Inventory of soil methane consumption

Cover Page
  • Authors: Glagolev MV1, Filippov IV2
  • Affiliations:
    1. Московский государственный университет им. М.В. Ломоносова, Югорский государственный университет (г. Ханты-Мансийск), Институт лесоведения РАН (пос. Успенское, Московская обл.)
    2. Югорский государственный университет (г. Ханты-Мансийск)
  • Issue: Vol 2, No 2 (2011)
  • Pages: 1
  • Section: Articles
  • URL: https://edgccjournal.org/EDGCC/article/view/6402
  • DOI: https://doi.org/10.17816/edgcc221
  • ID: 6402

Cite item

Full Text

Abstract

On the basis of the various rates measured for a wide variety of soils, global soil methane oxidation ranges between 5 and 60 Tg/year. These values are approximately 1 to 10% of the current estimates for net methane flux to the atmosphere [Dörr et al., 1993]. Methane uptake by soils is an appropriate process to model globally because the probable controls are simple relative to many other microbially mediated soil processes of trace gas production and consumption [Potter et al. , 199 6 ]. Potential microbial decomposition rate, vegetation cover, soil temperature , organic matter content, pH [Born et al., 1990; Dörr et al., 1993] as well as latitude, annual mean rainfall, and annual mean temperature [ Dutaur and Verchot, 2007 ] are found to be of minor influence on the methane flux from the atmosphere into the soil. Principal methods of gas flux upscaling such as simplest inventory, using of mathematical models and inverse modelling are described in this study by an example of methane uptake by soils. Different implementations of simplest inventory approach as CH 4 uptake estimation in soils of various bioms and/or structure are considered. Methane consumption in aerated soils is mainly controlled by the gas transport resistance within the soil as it was found by Born et al. [1990] and Dörr et al. [1993]. However this assertion is seemed to be correct only for similar bioms or at local areas. Th e inventory of Dutaur and Verchot [ 2007 ] showed that ecosystem type, geographic zone, and soil texture strongly control CH 4 uptake. The ecosystem type accounted for the largest part of the variation in the global data set while established uptake estimation approach based on our knowledges about soil structure is proved to be statistically unreliable at significance level 0.05 (usually used in biometric and pedometric studies). At the final section simplest inventory approach applied to the methane uptake by Russian soils is discussed. It was shown that consumption estimations obtained for Russian soils vary considerably according to the different studies. This heterogeneity indicates significant gaps in our knowledge of methane emission and consumption in Russian soils and necessity of the future research. Probable methane uptake by Russian soils similar to other estimations can be accepted as 3.6 М t/yr. The authors acknowledge the financial support by the European Union FP7-ENVIRONMENT project PAGE21 under contract no. GA282700.

About the authors

M V Glagolev

Московский государственный университет им. М.В. Ломоносова, Югорский государственный университет (г. Ханты-Мансийск), Институт лесоведения РАН (пос. Успенское, Московская обл.)

Author for correspondence.
Email: m_glagolev@mail.ru

I V Filippov

Югорский государственный университет (г. Ханты-Мансийск)

