А review of modern methods for spacial detailing of meteorological fields

Cover Page

Abstract


Modern methods for spatial detailing (downscaling) of meteorological fields with an insufficient spatial resolution are considered. The basic advantages and disadvantages of statistical, physically based and dynamical-statistical approaches are briefly discussed. The greater attention is paid to the dynamical methods based on high resolution atmosphere models. Examples of works in which different downscaling techniques were used are listed. A conclusion: all downscaling methods possess advantages and disadvantages, a researcher needs to choose the best method proceeding from the specific problem to solve.
The nesting of high resolution atmosphere model into general circulation model grid is considered in short. Various ways methods of keeping simulations close to coarse data are analyzed. A conclusion: a method of spectral nudging is the best for downscaling purposes. The spectral nudging is easier for implementing in spectral models.
Comparison of intermittent incremental data assimilation and dynamical downscaling is spent. A conclusion: these techniques are close and some blocks of one technique can be used in the other.
Nowadays there are freely available high resolution atmosphere models (in particular, WRF ARW, RSM), that contains nudging techniques. These models are dynamical downscaling systems almost ready to use.

Radomir Bulatovich Zaripov

Гидрометеорологический научно-исследовательский центр Российской федерации

Author for correspondence.
Email: zaripov@mecom.ru

Гидрометеорологический научно-исследовательский центр Российской федерации

  1. Важник А.И. 2003. Численная схема адаптации крупномасштабного потока (циркуляции) к локальным особенностям рельефа // Метеорология и гидрология, 5, 24-30.
  2. Васильев П.П., Васильева Е.Л. 1999. Система статистической интерпретации выходной продукции гидродинамических моделей для среднесрочного прогноза погоды // Сборник «70 лет Гидрометцентру России», СПб, Гидрометеоиздат, 118-133.
  3. Вельтищев Н.Ф. 1988. Мезометеорология и краткосрочное прогнозирование. Сборник лекций, ВМО № 701. Женева. - 136 с.
  4. Кислов А.В., Георгиади А.Г., Алексеева Л.И., Бородин О.П. 2007. Построение полей температуры воздуха и атмосферных осадков в районах с редкой измерительной сетью (на примере бассейна р. Лена) // Метеорология и гидрология, 8, 29-36.
  5. Коновалов И.Б., Еланский Н.Ф., Звягинцев А.М., Беликов И.Б., Бикманн М. 2009. Валидация химическо-транспортной модели нижней атмосферы Центрально-Европейского региона России с использованием данных наземных и спутниковых измерений // Метеорология и гидрология, 4, 65-74.
  6. Моисеев Н.Н., Александров В.В., Тарко А.М. 1985. Человек и биосфера. - М.: Наука. - 272 с.
  7. Рубинштейн К.Г. 2002. Обеспечение метеорологической информацией моделей дальнего переноса примесей в атмосфере // Метеорология и гидрология, 9, 17-31.
  8. Цырульников М.Д., Толстых М.А., Багров А.Н., Зарипов Р.Б. 2003. Развитие глобальной системы усвоения данных с переменным разрешением // Метеорология и гидрология, 4, 5-24.
  9. Чавро А.И., Ноготков И.В., Дмитриев Е.В. 2008. Статистическая модель восстановления экстремальных значений приземной температуры на сети метеостанций в Московском регионе // Метеорология и гидрология, 7, 5-16.
  10. Школьник И.М., Мелешко В.П., Гаврилина В.М. 2005. Валидация региональной климатической модели ГГО // Метеорология и гидрология, 1, 14-27.
  11. Школьник И.М., Мелешко В.П., Павлова Т.В. 2000. Региональная гидродинамическая модель атмосферы для исследования климата на территории России // Метеорология и гидрология, 4, 32-49.
