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Annomayus. B cmamve paccmampusaemcs npumenerue Memooos KidCmepHo20 aHaiu3a O0Jisd nogvluie-
HUsL 3(PPEKMUBHOCIU 2EHEMULECKUX AN2OPUMMOS NPU PEeUeHUl 3a0ay 2100ATbHOT ONMUMUZAYUY MHO20-
MEPHBIX (DYHKYUIL, AKMYATbHBIX 8 PAKemHO-KocMudeckou ompaciu. I[Ipedmem uccnedosanust — OuHamuye-
cKas Koppexkyusa obaracmu noucka enemuyeckoz2o arcopumma (I'A) na ocnose cmamucmuveckou guiom-
payuu Knacmepos uHousuoos. Tema ucciedo8anus KarOYaem paspabomKy memooa OUHAMUYECKOU KOop-
pexyuu obnacmeti uHmepeca no NEPEMEeHHbLIM 3a0a4u Nymém pazoeieHus NONYIAYUU Ha SPYnnbl ¢ NOMO-
WbIO AN2OPUMMO8 Kldcmepuzayuu (C 3apanee OnpeoesieHHbIM KOAUYECMBOM, d MAKxHCe ¢ OUHAMUYECKU
onpeoensemMbiM KOTUYeCmeom Kiacmepos), GbIMUCTEHUs 0151 KANCOOU 2PYRNbl ROKA3amenel YUCIeHHOCU U
cpeoHell hyHKyuu npuOOHOCMU, U OMCeUeHUs KIACMEPOs, He GHOCAUUX ZHAYUMO20 6KIA0A 6 IGONIOYUOH-
Hulll npoyecc. Llenvlo ucciedo8anusn A6AAMcs NOSbIUEHUE CKOPOCTU CXOOUMOCIU AN20PUMMAa 0e3 CHU-
JHCEHUSL KAYeCmea pe3yibimamos npu peuleHuu 3a0ay CMEWAanHoU OnmuMu3ayuy 3a cuem 3@ @ekmuenou
adanmayuu 061ACMU NOUCKA HA KAACOOM Uidze aneopummd. IKCNEPUMEHMbL HA TeCTO8bIX QYHKYUSX NO-
Kazanu nogvluteHue CKOpocmu cxooumocmu 8 cpeouem na 25-30 % no cpaguenuio co cmanoapmuvim aji-
eopummonm. Ilonyuernvle pe3yivmamsl OeMOHCMPUPYIOT B03MONCHOCHb UHMeSPayul pazpabomanHo20
H00X00a 8 NPOSPAMMHO-ANNAPATNHbIE KOMALEKCHL Ol A8MOMAMUSUPOSAHHO20 NPOEKMUPOBAHUS PAKEMHO-
KOCMUYECKUX CUCMeM, Ym0 NO360AUM CHUSUMb 8PEMA PACUEMOo8 U NOBbICUMb MOYHOCHb 8b100pA ONMu-
ManvHuix napamempos. Takoice NPeonioAHceHHblil N0OX00 Modicem bblmb UCNONBL308AH 05l 8blOOpa I ghek-
MUBHBIX 3HAYEHUL SUNePNapamempos WUpoKo CReKmpa Mmooeneil MAuuHHo20 00yYeHuUs, 8 YaCMHOCU,
APXUMEKMYPHO20 CUHME3A UCKYCCIMBEHHbIX HEUPOHHBIX cemell, PA3IUYHbIX MONOI02UL, 8KII04As 21Y60KuUe
HelpoHHble cemu U CReYUAIU3UPOBAHHBLE APXUNEKNYDbI.