Email: filip.83.pov@yandex.ru

References

  1. Бейли Н. 1970. Математика в биологии и медицине. М.: Мир.
  2. Блохин А.В. 2002. Теория эксперимента. Курс лекций. Минск: БГУ. Ч. 1. 68 с.
  3. Гвоздецкий Н.А., Криволуцкий А.Е., Макунина А.А. 1973. Схема физико-географического районирования Тюменской области // Физико-географическое районирование Тюменской области. М.: МГУ. С. 9-28.
  4. Глаголев M.В. 2004. Элементы количественной теории процессов образования и потребления метана в почве // Болота и биосфера: Сборник материалов Третьей Научной Школы (13-16 сентября 2004 г.). Томск: Изд-во ЦНТИ. С. 39-52.
  5. Глаголев М.В. 2006. Математическое моделирование метанокисления в почве // Труды Института микробиологии имени С.Н. Виноградского РАН. Вып. XIII: К 100-летию открытия метанотрофии / Под. ред. В.Ф. Гальченко. М.: Наука. С. 315-341.
  6. Глаголев М.В. 2007. Оценка эмиссии метана заболоченными территориями Западной Сибири // Болота и биосфера: Сборник материалов Шестой Научной Школы (10-14 сентября 2007 г.). Томск: Изд-во ФГУ «Томский ЦНТИ». С. 33-41.
  7. Глаголев М.В. 2010. К методу «обратной задачи» для определения поверхностной плотности потока газа из почвы // Динамика окружающей среды и глобальные изменения климата. Т. 1. № 1. С. 17-36. Также доступна по URL (дата обращения: 30.07.2010): http://www.ugrasu.ru/uploads/files/Glagolev%20(1).pdf.
  8. Глаголев М.В., Головацкая Е.А., Шнырев Н.А. 2007. Эмиссия парниковых газов на территории Западной Сибири // Сибирский экологический журнал. Т. 14. № 2. С. 197-210.
  9. Глаголев М.В., Смагин А.В. 2005. Приложения MATLAB для численных задач биологии, экологии и почвоведения. М.: МГУ им. М.В. Ломоносова. 200 с.
  10. Дмитриев Е.А. 1995. Математическая статистика в почвоведении. М.: Изд-во МГУ. 320 с.
  11. Дубинин М.Ю. 2006. Глобальное экорегиональное зонирование Бэйли. GIS-Lab.info. Данные доступны по URL (дата обращения: 19.05.2011): http://gis-lab.info/qa/bailey.html
  12. Елецкий А.В. 1991. Диффузия // Физические величины. Справочник / Под ред. И.С. Григорьева и Е.З. Мейлихова. М.: Энергоатомиздат. с. 375-390.
  13. Заварзин Г.А. 1995. Микробный цикл метана в холодных условиях // Природа. № 6. С. 3-14.
  14. Ильина И.С., Лапшина Е.И., Махно В.Д., Романова Е.А. 1976. Растительность Западно-Сибирской равнины (карта). М 1: 1500000. ГУГК. 4 л.
  15. Кондратьев К.Я., Крапивин В.Ф., Савиных В.П. 2003. Перспективы развития цивилизации: многомерный анализ. М.: Логос. 576 с.
  16. Королюк В.С., Портенко Н.И., Скороход А.В., Турбин А.Ф. 1985. Справочник по теории вероятностей и математической статистике. М.: Наука. 640 с.
  17. Лозе Ж., Матье К. 1998. Толковый словарь по почвоведению. М.: Мир. 398 с.
  18. Наумов А.В. 2009. Дыхание почвы: составляющие, экологические функции, географические закономерности. Новосибирск: Изд-во СО РАН. 208 с.
  19. Панченков Г., Лебедев В. 1985. Химическая кинетика и катализ. М.: Химия. 592 с.
  20. Румшиский Л.З. 1971. Математическая обработка результатов эксперимента. М.: Наука. 192 с.
  21. Свободные данные по границам субъектов РФ. 2010. Росреестр, GIS-Lab.info. URL (дата обращения: 19.05.2011): http://gis-lab.info/qa/rusbounds-rosreestr.html
  22. Смагин А.В., Садовникова Н.Б., Щерба Т.Э., Шнырев Н.А. 2010. Абиотические факторы дыхания почв // Экологический вестник Северного Кавказа. Т. 6. № 1. С. 5-14.
  23. Филиппов Л.П. 1986. Явления переноса. М.: Изд-во МГУ. 120 с.
  24. Хайди Г.М. 1976. Процессы удаления газообразных и взвешенных загрязнений из атмосферы // Химия нижней атмосферы / Под ред. Расул С. М.: Мир. С. 155-222.
  25. Чернавина И.А., Потапов Н.Г., Косулина Л.Г., Кренделева Т.Е. 1978. Большой практикум по физиологии растений. М.: Высш. школа. 408 с.