  12. Школьник И.М., Молькентин Е.К., Надежина Е.Д., Хлебникова Е.И., Салль И.А. 2008. Экстремальность термического режима в Сибири и динамика пожароопасной обстановки в XXI веке: оценки с помощью региональной климатической модели ГГО // Метеорология и гидрология, 3, 5-15.
  13. ARW Version 3 Modeling System User's Guide. Mesoscale & Microscale Meteorology Division. NCAR. July 2009.
  14. Brandt J., Skjoth C.A., Christensen J.H., Frohn L.M., Geels C. 2005. High resolution weather forecasting using dynamical downscaling. Proc. International Conference «Innovation, advances and implementation of flood forecasting technology» 17-19 October 2005, Troms. Norway.
  15. Castro C.L., Pielke R.A., and Leoncini G. 2005. Dynamical downscaling: Assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). // Jour. of Geophysic. Res., 110, 21.
  16. Charney J.G., Halem M., and Jastrow R. 1969. Use of incomplete historical data to infer the present state of the atmosphere // J. Atmos. Sci., 26, 1160-1163.
  17. Deng A., Seaman N.L., Hunter G.K., and Stauffer D.R. 2004. Evaluation of interregional transport using the MM5-SCIPUFF system // Journal of Applied Meteorology, 43, 1864-1886.
  18. Deque M., Piedelievre J.P. 1995. High resolution climate simulation over Europe. // Climate Dynamics, 11, 321-339.
  19. Duhdia J. et al, 2003. PSU/NCAR Mesoscale Modeling System. Tutorial Class Notes and User's Guide: MM5 Modeling System Version 3.
  20. Enke W., Spekat A. 1997. Downscaling climate model outputs into local weather elements by classification and regression.// Jour. of Clim. Res., 8, 195-207.
  21. Feser F., and von Storch H. 2008. A dynamical downscaling case study for typhoons in Southeast Asia using a Regional Climate Model // Mon. Wea. Rev., 136, 1806-1815.
  22. Fox-Rabinovitz M.S., Lawrence L.T., Govindaraju R.C., Suarez M.J. 2001. A variable-resolution stretched-grid general circulation model: regional climate simulation // Mon. Wea. Rev., 129, 453-469.
  23. Fuentes U., and Heimann D. 2000. An improved statistical-dynamical downscaling scheme and its application to the Alpine precipitation climatology // Theoretical and Applied Climatology, 65, 119-135.
  24. Frey-Buness F., Heimann D., and Sausen R. 1995. A statistical-dynamical downscaling procedure for global climate simulations // Theoretical and Applied Climatology, 50, 117-131.
  25. Ghan S.J., Shippert T., and Fox J. 2006. Physically based global downscaling: regional evaluation // Journal of Climate, 19, 429-445.
  26. Goyette S. and Laprise J.-P. R. 1996. Numerical investigation with a Physically Based Regional Interpolation for Off-Line Downscaling of GCMs: FIZR // Journal of Climate, 9, 3464-3495.
  27. Grell G.A., Dudhia J., and Stauffer D. 1994. A description of the fifth generation Penn State. NCAR Tech. Note NCAR/TN-397+STR. 117 P., Nat. Cent. For Atmos. Res., Boulder, Colorado.
  28. Huang X.-Y., Xiao Q., Barker D.M., Zhang X., Michalakes J., Huang W., Henderson T., Bray J., Chen Y., Ma Z., Dudhia J., Guo Y., Zhang X., Won D.-J., Lin H.-C., and Kuo Y.-H. 2009. Four-dimensional variational data assimilation for WRF: Formulation and preliminary results // Mon. Wea. Rev., 137, 299-314.
  29. Jacob D., and Podzun R. 1997. Sensitivity studies with the regional climate model REMO // Meteor. Atmos. Phys., 63, 119-129.
  30. Jacob D., Podzun R., and Claussen M. 1995. REMO - A model for climate research and weather prediction. Proc. Int. Workshop on Limited-Area and Variable Resolution Models, Beijing, China, 273-278.
  31. Juang H.-M., Hong S., and Kanamitsu M. 1997. The NMC nested regional spectral model. An update // Bull. of the AMS, 78, 2145-2143.
