Gyy _CIGIB):||:C2 (Gi1H; —CDi3) + Gy (NDy — G Hy ) + D (C12 _NGII):|’

Q= [Fa(C3G1 —GG; ) +Dyy( G D3~ Gy H, ) + D13(G13H3_ GDys ):I[Gzz( GDys— Gy H, ) +Gy( G Hy~C,Dj5 ) +
+D, (Can - C1G12):| _[Glz (C3D13_ Gi3H, ) +Gy3 (Gl {H3-C Dy ) +D,; (C1G13_ GGy, )][F3(C'1G12_ C2G11) +
+Dy3 (D3~ G Hs )+ Do (G H — G D5 )}

The discriminant of equation (34) is equal to
A= {[sz (D13G13 _D33G11) +G,H, (C3G12 -GGy ) + C2G11G23H3](G11H3 -GD; ) + [F3G11 X
*(CyGy; — C3G22) +FGp (GG, -GGy, ) +FG3(GGy — C2G12) +G Dy (D3 Gy _D23G13) + Dy x
X(D3Gi3—DyyGy) + Gy (D23G11_D13G12)}(Cl2_NG11) +[C2H3(D23G11_D13G12) +Gp 3 (CD;3 -Gy H; ) -
-GG DD (GG -GGy ) + [Can (D136 = Dy3Gi ) + GGy (D3 Gy = DGy ) + GGy (D3Goy — Dy Gy ) +

2
+ GGy (DG — D36y )](NDB ~GH;)+ GG, [C1D13 (GD;3 —=CD33) + Gy Hy (G Dy — G5 H, )]} )
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and the roots of this equation are calculated using the formulae

I _ C1D13 _G11H3
bj - 2 ’
Cl _NGII

by :[Can (Dz32 _Fanz) +DyGiy (Gt = CyDy3) + G Gy (G = Dy ) + DGy (G Hs — Gy Doy ) +
+D3D53(C\Gy; = GGy, ) + Gi3Hy ( Dy3Giy — Di3Gyy ) + D3 Dy (GG, — GGy ) + FGiy (GG, — GGy ) +
+D33G (G Dy =~ GipHy) + DGy (CoDy3 = CiDys) + Di* (GG = GGy3) + FGi3 (G Gy — C2G12):|X (35
x[ND23 (G2Gis = G1\Gas) + NDy3 G\ Gy = Gy” )+ NDy3 (GG = GG ) + GGy (Cy Dy = Gy Hy ) +
+C,Gi1 (GyHy =Dy ) + GD;3 (G Gy — GGy ) + GGy (Gip s — G Dy ) + GGy (CoDy — G s ) +

| +GGy (CDy =G H3) +C\Gi3 (GpHy —CyDy )+ CDy (GG — GGy ) + GG, (Dyy Gy — DGy )]_1 -

Since equation (34) has two solutions, the system of equations (13) also has two solutions. The
components of both solutions of this system are obtained in the following order:

— the values of the unknown b; are found using formulae (35);

— the values of the unknown o corresponding to the found values of b5 are calculated using any of
the formulae (33), (34);

— the values of ; — using the formula written as the last equation of system (13);

— the values of o, — using any of the three formulae

_ [Glz (H; = Nby )= C, (Dys —C1b3):|a3 +Gy3 (Hy = Nby )= C5(Dy3 — Ciby )
? Ps [C1(D13 _Cle)_Gll(HS _Nb3):|

b

[(H3—Nb3 )(DysCaby) = Gy Nb2= 2Hig F, )} g+ (Hy=Nby)(Dys— Cyby )~ G5 NbP~ 2Hyby )

(122

B

Bs |:C1 (szz —2H;3b; +Fz)_(H3 — Nby)(Dy3 = Ciby )}

_ [Cz (Dy; = Cyby) = Gy, (H, _Nba)}% +C5(Dy3 = Cyby) — Gy (H; — Nby )
B3 I:GIZ (H3 _Nb3)_cl (D23 _C2b3 ):|

which follow from equalities (29), (30) and (31),

respectively;

— the values of B, — by the formula written as the last equation of system (13);
— the values of y; — by any of the four formulae

Oy

b

3= > 3= >
BBs (D3 —Ciby) B,B; (F3 -2H,b;y + Nb32)
_ G+ Gy + G, _ Gy +GuyB; + G0
Y3 - ) Y} - D)
B.Bs (H; — Nby) BBs (Dy; — Coby)
which follow from (28);

— the values of the unknowns A, and A; in both solutions of the system of equations (13) are taken
to be equal to zero due to equalities (25) and (27)

Thus, the system of equations (11) has a single solution, and each of the systems (12), (13) has two
solutions. Consequently, the number of solutions of the original system of equations (10), defined as
the product of the number of solutions of systems (11), (12) and (13), is four. Of the four solutions
obtained,
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(6. o2 00,80 B9 00,0 0 00 AP00) o

(7=1, 2,3, 4) the systems (10), which are also stationary points of the Lagrange function F, defined by
equality (9), we are interested in the solution

(G, @0 835 By Bas Bys Tos T2 T3 By By By By R 1y ),
satisfying the equality

F(dp d23 dgs Bp st |33’ T(p ?2’ “73, b1, b2’ b39 Kp 7\’29 K3 ) =

= min {F(agj), o/, o), B, B By )y ), ), b ), 290, ) )}

1<,<4

Since in each of the solutions (36) of the system of equations (10) the last three components are

equal to zero, i.e.
W =) =) =,

j=1,2,3,4, by virtue of (9) we have:
F(a@, o), o), B B B )y ) ) D) ) 0D 9 ) 9 ) 2 () ) _
_ CD((ng), a(2j)9 (ng), BEJ), B(zj)s ng)’ ,ng), Y(zj)’ ,Y(3j), bl(j)’ bgj), b§]) )’

j=1,2,3, 4, therefore, we determine the desired solution (5‘1» 0, 03, By, B2, By Y1 Y25 735 b1, b, ba)

using the formula
CD((I], dzs d33 B]a B23 |33’ ?19 ’?2’ :‘?3a b]a bza b}) =

= gﬁg{@(a@, o), o), BB BY) AV A ) ) ), b )}
The required values of the scale factors 1:71, 1:727 /€3 for the measuring axes of the MU are calculated
using the formulae

F o~

ki:%‘ >

i=1,2,3, required angle values €,€5,&; are calculated using the formulae

g; = arctga,,
which follow from the equalities
a; =tge;

and obvious inequalities —mf2<E <m/2, ;= 1,2,3.

Conclusion

Thus, we have obtained an analytical solution to the problem of calibrating the magnetometer of a
spacecraft for the model considered in [1]. The procedure for calculating the calibration parameters of
the MU using the derived formulas has a number of obvious advantages over numerical methods for
solving this problem:

— the number of arithmetic operations is significantly reduced;

— the problem of possible instability of the method disappears.
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