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Annomayus. Cmamvsi npoodondcaem cepuio cmametl, NOCEAUICHHBIX UCHOb308AHUI0 MeMOOd 3AKOHO8
coxpanenust OuphepeHyuanbHblx ypagHenull Oisi peuleHust 3a0a4 Mexanuku 0epopmupyemozo meepoozo
mena.

Ynpyeonnacmuueckue 3adauu ¢ mexanuxe deopmupyemoco meepooeo meia y4umvl8aion HeIUHeuHyIo
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Abstract. The article continues a series of articles devoted to the use of the method of conservation laws
of differential equations for solving problems in the mechanics of deformable solids.

Elastoplastic problems in the mechanics of a deformable solid take into account the nonlinear relation-
ship between stresses and deformations under the influence of various loads. Such problems arise in
structures where materials are characterized by different physical properties; taking into account elastic-
plastic deformations is important for predicting the operation of structures, as well as for ensuring their
durability.

Currently, solutions to elastoplastic problems continue to be the focus of researchers' attention. New
analytical approaches to solving these problems are emerging, and numerical methods are being improved.
The authors contribute to solving the problems of mechanics of deformable solids using conservation laws.
The use of conservation laws makes it possible to reduce the finding of the stress tensor components at
each point to a contour integral along the boundary of the region under consideration, which makes it
possible to construct a previously unknown elastoplastic boundary.

The article considers an elastoplastic rod of constant cross-section, which is under the influence of li-
near hydrostatic pressure and a pair of forces that twist it around a central axis coinciding with the oz axis.
The lateral surface of the rod is stress-free and in a plastic state. The constructed conservation laws allow
us to find the components of the stress tensor. The components of the stress tensor make it possible to de-
termine the elastoplastic boundary in the rod under consideration.

Keywords: conservation laws of differential equations, elastoplasticity, torsion.

Introduction

This paper utilizes conservation laws for differential equations. Their use allows us to reduce the de-
termination of stress tensor components at each point to a contour integral over the boundary of the re-
gion under consideration, thereby enabling the construction of an elastic-plastic boundary. This boundary
is assumed to be piece-wise smooth.

Due to their practical importance, elastoplastic problems have long been studied by mechanics. The
main problem that arises when solving such problems is determining the elastoplastic boundary. The
plasticity condition imposes an additional constraint, and this, according to G. P. Cherepanov [1], sim-
plifies the problem. On the other hand, a new unknown arises: the elastoplastic boundary, which com-
plicates the solution.

Currently, solving elastic-plastic problems continues to be a focus of research. New analytical ap-
proaches to their solution are emerging, and numerical methods are being refined. Here we briefly re-
view such research. In [2], conservation laws are used to solve the torsion problem of an elastic-plastic
rod reinforced with elastic fibers. Conservation laws are used to solve the problem. In [3] an elastic-
plastic box beam is considered, which is bent by a transverse force. It is assumed that the deformations
in the rod are elastic-plastic and its lateral surface is stress-free. The center of gravity of the cross-
section does not coincide with the point of application of the force. Using conservation laws, an exact
solution is constructed describing the stress state of this structure. It is calculated at each point of the
figure under consideration using integrals over the external contours of the cross-section. In [4], the
elastoplastic torsion of a multilayer rod consisting of several layers is investigated. The elastic proper-
ties of the layers vary, but the plasticity coefficient is the same for all layers. The article constructs
conservation laws that allow the calculation of stress tensor components using contour integrals along
the layer boundaries. In [5], the elastic-plastic torsion of an anisotropic three-layer cylindrical rod of
non-circular cross-section is considered. The inner layer of the rod is in an elastic-plastic state, the two
outer layers are completely plastic. Plastic anisotropy is assumed. The anisotropy parameters of each
layer are different. In [6], a solution to the problem of determining the elastic-plastic state of a heavy
space weakened by an elliptical hole is considered. The material of the medium exhibits anisotropic
properties. The problem was solved using the small parameter method. Torsion of a two-layer box-
section rod is considered in [7]. In [8], the stress-strain state of the binder of composite materials is
calculated using numerical methods. Delamination of steel pipes under complex loading is modeled in
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[9]. An elastoplastic analysis of a circular pipe turned inside out is carried out in [10]. In [11], the in-
fluence of the type of plane problem for an elastoplastic adhesive layer on the value of the J-integrals
is studied. In [12], within the framework of a single model of large elastoplastic deformations, the
non-stationary dynamics of a medium not associated with additional accumulation of plastic deforma-
tions to those already present is considered. It has been shown that, in the general case, each elastic
wave can be accompanied by an abrupt rotation of plastic deformations. In [13], the process of produc-
ing irreversible deformations in a rotating cylinder made of a material with elastic, viscous, and plastic
properties was studied.

Statement of the problem

There is an elastic-plastic rod of constant cross-section, which is subjected to linear hydrostatic
pressure and a pair of forces that twist it around a central axis coinciding with the oz axis.

We assume that the following conditions are met

6,=-Az+C,6,=-Az+C,06,=-Az+C.1,, =0,

T, =u(x,y),T,, =u(x, y),’cyz =v(x,y). (1)

In this case, the equations describing elastic deformation in the stationary case have the form
u, + vy, = A, Ve Uy, = —20. (2)

System (2) consists of the equilibrium equation and the compatibility equation of elastic deforma-
tions.
In the plastic region the system has the form

ux+vy=7\,, u?+v:=k> (3)

Here ©x:0,-0:>%4:T>Ty: are components of the stress tensor ; Ao=GOk are constants;

G is a modulus of elasticity, 0 is a torsion angle, k is a plasticity constant equal to the yield strength
under pure shear.

It is assumed that the lateral surface of the rod is free from stress and is in a plastic state, therefore
system (1) should be solved with the following boundary conditions

- 2,2 _ g2
ung +vny 1, =0,  u”+v-=k". 4)

Here ™i:> are components of the outward normal vector to a piecewise smooth outer contour L
bounding a finite region S-

Comment 1. If @=0, the problem (4) for the system of equations(2) coincides with the problem up
to the notation [1]. In [1] it is shown that in this case for problem (2)—(4) the solution exists and is unique

if the rod has an oval cross-section and —1/A>k/GR;, , where Ruin is minimum radius of curvature
of a curve L.

Comment 2. The case A =0,00#0 corresponding the classical one of elastic-plastic torsion will not
be considered. It is considered in [1].
For convenience, we write equations (2) in the form

F=u +v, —A=0,F,=-u,+v +200=0, (5)

we will solve the boundary value problem (2), (4) using conservation laws.
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Conservation laws of an equations system (2)
Definition. The conservation law for the system of equations (2) is an expression of the form
A +B, =0 F +0,F,,

(6)

where m,,®, are linear differential operators that are not simultaneously identically equal to zero .

A=o'u+Bv+7y, B=otu+p*v+7y?, (7)

1l ol o2 R2 A2 . .
o ,B,y.a”,B",y" are some smooth functions depending only on x, y.

Comment 3. A more general definition of the conservation law, suitable for arbitrary systems
of equations, can be found in [14].

From (6) taking in consideration (7) we have
ou+olu, + B v+Bly, v+ adu+olu, B+ By, +) =

=y (u, +v, —A)+ 0, (-u, +v, +20). (8)
It follows from (8) that

o, +0a; =0, B.+B} =0, a'=ay, B'=0w, o’=-m, B*=w, v+, =—Ao +200,.
From here it follows that

o =p*, o’ =—B". )
Hence

o —B) =0, o) +BL =0, ¥, +72 =—ra' +20p". (10)

From the given formulas it follows that the system of equations (2) admits an infinite number of
conservation laws; below only those will be given that allow us to solve the given problem.

COXpaHSIFOIIHICS TOK HMEET BH
A=o'u+Bv+y, B=—Blu+alv+y>

From (6) using Green's formula we obtain

”(Ax +By)dxdy=<}9—Ady+de=o, an
s L
where S is a domain bounded by curve L.

Solution of problem (2), (4)

To find the values %Y inside the region S, it is necessary to construct solutions of system (10) that
have singularities at an arbitrary point (Xo,Yo)€ S .
The first of these solutions is

1 XX

_ 1_ Y=Y
o = 2 27 - 2 27
(x=xp)"+(y—yp) (x=x0)" +(y—Yo)
1 Y= Yo )
Y =20 dx =20 arctg——, 12
o Y=Y (12)
e :—kj );—xo > dy=—)A arctgm.
(x=x0)" +(y—y,) X=X
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. . 1 gl . .. . . .
At a point (X0:Y9)€ S the functions O, B have singularities, so we surround this point with a
circle

g (x—x))  +(y—y,) =€

Then from formula (11) we obtain

Qf—Ady + Bdx +£}3 —Ady + Bdx =0,
L €

(13)
we will calculate the last integral in formula (13). We have
§-Ady+Bax=G(—E=R) ____ VYOZI) gy,
9 s (x=x) +(x—x))" (x—x))T +H(x—xp)
(ot
(x=x)"+(y=yp)" (x=x)"+(y=y,)
We interpolate new coordinates X —Xo =€C0S®, y—y, =€sin@ We have
2n
C};—Ady + Bdx = I [—(ucos @+ vsin@)cos @ — (usin @+ vcosQ)sin QldP =
€ 0
2
=—J.ud(p:—27tu(x0,y0). (14)
0

The last equality is obtained by the mean value theorem for € =0,
To finally construct the solution, we will find the values %>Y on the boundary L. From formula (13)
we obtain
21u(xy, o) = Cﬁ—(—oclnz +B'n +Ydy + (B'n, +o'ny + ¥ )dx. (15)
L

We take the second solution of the equations system (10) in the form

1 _ Y=o 1_ X — Xy
(x—x0)2 +()’_)’0)2

_(x_xo)z"‘(y_)’o)z’

1 Y~ Yo X~ Xy
Y =—A dx =—\ arctg ,
J‘(x—xo)z‘*'(y—)’o)z Y=Y (16)

dy =-20 arctgﬁ.

(x—x)> +(y—y)* X=X,

' :—2ocj

Having carried out calculations similar to those carried out with solution (12), we obtain

21v(Xy, yy) = C}S—(—oclnz +B'n, +yYdy + (B'n, + o'ny + 77 )dx. (17)
L

Conclusion
In this paper, conservation laws are constructed for the system of equations (2) describing the tor-
sion of an elastic-plastic rod under the action of pressure that varies linearly along the generatrix. Us-

ing the constructed conservation laws, the components of the stress tensor were found ©x:Cy: accord-
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ing to formulas (15) and (17), which allow us to determine the elastic-plastic boundary in the rod un-
der consideration.
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