Knroueswvie cnosa: 960JIIOYUOHHBLE BbIYUCTICHUA, 2100anbHas onmumuzayus, ceHemudecKue aicopummasl,
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Abstract. This study investigates the application of cluster analysis techniques to improve the efficiency
of genetic algorithms (GAs) in solving multidimensional global optimization problems, particularly those
relevant to the aerospace industry. The research focuses on dynamic search space adjustment in GAs
through statistical filtering of individual clusters. The proposed methodology involves: (1) developing a
dynamic correction approach for variable domains by partitioning the population into clusters using both
fixed-number clustering algorithms (k-means, k-medians, agglomerative, and spectral clustering) and den-
sity-based methods (DBSCAN); (2) evaluating cluster quality metrics including population size and aver-
age fitness, and (3) eliminating clusters that contribute insignificantly to the evolutionary process. The
primary objective is to enhance algorithm convergence speed by 25-30 % (as demonstrated in benchmark
testing) while maintaining solution quality in mixed optimization problems through effective search space
adaptation at each iteration. The three-stage method comprises: (1) current population clustering, (2) eli-
mination of clusters with below-average population size and fitness, and (3) dynamic boundary adjustment
for remaining individuals' domains. Experimental results demonstrate the method's potential for integra-
tion into aerospace design systems, significantly reducing computation time while improving parameter
optimization accuracy. Furthermore, the approach shows promise for hyperparameter optimization in var-
ious machine learning models, particularly in neural network architecture synthesis - including deep neu-
ral networks and specialized topologies.

Keywords: evolutionary computation, global optimization, genetic algorithms, search space adaptation,
cluster analysis.

Introduction

Genetic algorithms (GAs) have proven to be a versatile tool for solving complex global optimisa-
tion problems in various fields of science and technology. In the rocket and space industry they are
used for designing control systems [1], optimising the parameters of propulsion systems, acrodynamic
shapes of wings and fairings, as well as flight trajectories and life support systems for spacecraft [2]
and in many other tasks. The classical implementation of GAs supposes fixed search areas for each
variable, which in the early stages can lead to excessive exploration of unpromising areas of n-
dimensional space and slow the convergence process.

One of the priorities of the latest modifications has become reducing the amount of computation by
allocating resources more economically and focusing on truly significant areas of the solution space.
In order to achieve this, various approaches are used: the adaptation of parameters during evolution,
training the selection of operator variants based on data from previous generations and dynamic search
localisation that takes into account the current distribution of solutions. All of those things can allow
accelerating convergence and increasing search efficiency without a significant increase in computa-
tional load.

This paper proposes a method for dynamic correction of the search area of a genetic algorithm,
which differs from known methods in its implementation of an iterative population clustering proce-
dure followed by the removal of unpromising clusters, which allows adapting effectively the search
area and increasing convergence speed to the optimal solution. The essence of the method is that after
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each selection step, the population is divided into groups using one of the clustering algorithms.
The article studies the application of five approaches: with a predetermined number of clusters —
k-means, k-median, agglomerative and spectral clustering, as well as the DBScan approach with a dy-
namically determined number of clusters. For each cluster, the number of individuals and their average
suitability are calculated. The clusters that simultaneously did not reach threshold values for the search
space correction and stopping criteria are completely excluded from further search; and the variable
ranges are adjusted taking into account the distribution of the remaining individuals.

The main aim of the study is increaing the convergence rate without the decline in the quality of the
found solution, which is important for complex engineering calculations in the field of rocket and
space system design. The article presents a mathematical formulation of the problem, description of
the clustering and filtering procedure, as well as the results of computational experiments on standard
test functions that have 25-30 % saving in computational resources compared to a classical GA.

Review of existing methods

In recent years, there have been many modifications for GAs aimed at increasing their flexibility
and eliminating premature convergence to local extremes. One of the key trends is implementing an
automatic parameter adaptation. Instead of hard-coded mutation and crossing probabilities, modern
algorithms evaluate population “diversity” (e.g., through genetic entropy or dispersion) and dynami-
cally change these probabilities. In a number of implementations, the mutation step size itself evolves
along with the solution (self-adaptive approach), which eliminates the need for lengthy setup during
the preparation phase and helps to avoid premature compression of the population.