  26. Bailey R.G., Hogg H.C. 1986. A world ecoregions map for resource reporting // Environmental Conservation. V. 13. No. 3. P. 195-202.
  27. Bartlett K.B., Sachse G.W., Slate T., Harward C., Blake D.R. 2003. Large-scale distribution of CH4 in the western North Pacific: Sources and transport from the Asian continent // J. Geophys. Res. V. 108. No. D20. 8807. doi: 10.1029/2002JD003076.
  28. Belward A.S., Estes J.E., Kline K.D. 1999. The IGBP-DIS Global 1-km Land-Cover Data Set DISCover: A Project Overview // Photogram. Eng. Remote Sens. V. 65. P. 1013-1020.
  29. Bender M., Conrad R. 1993. Kinetics of methane oxidation in oxic soils // Chemosphere. V. 26. No. 1-4. P. 686-696.
  30. Bergamaschi P., Frankenberg C., Meirink J.F., Krol M., Dentener F., Wagner T., Platt U., Kaplan J.O., Körner S., Heimann M., Dlugokencky E.J., Goede A. 2007. Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations // Journal of Geophysical Research. V. 112. D02304. doi: 10.1029/2006D007268.
  31. Boeckx P., van Cleemput O. 1996. Methane Oxidation in a Neutral Landfill Cover Soil: Influence of Moisture Content, Temperature, and Nitrogen-Turnover // Journal of Environmental Quality. V. 25. P. 178-183.
  32. Boeckx P., van Cleemput O., Villaralvo I. 1996. Methane emission from a landfill and the methane oxidising capacity of its covering soils // Soil Biology and Biochemistry. V. 28. No. 10/11. P. 1397-1405.
  33. Börjesson G. 2001. Inhibition of methane oxidation by volatile sulfur compounds (CH3SH and CS2) in landfill cover soils // Waste Management & Research. V. 19. P. 314-319.
  34. Born M., Dorr H., Levin I. 1990. Methane consumption in aerated soils of the temperate zone // Tellus B. V. 42. P. 2-8.
  35. Cai Z., Yan X. 1999. Kinetic model for methane oxidation by paddy soil as affected by temperature, moisture and N addition // Soil Biology and Biochemistry. V. 31. P. 715-725.
  36. Chan A.S.K., Parkin T.B. 2000. Evaluation of potential inhibitors of methanogenesis and methane oxidation in a landfill cover soil // Soil Biology and Biochemistry. V. 32. P. 1581-1590.
  37. Chiemchaisri W., Visvanathan C., Wu J.S. 2001. Effects of Trace Volatile Organic Compounds on Methane Oxidation // Brazilian Archives of Biology and Technology. V. 44. No. 2. P. 135-140.
  38. Christophersen M., Linderød L., Jensen P.E., Kjeldsen P. 2000. Methane Oxidation at Low Temperatures in Soil Exposed to Landfill Gas // Journal of Environmental Quality. V. 29. P. 1989-1997.
  39. Curry C.L. 2007. Modeling the soil consumption of atmospheric methane at the global scale // Global Biogeochemical Cycles. V. 21. GB4012. doi: 10.1029/2006GB002818.
  40. Curry C.L. 2009. The consumption of atmospheric methane by soil in a simulated future climate // Biogeosciences. V. 6. Issue 11. P. 2355-2367. URL: www.biogeosciences.net/6/2355/2009/ (дата обращения: 29.11.2010).
  41. Del Grosso S.J., Parton W.J., Mosier A.R., Ojima D.S., Potter C.S., Borken W., Brumme R., Butterbach-Bahl K., Crill P.M., Dobbie K., Smith K.A. 2000. General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems // Global Biogeochemical Cycles. V. 14. No. 4. P. 999-1019.
  42. De Visscher A., Boeckx P., Van Cleemput O. 1998. Interaction between Nitrous Oxide formation and Methane oxidation in Soils Influence of Cation Exchange Phenomena // Journal of Environmental Quality. V. 27. P. 679-687.
  43. De Visscher A., Schippers M., Van Cleemput O. 2001. Short-term kinetic response of enhanced methane oxidation in landfill cover soils to environmental factors // Biology and Fertility of Soils. V. 33. P. 231-237.