  32. Juang H.-M., and Kanamitsu M. 1994. The NMC nested regional spectral model // Mon. Wea. Rev., 122, 3-26.
  33. Kalnay E. 2003. Atmospheric modeling, data assimilation and predictability. - Cambridge University Press. - 341 P.
  34. Kanamaru H., and Kanamitsu M. 2007. Fifty-seven-year California reanalysis downscaling at 10 km (CaRD10). Part I: System detail and validation with observations // Journal of Climate, 20, 5553-5571.
  35. Kanamaru H., and Kanamitsu M. 2007. Scale-selective bias correction in a downscaling of global analysis using a regional model // Mon. Wea. Rev., 135, 334-350.
  36. Kanamaru H., and Kanamitsu M. 2008. Dynamical downscaling of global analysis and simulation over the Northern Hemisphere // Mon. Wea. Rev., 136, 2796-2803.
  37. Kidson J.W., and Tompson C.S. 1998. A comparison of statistical and model-based downscaling techniques for estimating local climate variations // Journal of Climate, 11, 735-753.
  38. Kunstmann H., and Jung G. 2003. Investigation of feedback mechanisms between soil moisture, land use and precipitation in West Africa. Water Resources Systems // Water Availability and Global Change (Proceedings of symposium HS02a held during IUGG2003 at Supporo, July 2003). IAHS Publ no. 280.2003.
  39. Li Y., and Smith I. 2009. A statistical downscaling model for Southern Australia winter rainfall // Journal of Climate, 22, 1142-1158.
  40. Murphy J. 1999. An evaluation of statistical and dynamical techniques for downscaling local climate // Journal of Climate, 12, 2256-2284.
  41. Nobre P., Moura A.D., and Sun L. 2001. Dynamical downscaling of seasonal climate prediction over Nordeste Brazil with ECHAM3 and NCEP's Regional Spectral Models at IRI // Bull. of AMS, 82, 2787-2796.
  42. Pal J.S., Giorgi F., Bi X., Elguindi N., Solmon F., Gao X., Rauscher S.A., Francisco R., Zakey A., Winter J., Ashfaq M., Syed F.S., Bell J.L., Diffenbaugh N.S., Karmacharya J., Konaré A., Martinez D., da Rocha R.P., Sloan L.C., and Steiner A.L. 2007. Regional climate modeling for the Developing World: The ICTP RegCM3 and RegCNET // Bull. of AMS, 88, 1395-1409.
  43. Perez S., Jimenez P.A., Navarrol J., Montanez J.P., Barquero C.G., Cuerva A., Gonzalez-Rouco J.F., Valero F. 2003. Using the MM5 model for wind prediction in a complex terrain site. Proc. European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain.
  44. Pielke R.A. 1984. Mesoscale meteorological modelling. - New York Academic Press. - 612 P.
  45. Qian J.-H., Seth A., and Zebiak S. 2003. Reinitialized versus continuous simulation for regional climate downscaling // Mon. Wea. Rev., 131, 2857-2874.
  46. Raisanen J., Rummukainen M., and Ullerstig A. 2001. Downscaling of greenhouse gas induced climate change in two GCMs with the Rossby Centre regional climate model for northern Europe // Tellus, 53A, 168-191.
  47. Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X.-Y., Wang W., Powers J.G. 2008. A Description of the Advanced Research WRF Version 3, NCAR TECHNICAL NOTE.
  48. Stauffer D.R., and Seaman N.L. 1990. Use of four-dimensional data assimilation in a limited-area mesoscale model part I: experiments with synoptic-scale data // Mon. Wea. Rev., 118, 1250-1277.
  49. Von Storch, H., Langenberg H., and Feser F. 2000. A spectral nudging technique for dynamical downscaling purposes // Mon. Wea. Rev., 128, 3664-3673.
  50. Xue Y., Vasic R., Janjic Z., Mesinger F., and Mitchell K.E. 2007. Assessment of dynamic downscaling of the continental U.S. regional climate using the Eta/SSiB regional climate model // Journal of Climate, 20, 4172-4193.

Views

Abstract - 192

PDF (Russian) - 260

PlumX


Copyright (c) 2010 Zaripov R.B., Zaripov R.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.