Therewith, multi-population or ‘island” GA models have become increasingly widespread. In a tra-
ditional GA, there is a single population, but in modern implementations researchers have begun to
create several small subpopulations (‘islands’) at once, each of which evolves relatively autonomously
[4]. Individuals periodically migrate between islands: the best individuals flow into other populations.
This allows combining the advantages of the parallel exploration of different regions of the solution
space and the exchange of high-quality genes [5].

The integration with local optimisation methods has a significant role in the development of GAs,
having generated memetic algorithms. The idea is the following: a genetic operator of global search is
supplemented by powerful procedural local ‘further research’, for example, gradient descents (where
possible) or direct local search algorithms in the absence of information about derivatives. As a result,
a GA performs a broad ‘scanning’ of the space; and local algorithms improve the suitability value of
prospective individuals [6].

Aside from that, multi-criteria optimisation has become a significant trend for the development of
GAs, since in real-world engineering and economic problems it is necessary to take into consideration
several competing aims simultaneously. Although the classical methods NSGA-II [7], MOEA/D [8]
and SPEA2 [9] have become well established, in recent years specialists have proposed new strategies
for better distribution of Pareto front solutions. For example, the adaptive distribution of reference
points makes it possible to represent different front areas more evenly; and a dynamic crowding dis-
nance takes into account the local density of solutions: if the solutions are clustered too closely to-
gether, the algorithm automatically increases the separation distance, thereby encouraging exploration
the areas that are less studied [10].

Surrogate modelling is actively developing, where objective function evaluations are replaced by
predictive models (Gaussian Process, random forest, neural networks). In hybrid Surrogate-Assisted
GA (SA-GA) schemes, data on the objective function is collected gradually: first, a simple surrogate is
constructed, and then, as data accumulates, the algorithm retrains the model [11].

Finally, it is necessary to mention the integration of GAs with neuroevolutionary methods, where
an algorithm not only optimises the weights of the neural network, but also its topology. The originally
proposed NEAT (NeuroEvolution of Augmenting Topologies [12]) has acqired a new lease of life in
combination with modern architectures (convolutional networks, transformers) [13]. In Deep Neuro-
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evolution GA, a mutation operator can add or remove layers of the neural network, and crossover
‘crosses’ architectures, seeking to achieve a compromise between accuracy and compactness. Such
approaches are being actively used in AutoML pipelines, where automatic neural network design re-
duces the time and effort required by engineers for manual setting.

Nevertheless, sufficient attention is not paid to the issues of search area correction [14], which con-
firms the relevance of the development of modern schemes for increasing the convergence speed of
GAs through concentrating computational resources in promising regions.

Mathematical statement of the problem
The problem of the global optimisation of the multidimensional function of real variables on a lim-

ited domain is being considered. Let X be a vector of variables characterising the search space (1):
X={x,i=1,... n} (1)

where 7 is the dimensionality of the problem (the number of variables in the objective function), x; is
the i ™ variable. For each variable an initial domain is specified (2):

X, = Dxi = [xil, xih], (2

where x! and x! are lower and upper bounds of the range of the acceptable values for the x; variable.
These bounds define the initial hyperparallelepiped search area in the n-dimensional space.
In the classical versions of genetic algorithms [15; 16], it is assumed that the bounds of D, remain

constant throughout the entire evolution process (3):

Dx,- =const,Vi=1, ..., n. 3)

Nevertheless, this assumption may be ineffective, since it does not allow taking into account the
changing structure of decision distribution in the search process. This paper proposes and studies the
method for dynamically correcting the search area of a genetic algorithm at each generation.

To formalise the proposed approach, let us introduce the following designation:

G is the total number of generations (iterations) of the genetic algorithm.

g is a current generation number, g ={1,2, ..., G}.

M is the number of individuals (decisions) in the population in each generation.

m is the index of a specific individual in the population, m ={1,2, ...,M}.

K is the number of clusters obtained after clustering the population.

k is a cluster index, k£ ={1,2, ..., K}.

Ind?$ is the vector of parameters for the m ™ individual in the g generation.

F[ 2 is the value of the fitness function for the /nd? individual..
ndm

IndSet{ is the set of all individuals belonging to the & cluster in the g generation.

M§ = (IndSetf ) is the number of individuals in the & cluster in the g generation.

Each k cluster in the g generation is matched its own domain for each x; variable (Fig. 1), which
will be denoted as (4):

DEK =[xl ki, )

1

where x¥ K and x¢ Kk are current lower and upper bounds of the x; variable in the £ cluster in the g
generation.
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Fig. 1. Clustering diagram

The complete search area for the x, variable on the g generation is defined as the union of all clus-
ters (5):

K gk
pg =JD2". Q)
k=1

If a cluster is considered to be ineffective (according to the criteria described below), the corre-

sponding D;g ok area is excluded from consideration, i.e. it can be assumed that (6):
p&-g ©)

Clustering solutions

In order to icrease the efficiency of searching in the solution space, cluster analysis is used. It al-
lows identifying the promising areas of high-quality solutions for concentrating computational re-
sources. This work uses both methods with a predefined number of clusters (K-Means, K-Medoids,
agglomerative and spectral clustering) and a density algorithm that automatically determines the num-
ber of groups (DBScan).

Methods with a fixed number of clusters are based on minimising intra-cluster dispersion
(K-Means), selecting medoids for robustness to outliers (K-Medoids), constructing a hierarchical den-
drogram (agglomerative clustering), or using the spectral properties of a similarity matrix (spectral
clustering). Their main limitation is the necessity to specify the number of groups in advance, which in
practical tasks is selected using the ‘elbow method’ [17] or cross-validation based on the quality of
solutions.

Density algorithms do not require the number of clusters to be specified in advance. DBScan iden-
tifies clusters as areas with a minimum number of neighbours within a distance that is not higher than
¢ (a parameter specified by a user), automatically discarding sparse points as noise.

Before clustering, it is necessary to normalise the data (bring each feature to a single scale, for ex-
ample [0.1], and select a metric (Euclidean or Manhattan), since the difference in variable ranges and
the method of calculating distances significantly influences the structure of clusters.
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Fig. 2. Block diagram:
a — GA with dynamic correction of search area;
b —block diagram of the dynamic correction procedure

In the optimisation algorithm (Fig. 2), the results of cluster partitioning are used for local correction
of search area boundaries. In each cluster, corrective offsets are calculated based on the distribution
statistics of individuals, which allows narrowing or expanding the search area around promising solu-
tions. Furthermore, the probability of the recombination of the nearest representatives increases within
clusters, which helps preserve the local features of the found optima; and computational resources are
dynamically redistributed in favour of the clusters with higher solution quality or convergence speed.
This approach provides a balanced combination of exploring and using solution space and contributes
to faster and more reliable convergence of the algorithm.
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Correcting cluster boundaries
After the clusters are formed, the boundaries of the search area in each cluster are corrected based
on the analysis of the distribution of individuals within a cluster. Formally, the boundaries of the

Df K area are updated as follows (7):
Dg’k —| ekl g.ksh
e = +Ax8’k3’ ) X +Axg,k;h , (7

where A ,,, €R and A ,,, € R are corrective values, based on which the initial boundaries can be
&k pEs

either expanded or narrowed. They can be obtained based on the standard deviation of the values of
the x; variable within the cluster.

Thus, at each generation, the local adaptation of the search area boundaries is performed in order to
concentrate computational resources on promising regions of the solution space.

Implementation and discussion

The method was tested on a set of four standard test functions of various dimensions [18]. The ef-
fectiveness of the approach is further illustrated using the example of four test functions: Ackley,
Beale, Booth and Bukin Ne 6, as they form a representative sample for the comprehensive evaluation
of the effectiveness of optimisation algorithms. The key advantage of this set of functions is that they
have the most representative set of properties that pose the greatest complexity for optimisation algo-
rithms.

The Ackley function represents a complex multimodal surface with a large number of local mini-
ma, which allows testing the algorithm's ability to avoid premature convergence to suboptimal solu-

tions (8):
f(x)= —20exp{—0.2 flzn:xf J - exp(lzn:cos (27x; )] +20+e. (8)
=1 =1

The Beale function is highly sensitive to the choice of a starting point (9):

d
F(x)= Z[(LS =Xy T Xy Xy )2 + (2’ 25 — Xy + Xy X )2 + (2’625 — Xy + Xy X )2]’
i=1

X=(Xp,.... %) € R, )

The Booth function, having a relatively simple structure with a single clear-cut global minimum,
serves as a test for the basic performance of optimisation methods (10):

Flxy)=(x+2y-7)" +(2x+y-5)". (10)

Thanks to the presence of gaps and characteristic ‘ravines,” the Bukin Ne 6 function allows evaluat-
ing the stability of algorithms to extreme changes in gradient (11):

£ (x.9)=100,/(y=0.01x*) +0.01(x+10). (11)

Fig. 3 shows the contour plots of the above test functions for the case of two variables.
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Fig. 3. Contour plots of test functions

Fig. 4 shows the visualisation of the effectiveness evaluation of the proposed approach using the ex-
amples of the above functions for the Ackley, Beale, Booth and Bukin Ne 6 functions, respectively. The
choice is determined by the different nature of these test problems: the Ackley function is traditionally
used as a benchmark for testing the scalability of optimisation methods in high-dimensional space; the
multidimensional modification of the Beale function allows evaluating the behaviour of the algorithm
at medium dimensions with the clear-cut dependence on initial conditions; The Booth and Bukin No. 6
functions are two-dimensional by definition and are used for basic validation of the correctness and
stability of the method under conditions of simple (for Booth) and rapidly changing (for Bukin No. 6)
destination surface relief. The figure shows the results of applying five clustering methods: k-means,
k-medians, DBSCAN, agglomerative clustering and moving average from top to bottom, respectively.

It can be seen from Fig. 4 that for the complex multidimensional functions (Ackley, Beale),
the best results are achieved when using 3—6 clusters, where the median values of the number of itera-
tions are lower and the spread is smaller. For the two-dimensional functions (Booth, Bukin Ne. 6), the
influence of the parameter is minimal, thus 1-2 clusters are sufficient without any noticeable loss
of quality.

Based on the algorithm runs on the two-dimensional test functions described above, it was discov-
ered that the optimal range of clusters for most tasks was between 3 and 6. The k-means method was
used to analyse the multidimensional test functions, ensuring stable point separation and accelerating
algorithm convergence.

Table 1 shows the average number of evluations of objective functions with standard deviation for
different dimensions and numbers of clusters. The functions are selected from a standard set of test
functions that can be generalised to higher-dimensional spaces.
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Fig. 4. Interquartile (IQR) range diagrams of the experimental results. The figure shows the outcomes

of five clustering methods: k-means, k-medians, DBSCAN, agglomerative clustering, and moving average
(from top to bottom row, respectively)
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Table 1
Average number of evaluations of an objective function (+ standard deviation)
for the multidimensional test functions with different dimensions and numbers of clusters
Function Dimension 3 clusters 4 clusters 5 clusters 6 clusters
Sphere 10 1187 + 132 2295 +214 2478 + 289 2221 + 367
20 2644 + 305 5548 £ 412 4822 + 497 4133 £ 721
50 4758 +£ 623 10187 + 807 11643 £ 1002 11387 £ 1154
100 9442 + 1189 8921 + 1030 8737 £ 1655 9845 £+ 2033
Rosenbrock 10 3368 + 247 3124 +£301 4192 + 382 4087 + 472
20 5278 £493 4842 + 615 5217 £ 786 6462 £ 912
50 8956 + 1044 8682 + 1218 8447 £ 1659 8973 £ 1187
100 10671 + 2047 11348 + 1965 10582 + 2954 12791 + 3092
Rastrigin 10 4142 + 198 4084 + 153 4226 +£433 4211 +498
20 6637 £ 527 6438 + 642 6582 + 804 6276 £ 986
50 9672 + 1810 9452 + 1551 9911 +£2792 9374 + 2025
100 16941 + 2647 15482 + 3082 12653 + 3467 13278 + 3065
Ackley 10 3885 +107 3851 +286 3682 + 154 3718 =449
20 9154 £ 554 9247 +718 10368 + 601 9012 + 1802
50 15934 + 1087 17614 +£2762 15761 + 2634 16286 +2089
100 22184 +£279%4 20378 +3358 19756 + 3841 20187 £2712
Stybinsi-Tang 10 4082 +£ 103 3738 +£214 4187 £ 478 3724 £ 251
20 6326 + 389 6843 +£518 7624 + 967 6557 + 842
50 10762 + 895 10574 £ 1128 11198 +£ 1376 10867 £ 1582
100 20468 + 1836 21328 £ 1215 21642 +2048 18124 + 3096

It can be seen from Table 1 that in most cases, the smallest number of evaluations of an objective
function is achieved with 3—4 clusters, especially for low dimensions. For high dimensions, the effect of
the number of clusters is less clear-cut, but the range of 3—6 clusters remains effective.

The material from the used test functions shows that the correct selection of the £ number of clusters
can dramatically change the number of generations required to converge to the global optimal solution
with the proposed modification. In all the cases, the key factors are:

— complexity of the objective function landscape (presence of local minima and their density, nar-
row or wide attraction zones);

— adequacy of the choice of £ (small £ does not allow identifting all ‘hot’ areas, while too large £
leads to the overuse of resources);

— The efficiency of the procedure for updating search area boundaries in each cluster ensures that
the algorithm quickly shifts its focus to promising regions.

This balance between exploring the solution space and using the results of the study makes the pro-
posed modification converge faster than the standard approach.

In addition, for the comparison of the effectiveness of the GA modification proposed in this article,
a series of computational experiments were conducted on a set of CEC 2017 test functions [19]. In the
experiments, four combinations of algorithms were considered:

— standard GA without modifications;

— standard GA with the proposed modification;

— algorithm SelfCSHAGA (Self-Configuring Success History-based Adaptation Genetic Algo-
rithm) [20];

— algorithm SelfCSHAGA with the proposed modification.

In the experimental protocol, test functions from the CEC'2017 set were used. For each function,
the parameters were selected in order to ensure the maximum possible dimension of the task while
maintaining adequate computational complexity and stability of the algorithm. In particular, for most
functions, a dimension of 50 variables and a population size of 200 individuals were used. For more
computationally complex functions (for example, /4, f'5, 7, f8), the dimension was reduced to 20 or
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10. It should be noted that the 9 function proved to be sensitive to dimension: when the dimension
was increased to 10, the SelfCSHAGA algorithm worked similarly to the standard GA. Nevertheless,
with a dimension of 2, the algorithm found the optimum rather quickly.

The number of iterations was also adjusted depending on the complexity of the function and the
dimension of the search area: from 100 iterations (for the £9) to 2000 iterations (for the f2). Table 2
presents the parameters of the experiments of the standard GA and SelfCSHAGA algorithm on the
CEC2017 test functions. For each function, the task dimension, population size, number of iterations,
search boundaries, and discretisation step are indicated. It should be noted that on the functions f'1, /2
and f'10, the standard GA failed to find the optimum, while the SelfCSHAGA demonstrated successful
performance.

Table 2
The parameters of the experiments for the GA and Self CSHAGA (sSHAGA) on the CEC’2017 functions
Func. | Dimension | Dimension | Generations | Generations |Population| Population Search Optimal
D (GA) D (GA) (sSHAGA) (GA) (sSHAGA) | boundaries value
(sSHAGA)

f) — 50 — 1100 - 200 [-100, 100] 100
f, - 50 - 2000 - 200 [-100, 100] 200
fy 20 50 4500 1000 100 200 [-100, 100] 300
f, 10 20 3500 1000 100 200 [-100, 100] 400
fs 10 20 3500 1300 200 200 [-100, 100] 500
fe 20 50 2500 300 100 200 [-100, 100] 600
f; 10 20 2500 500 100 400 [-50, 50] 700
fy 10 10 3500 1100 300 100 [-50, 50] 800
fy 2 2 100 100 100 50 [-10, 10] 900
flo — 10 — 2500 — 200 [-100, 100] 1000

Using the same settings, the algorithms with the modifications proposed in this article were tested.
A K-means clusterizer with 3 to 6 clusters was used. The analysis of the distribution of the number of
objective function evaluations was performed based on the interquartile range. For the standard GA,
there is variability in computational efforts between functions (Figs. 5 and 6).
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Fig. 5. Boxplot diagrams for functions f3—f9. The y-axis shows the number of objective function evaluations.
The results were obtained using the standard genetic algorithm
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Fig. 6. Boxplot diagrams for functions f3—f9. Each bar corresponds to the number of clusters (3, 4, 5, 6),
grouped by functions. The y-axis shows the number of objective function evaluations. The results were obtained
using the standard genetic algorithm with the modification proposed in this dissertation

For example, the functions f'3—f'8 demonstrate high median values and interquartile range widths,
which indicates scattered consumption of computing resources. The algorithm variant with the modifi-
cation proposed in the dissertation, including K-means clustering with 3 to 6 clusters, made it possible
to reduce the dispersion of the number of evaluations and shift the median towards smaller values.
Thus, the generation of individuals within clusters ensured a directed distribution of the search across
the solution space, which reduced the number of evaluations required to achieve an approximate opti-
mum.

The analysis of distributing the number of the obective function evaluations for the SeIfCSHAGA
algorithm (Figs. 7 and 8) shows high stability and low variability compared to the standard GA.
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Fig. 7. Boxplot diagrams for functions f'1-f'10. The y-axis shows the number of objective function evaluations.
The results were obtained using the SelfCSHAGA algorithm
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grouped by functions. The y-axis shows the number of objective function evaluations. The results were
obtained using the SelfCSHAGA algorithm with the modification proposed in this paper

The use of K-means clustering (number of clusters from 3 to 6) further reduces the spread of calcu-
lations. By distributing the population across clusters, the algorithm explores solution space more ef-
fectively, especially for the functions with high computational complexity (f 3—f'8), reducing the num-
ber of iterations required to reach an approximate optimum and narrowing the interquartile range. For
example, for the f 5 and f7, the modified algorithm consumes significantly fewer computations than
the standard SHAGA, while the IQR is reduced reflecting the more predictable and economical opera-
tion of the algorithm.

Conclusion

The study of the proposed approach showed that integrating the method of dynamic correction of
the search area based on clustering into GA allows reducing the number of the objective function
evaluations significantly due to more accurate localisation of areas with promising solutions. The cor-
rection of search area boundaries based on statistics of the distribution of individuals in clusters dem-
onstrates high efficiency in combination with the dynamic redistribution of computational resources.

The numerical experiments on a representative set of test functions confirmed that the effective
number of clusters & is determined by the topology of the objective function and can vary over a wide
range. Small values of & simplify landscape modelling but increase the risk of missing individual ex-
trema, while an excessively large & leads to an increase in the number of calculations. Choosing an
effective value of & (usually 3—-6) provides the best balance between exploring the solution space and
using the results of the exploration, reducing the number of generations to convergence by sometimes
tens of times compared to the standard approach.

These results confirm the relevance and utility of the proposed approach and justify its further de-
velopment. In particular, it would be advisable to study the possibility of automatic adaptation of &
during the optimisation process, as well as to expand the list of clustering methods used by adding the
HDBSCAN algorithms [21] and Kohonen self-organising maps [22]. Furhtermore, a promising direc-
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tion for development is the combination of density and graph approaches for the more flexible control
of search boundaries in complex multidimensional problems.
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