  44. Dunfield P., Knowles R. 1995. Kinetics of Inhibition of Methane Oxidation by Nitrate, Nitrite, and Ammonium in a Humisol // Applied and Environmental Microbiology. V. 61. P. 3129-3135.
  45. Dörr H., Katruff L., Levin I. 1993. Soil texture parameterization of the methane uptake in aerated soils // Chemosphere. V. 26. No. 1-4. P. 697-713.
  46. Dutaur L., Verchot L.V. 2007. A global inventory of the soil CH4 sink // Global Biogeochemical Cycles. V. 21. GB4013. doi: 10.1029/2006GB002734.
  47. Fan S.M., Wofsy S.C., Bakwin P.S., Jacob D.J., Anderson S.M., Kebabian P.L., McManus J.B., Kolb C.E. 1992. Micrometeorological Measurements of CH4 and CO2 Exchange Between the Atmosphere and Subarctic Tundra // Journal of Geophysical Research. V. 97. No. D15. P. 16627-16643.
  48. Glagolev M., Kleptsova I., Filippov I., Maksyutov S., Machida T. 2011. Regional methane emission from West Siberia mire landscapes // Environmental Research Letters. V. 6. N. 4. 045214. doi: 10.1088/1748-9326/6/4/045214. Также доступна по URL: http://iopscience.iop.org/1748-9326/6/4/045214/pdf/1748-9326_6_4_045214.pdf
  49. Glagolev M., Uchiyama H., Lebedev V., Utsumi M., Smagin A., Glagoleva O., Erohin V., Olenev P., Nozhevnikova A. 2000. Oxidation and Plant-Mediated Transport of Methane in West Siberian Bog // Proceedings of the Eighth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1999. Tsukuba: Isebu. P. 143-149.
  50. Grant R.F., Roulet N.T. 2002. Methane efflux from boreal wetlands: Theory and testing of the ecosystem model Ecosys with chamber and tower flux measurements // Global Biogeochemical Cycles. V. 16. No. 4. 1054. doi: 10.1029/2001GB001702.
  51. GRASS Development Team. 2011. Geographic Resources Analysis Support System (GRASS) Software. Open Source Geospatial Foundation Project. URL: http://grass.osgeo.org (дата обращения: 19.05.2011).
  52. Kammann C., Grünhage L., Jäger H.-L., Wachinger G. 2001. Methane fluxes from differentially managed grassland study plots: the important role of CH4 oxidation in grassland with a high potential for CH4 production // Environmental Pollution. V. 115. P. 261-273.
  53. King G.M., Adamsen A.P.S. 1992. Effects of Temperature on Methane Consumption in a Forest Soil and in Pure Cultures of the Methanotroph Methylomonas rubra // Applied and Environmental Microbiology. V. 58. No. 9. P. 2758-2763.
  54. Martens C.S., Albert D.B., Alperin M.J. 1998. Biogeochemical processes controlling methane in gassy coastal sediments – Part 1. A model coupling organic matter flux to gas production, oxidation and transport // Continental Shelf Research. V. 18. P. 1741-1770.
  55. Meirink J.F., Bergamaschi P., Frankenberg C., d’Amelio M.T.S., Dlugokencky E.J., Gatti L.V., Houweling S., Miller J.B., Röckmann T., Villani M.G., Krol M.C. 2008. Four-dimensional variational data assimilation for inverse modeling of atmospheric methane emissions: Analysis of SCIAMACHY observations // Journal of Geophysical Research. V. 113. D17301. doi: 10.1029/2007JD009740.
  56. Mikaloff Fletcher S.E., Tans P.P., Bruhwiler L., Miller J.B., Heimann M. 2004. CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes // Global Biogeochemical Cycles. V. 18. GB4004. doi: 10.1029/2004GB002223.
  57. Morishita T., Hatano R., Nagata O., Sakai K., Koide T., Nakahara O. 2004. Effect of Nitrogen Deposition on CH4 Uptake in Forest Soils in Hokkaido, Japan // Soil Science and Plant Nutrition. V. 50. No. 8. P. 1187-1194.
  58. Morishita T., Matsuura Y., Zyryanova O.A., Abaimov A.P. 2006. CO2, CH4, and N2O fluxes from a larch forest soil in Central Siberia // Symptom of Environmental Change in Siberian Permafrost Region / Hatano R. and Guggenberger G. (Eds.). Sapporo: Hokkaido University Press. P. 1-9.
  59. NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. URL: http://lpdaac.usgs.gov/get_data (дата обращения: 19.05.2011).
  60. Petrescu A.M.R., van Huissteden J.C., Jackowicz-Korczynski M., Yurova A., Christensen T.R., Crill P.M., Bäckstrand K., Maximov T.C. 2008. Modelling CH4 emissions from arctic wetlands: effects of hydrological parameterization // Biogeosciences. V. 5. P. 111-121. URL (дата обращения 22.12.2010): http://www.biogeosciences.net/5/111/2008/bg-5-111-2008.pdf
  61. Potter C.S., Davidson E.A., Verchot L.V. 1996. Estimation of global biogeochemical controls and seasonality in soil methane consumption // Chemosphere. V. 32. P. 2219-2246.
  62. Ridgwell A.J., Marshall S.J., Gregson K. 1999. Consumption of atmospheric methane by soils: A prosess-based model // Global Biogeochemical Cycles. V. 13. No. 1. P. 59-70.
  63. Sabrekov A.F., Kleptsova I.E., Glagolev M.V., Maksyutov Sh.Sh., Machida T. 2011. Methane emission from middle taiga oligotrophic hollows of Western Siberia // Вестник ТГПУ. Вып. 5. С. 135-143. Также доступна по URL (дата обращения 19.06.2011): http://vestnik.tspu.ru/files/PDF/articles/sabrekov_a._f._135_143_5_107_2011.pdf
  64. Striegl R.G. 1993. Diffusional limits to the consumption of atmospheric methane by soils // Chemosphere. V. 26. No. 1-4. P. 715-720.
  65. Tang J., Zhuang Q., Shannon R.D., White J.R. 2010. Quantifying wetland methane emissions with process-based models of different complexities // Biogeosciences. V. 7. P. 3817–3837. doi: 10.5194/bg-7-3817-2010. URL (дата обращения 22.12.2010): www.biogeosciences.net/7/3817/2010/
  66. Van Huissteden J., van den Bos R., Alvarez I.M. 2006. Modelling the effect of water-table management on CO2 and CH4 fluxes from peat soils // Netherlands Journal of Geosciences. V. 85. No. 1. P. 3-18.
  67. Visvanathan C., Pokhrel D., Cheimchaisri W., Hettiaratchi J.P.A., Wu J.S. 1999. Methanotrophic activities in tropical landfill cover soils: effects of temperature, moisture content and methane concentration // Waste Management & Research. V. 17. P. 313-323.
  68. Walter B.P., Heimann M., Matthews E. 2001. Modeling modern methane emissions from natural wetlands 1. Model description and results // Journal of Geophysical Research. V. 106. No. D24. P. 34189-34206.
  69. Walter B.P., Heimann M., Shannon R.D., White J.R. 1996. A process-based model to derive methane emissions from natural wetlands // Geophysical Research Letters. V. 23. P. 3731-3734.
  70. Wania R. 2007. Modelling northern peatland land surface processes, vegetation dynamics and methane emissions: PhD thesis. Bristol: University of Bristol.
  71. Whiticar M.J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane // Chemical Geology. V. 161. P. 291-314.
  72. Zelenev V.V. 1996. Assessment of the Average Annual Methane Flux from the Soils of Russia. WP-96-51. Laxenburg, Austria: International Institute for Applied Systems Analysis.
  73. Zhuang Q., Melillo J.M., Kicklighter D.W., Prinn R.G., McGuire A.D., Steudler P.A., Felzer B.S., Hu S. 2004. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model // Global Biogeochemical Cycles. V. 18. GB3010. doi: 10.1029/2004GB002239.
  74. Zobler L. 1986. A world soil file for global climate modeling. NASA TM-87802. National Aeronautics and Space Administration. Washington, D.C. Данные доступны по URL: http://data.giss.nasa.gov/landuse/soilunit.html (дата обращения: 19.05.2011).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2011 Glagolev M.V., Filippov I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies