

УДК 578.233.33+578.233.36

DOI: https://doi.org/10.17816/MAJ108600

ПОЛУЧЕНИЕ И ХАРАКТЕРИЗАЦИЯ ПСЕВДОВИРУСОВ SARS-CoV-2

Н.Б. Рудомётова, Д.Н. Щербаков, Л.И. Карпенко

Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора, р. п. Кольцово, Новосибирская область, Россия

Для цитирования: Рудомётова Н.Б., Щербаков Д.Н., Карпенко Л.И. Получение и характеризация псевдовирусов SARS-CoV-2 // Медицинский академический журнал. 2022. Т. 22. № 2. С. 249—253. DOI: https://doi.org/10.17816/MAJ108600

Рукопись получена: 01.06.2022 Рукопись одобрена: 07.06.2022 Опубликована: 30.06.2022

Обоснование. Технология псевдовирусов — универсальный и ценный инструмент для фундаментальных и прикладных вирусологических исследований. Псевдотипированные вирусы обеспечивают тот же механизм проникновения в клетку, что и SARS-CoV-2, поэтому они широко используются для изучения механизма проникновения вируса, клеточного тропизма, а также для проведения анализа вируснейтрализации.

Цель работы — получить псевдотипированные вирусы SARS-CoV-2 и оценить их трансдуцирующую активность

Материалы и методы. С помощью методов генетической инженерии получали генетическую конструкцию, несущую ген гликопротеина S SARS-CoV-2, а также репортерную плазмиду pLenti-Luc-GFP, кодирующую гены зеленого флуоресцентного белка (GFP) и люциферазы светлячка. С помощью трансфекции эукариотических клеток были наработаны псевдовирусные частицы. Трансдуцирующая активность псевдовирусных частиц, экспонирующих на своей поверхности гликопротеин S SARS-CoV-2, изучена с использованием культур клеток НЕК293, НЕК293-hACE2 и НЕК293-hACE2-TMPRSS2 (t).

Результаты. На основе лентивирусной платформы второго поколения получены псевдовирусы, экспонирующие на своей поверхности гликопротеин S SARS-CoV-2. Установлено, что псевдовирусы более эффективно проникают в клетки HEK293-hACE2-TMPRSS2, чем в HEK293-hACE2. Показано, что псевдовирусы чувствительны к нейтрализации рекомбинантными моноклональными антителами, которые взаимодействуют с рецептор-связывающим доменом (RBD) гликопротеина S SARS-CoV-2.

Заключение. Полученные и охарактеризованные в данной работе псевдовирусы могут быть использованы как для поиска ингибиторов проникновения SARS-CoV-2 в клетки-мишени, так и для оценки эффективности разрабатываемых моноклональных антител и вакцин против SARS-CoV-2.

Ключевые слова: SARS-CoV-2; псевдовирусы; анализ нейтрализации; гликопротеин S.

GENERATION AND CHARACTERIZATION OF SARS-CoV-2 PSEUDOVIRUSES

Nadezhda B. Rudometova, Dmitry N. Shcherbakov, Larisa I. Karpenko

State Research Center of Virology and Biotechnology "Vector", Federal Service for Surveillance on Consumer Rights Protection and Human Well-being, Koltsovo, Novosibirsk Region, Russia

For citation: Rudometova NB, Shcherbakov DN, Karpenko LI. Generation and characterization of SARS-CoV-2 pseudoviruses. *Medical Academic Journal*. 2022;22(2):249–253. DOI: https://doi.org/10.17816/MAJ108600

Received: 01.06.2022 Accepted: 07.06.2022 Published: 30.06.2022

BACKGROUND: Pseudovirus technology is a versatile and valuable tool for both fundamental and applied virological research. Pseudotyped viruses provide the same cell entry mechanism as SARS-CoV-2 and are widely used to investigate the virus entry mechanism, cell tropism, and virus neutralization assays.

AIM: The aim of the work is to obtain pseudotyped SARS-CoV-2 viruses and evaluate their transducing activity. MATERIALS AND METHODS: Using genetic engineering methods, a genetic construct carrying the SARS-CoV-2 glycoprotein S gene was obtained, as well as the pLenti-Luc-GFP reporter plasmid encoding the green fluorescent protein (GFP) and firefly luciferase genes. Pseudovirus particles were generated by transfection of eukaryotic cells. The transducing activity of pseudoviral particles displaying SARS-CoV-2 glycoprotein S on their surface was studied using HEK293, HEK293-hACE2, and HEK293-hACE2-TMPRSS2 (t) cell cultures.

RESULTS: Based on the second-generation lentiviral platform, pseudoviruses were obtained that exhibit SARS-CoV-2 S glycoprotein on their surface. It was found that the pseudoviruses penetrate more efficiently into HEK293-hACE2-TMPRSS2 cells than into HEK293-hACE2. Pseudoviruses have been shown to be sensitive to neutralization by recombinant monoclonal antibodies that interact with the receptor-binding domain (RBD) of the SARS-CoV-2 S glycoprotein.

CONCLUSIONS: The pseudoviruses can be used both to search for antiviral drugs that would be able to block the penetration of SARS-CoV-2 into the target cell, and to evaluate the effectiveness of the developed monoclonal antibodies and vaccines against SARS-CoV-2.

Keywords: SARS-CoV-2; pseudoviruses; neutralization assay; S glycoprotein.

Обоснование

В настоящее время в мире идет активная разработка вакцин, моноклональных антител и химиопрепаратов против SARS-CoV-2. Важнейший инструмент для оценки их эффективности in vitro — тесты нейтрализующей или ингибирующей активности, которые позволяют выявить и определить перспективные разработки. Анализы нейтрализации с использованием живого вируса SARS-CoV-2 трудоемки и требуют повышенных мер биобезопасности, поэтому для преодоления этих ограничений в настоящее время активно применяются альтернативные технологии, направленные на получение псевдотипированных вирусов, экспонирующих на своей поверхности гликопротеин S SARS-CoV-2. Псевдотипированные вирусы обеспечивают тот же механизм проникновения в клетку, что и SARS-CoV-2, и широко используются для исследования механизма проникновения вируса, клеточного тропизма, а также для проведения анализа вируснейтрализации. Такие псевдотипированные вирусы для анализа нейтрализации имеют два явных преимущества перед живым вирусом SARS-CoV-2. Во-первых, псевдотипированные вирусы позволяют проводить анализ в обычной лаборатории BSL-2, что упрощает и удешевляет эксперименты. Во-вторых, псевдотипированные вирусы несут маркерные гены, например люциферазу или гены зеленого флуоресцентного белка (GFP), которые обеспечивают более легкую и точную количественную оценку, чем если бы анализ проводился с живым вирусом SARS-CoV-2, в том числе в формате микронейтрализации. Для получения псевдотипированных вирусов SARS-CoV-2 используют несколько вирусных платформ, таких как вирус лейкемии мышей, вирус везикулярного стоматита и вирус иммунодефицита человека. Во многих работах отмечается корреляция между экспериментальными результатами, полученными с использованием живого вируса и псевдотипированных вирусов SARS-CoV-2 [1, 2].

Цель работы — получение псевдотипированных вирусов SARS-CoV-2 и оценка их трансдуцирующей активности.

Материалы и методы

Для получения псевдовирусов использованы следующие плазмиды: упаковочная плазмида — psPAX2 (Addgene #12260); оболочечная плазмида — ph-S\Delta18, кодирующая гликопротеин S SARS-CoV-2, которую получали путем вставки соответствующей нуклеотидной последовательности (GenBank:MN908947) в вектор phMGFP. При проектировании генетической

конструкции удаляли участок, кодирующий последние 18 аминокислот последовательности S-белка, а затем оптимизировали кодонный состав с помощью инструмента GeneOptimizer (https://www.thermofisher.com/ru/en/home/ life-science/cloning/gene-synthetic/geneart-genesynthetic/geneoptimizer.html). Итоговую нуклеопоследовательность тидную синтезировали в ООО «ДНК-Синтез». Вставку гена S-белка в акцепторный вектор осуществляли по сайтам рестрикции NheI и AsiGI. Дополнительно помощью сайт-направленного мутагенеза в аминокислотную последовательность S-белка вносили мутацию D614G. Репортерная плазмида pLenti-Luc-GFP получена на основе лентивирусного вектора pCDH-EF1a-GaussiaSP-MCS-IRES-сорGFP (любезно предоставленного Т.Н. Беловежец, Институт химической биологии и фундаментальной медицины СО РАН) путем замены последовательности люциферазы Gaussia на последовательность люциферазы светлячка. Для этого проводили методом полимеразной цепной реакции (ПЦР)-амплификацию нуклеотидной последовательности люциферазы светлячка с использованием праймеров Lenti-Luc-F 5'-aaaaaatctagctagccaccatggaagatgcca-3' и Lenti-Luc-R 5'-aaaaaaggatccttacacggcgatcttgccg-3' и матрицы — плазмиды pCAG-Luc (Addgene #55764). Затем ПЦР-продукт встраивали в плазмиду pCDH-EF1a-GaussiaSP-MCS-IRES-copGFP по сайтам рестрикции XbaI и BamHI. Целостность генетических конструкций подтверждали с помощью секвенирования и рестрикционного анализа.

Плазмиду pDUO-hAce2-TMPRSS2 приобретали в коммерческой фирме InvivoGen (США).

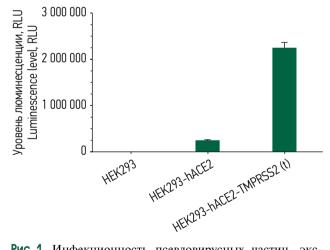
Для получения псевдовирусных частиц, экспонирующих на своей поверхности S-белок SARS-CoV-2, проводили трансфекцию культуры клеток HEK293 плазмидами psPAX2, pLenti-Luc-GFP и phS- Δ 18 с использованием липофектамина 3000 (InvivoGen, США). Псевдовирусные частицы собирали путем фильтрации культуральной среды через фильтр 0,45 мкм и последующего концентрирования в 20 % растворе сахарозы; делали аликвоты по 500 мкл и хранили при температуре -80 °C.

Трансдуцирующую активность псевдовирусов в отношении клеток-мишеней, определяли с использованием клеточных линий НЕК293 (коллекция культур клеток ФБУН ГНЦ ВБ «Вектор» Роспотребнадзора), НЕК293-hACE2 (коллекция культур клеток Института молекулярной и клеточной биологии СО РАН) и НЕК293-hACE2-TMPRSS2 (t), полученной путем транзиентной трансфекции клеточной линии НЕК293 плазмидой рDUO-hAce2-TMPRSS2. Краткое описание: 50 мкл трипсинизированной суспензии клеток

НЕК293. клеток НЕК293-hACE2 и НЕК293hACE2-TMPRSS2 в концентрации $1 \cdot 10^6$ клеток/мл среды высевали в 96-луночный планшет. Затем к клеткам добавляли по 10 мкл супернатанта, содержащего псевдовирусы, в трех повторах. Через 48 ч определяли уровень люминесценции с помощью системы анализа люциферазы (Promega, США). После удаления ростовой среды с клеток, инфицированных псевдовирусом, их лизировали однократным буфером для лизиса клеточных культур (50 мкл/лунку) (Promega, США). Затем 35 мкл лизата переносили в черные оптические планшеты, добавляли субстрат люциферазы светлячка (Promega, США) и измеряли уровень люминесценции на приборе Varioskan LUX (Thermo Scientific, США).

Анализ вируснейтрализации проводили с моноклональными антителами по методике [3]. Для этого использовали рекомбинантные моноклональные антитела DA, 6B3 и M6N, которые взаимодействуют с рецепторсвязывающим доменом (RBD) гликопротеина S SARS-CoV-2 (МКА любезно предоставлены Д.В. Шаньшиным, ФБУН ГНЦ ВБ «Вектор» Роспотребнадзора). Как отрицательный контроль использовали моноклональное антитело VRC01, мишень которого — CD4-связывающий сайт поверхностного гликопротеина ВИЧ-1.

Статистическую обработку полученных результатов проводили в программе GraphPad Prism 9.


Результаты и обсуждение

В настоящее время псевдовирусная система широко применяется для изучения клеточного тропизма и рецепторной специфичности, механизмов проникновения вирусов и ингибирования данного этапа, а также для тестирования антител, химиопрепаратов и вакцин [4].

В данной работе для получения псевдовирусных частиц взята лентивирусная платформа второго поколения на основе ВИЧ-1, которая подразумевает сочетание нескольких плазмид: упаковочной плазмиды, экспрессирующей белки Gag и Pol и обеспечивающей формирование лентивирусных частиц; трансферной, или репортерной, плазмиды, содержащей репортерные гены; оболочечной плазмиды, обеспечивающей синтез поверхностного гликопротеина [5]. Как упаковочную плазмиду использовали psPAX2; как оболочечную плазмиду — ph-S Δ 18, несущую кодон-оптимизированный ген гликопротеина S SARS-CoV-2 с мутацией D614G и делетированным участком из 18 а. о. на С-конце. Эти модификации дают более высокие титры инфекционности по сравнению с полноразмерным гликопротеином S дикого типа [3]. Кроме того,

продемонстрировано, что усечение 18 или 19 С-концевых аминокислот, включающих предполагаемый сигнал удержания в эндоплазматическом ретикулуме, повышает эффективность псевдотипирования на основе ВИЧ [3]; репортерная плазмида — pLenti-Luc-GFP.

После наработки и концентрирования псевдовирусных частиц оценивали их трансдуцирующую активность. Известно, что SARS-CoV-2 для проникновения в клетку-мишень использует ангиотензинпревращающий фермент 2 (human angiotensin converting enzyme 2, ACE2) как свой целевой рецептор [6], поэтому для анализа мы взяли клеточную линию НЕК293-hACE2, клетки которой стабильно экспонируют АСЕ2 на своей поверхности. Помимо этого, для проникновения вируса требуется праймирование S-белка клеточными протеазами, в частности сериновой протеазой TMPRSS2 (transmembrane serine protease 2) [7]. Именно поэтому для исследования трансдуцирующей активности псевдовирусов мы также использовали клетки HEK293-hACE2-TMPRSS2 (t), полученные путем транзиентной трансфекции клеточной линии HEK293 плазмидой pDUO-hACE2-TMPRSS2. Согласно результатам, наилучшее проникновение псевдовирусных частиц наблюдалось при заражении HEK293-hACE2-TMPRSS2 (t), в то время как инфекционность полученных псевдовирусов SARS-CoV-2 на клетках НЕК293hACE2 оказалась в 10 раз ниже и ее практически не было в клетках НЕК293 (рис. 1). Эти

Рис. 1. Инфекционность псевдовирусных частиц, экспонирующих S-белок SARS-CoV-2, на клетках HEK293, HEK293-hACE2 и HEK293-hACE2-TMPRSS2 (t). Образцы тестировали в трех повторах, эксперимент проводили дважды. Данные представлены как среднее \pm стандартное отклонение

Fig. 1. Infectivity of pseudoviral particles displaying SARS-CoV-2 S protein on HEK293, HEK293-hACE2 and HEK293-hACE2-TMPRSS2 cells (t). The samples were tested in triplicate, the experiment was carried out twice. Data are presented as mean \pm standard deviation

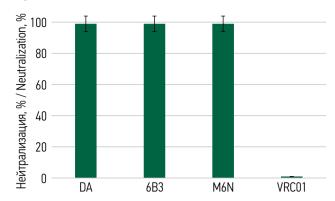


Рис. 2. Нейтрализация псевдовирусных частиц, экспонирующих на своей поверхности гликопротеин S SARS-CoV-2, моноклональными антителами при концентрации 1 мкг/мл. Образцы тестировали в трех повторах, эксперимент проводили дважды. Данные представлены как среднее \pm стандартное отклонение

Fig. 2. Neutralization of pseudoviral particles displaying SARS-CoV-2 S glycoprotein on their surface with monoclonal antibodies at a concentration of 1 μ g/ml. The samples were tested in triplicate, the experiment was carried out twice. Data are presented as mean \pm standard deviation

результаты согласуются с ранее опубликованными данными [3, 7].

Для первичной оценки работоспособности псевдовирусов как антигена был проведен анализ вируснейтрализации с использованием моноклональных рекомбинантных антител DA, 6B3 и M6N, которые взаимодействуют с RBD гликопротеина S SARS-CoV-2. Согласно полученным результатам, псевдовирусы оказались чувствительны к нейтрализации данными антителами и не чувствительны к нейтрализации моноклональным антителом VRC01 (рис. 2).

Выводы

Таким образом, полученные и охарактеризованные псевдовирусы, экспонирующие на своей поверхности гликопротеин S SARS-CoV-2, могут быть использованы как для поиска противовирусных препаратов, способных блокировать проникновение SARS-CoV-2 в клетки-мишени, так и для оценки эффективности разрабатываемых моноклональных антител и вакцин против SARS-CoV-2.

Дополнительная информация

Источник финансирования. Исследование выполнено в рамках государственного задания ФБУН ГНЦ ВБ «Вектор» Роспотребнадзора.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов, связанного с подготовкой и публикации статьи.

Вклад авторов. Все авторы внесли существенный вклад в разработку концепции, проведение

исследования и подготовку статьи, прочли и одобрили финальную версию перед публикацией. Наибольший вклад распределен следующим образом: *Н.Б. Рудомётова*, *Д.Н. Щербаков* — концепция исследования и разработка дизайна исследования, анализ данных, написание текста рукописи; *Л.И. Карпенко* — научное редактирование и утверждение окончательного варианта статьи перед публикацией.

Additional information

Funding sources. The study was carried out as part of the state assignment of FBRI SRC VB "Vector" of Rospotrebnadzor.

Competing interests. The authors declare that there is no conflict of interest related to the preparation and publication of the article.

Authors' contribution. All authors made a significant contribution to the development of the concept and preparation of the article, read and approved the final version before publication. The largest contribution is distributed as follows: *N.B. Rudometova*, *D.N. Shcherbakov* — study concept and study design development, data analysis, drafting the manuscript; *L.I. Karpenko* — scientific editing and approved the final version before publication.

Список литературы

- Schmidt F., Weisblum Y., Muecksch F. et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses // J. Exp. Med. 2020. Vol. 217, No. 11. P. e2020118. DOI: 10.1084/jem.20201181
- Chen M., Zhang X.E. Construction and applications of SARS-CoV-2 pseudoviruses: a mini review // Int. J. Biol. Sci. 2021. Vol. 17, No. 6. P. 1574–1580. DOI: 10.7150/ijbs.59184
- Neerukonda S.N., Vassell R., Herrup R. et al. Establishment of a well-characterized SARS-CoV-2 lentiviral pseudovirus neutralization assay using 293T cells with stable expression of ACE2 and TMPRSS2 // PLoS One. 2021. Vol. 16, No. 3. P. 1–19. DOI: 10.1371/journal.pone.0248348
- Yu J., Li Z., He X. et al. Deletion of the SARS-CoV-2 spike cytoplasmic tail increases infectivity in pseudovirus neutralization assays // J. Virol. 2021. Vol. 95, No. 11. P. 1–14. DOI: 10.1128/JVI.00044-21
- Li Q., Liu Q., Huang W. et al. Current status on the development of pseudoviruses for enveloped viruses // Rev. Med. Virol. 2018. Vol. 28, No. 1. P. e1963. DOI: 10.1002/rmv.1963
- Zhang H., Penninger J.M., Li Y. et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target // Intensive Care Med. 2020. Vol. 46, No. 4. P. 586–590. DOI: 10.1007/s00134-020-05985-9
- Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor // Cell. 2020. Vol. 181, No. 2. P. 271–280.e8. DOI: 10.1016/j.cell.2020.02.052

References

- Schmidt F, Weisblum Y, Muecksch F, et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. *J Exp Med.* 2020;217(11):e2020118. DOI: 10.1084/jem.20201181
- Chen M, Zhang XE. Construction and applications of SARS-CoV-2 pseudoviruses: a mini review. *Int J Biol Sci.* 2021;17(6):1574–1580. DOI: 10.7150/iibs.59184
- Neerukonda SN, Vassell R, Herrup R, et al. Establishment of a well-characterized SARS-CoV-2 lentiviral pseudovirus neutralization assay using 293T cells with stable expression of ACE2 and TMPRSS2. PLoS One. 2021;16(3):1–19. DOI: 10.1371/journal.pone.0248348
- 4. Yu J, Li Z, He X, et al. Deletion of the SARS-CoV-2 spike cytoplasmic tail increases infectivity in pseudovirus neutralization assays. *J Virol*. 2021;95(11):1–14. DOI: 10.1128/JVI.00044-21
- 5. Li Q, Liu Q, Huang W, et al. Current status on the development of pseudoviruses for enveloped viruses. *Rev Med Virol*. 2018;28(1):e1963. DOI: 10.1002/rmv.1963
- 6. Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. *Intensive Care Med*. 2020;46(4):586–590. DOI: 10.1007/s00134-020-05985-9
- 7. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. *Cell*. 2020;181 (2):271–280.e8. DOI: 10.1016/j.cell.2020.02.052

Информация об авторах / Information about the authors

ФБУН «Государственный научный центр вирусологии и биотехнологии «Вектор» Федеральной службы по защите прав потребителей и благополучия человека, р. п. Кольцово, Новосибирская область, Россия State Research Center of Virology and Biotechnology "Vector", Federal Service for Surveillance on Consumer Rights Protection and Human Well-being, Koltsovo, Novosibirsk Region, Russia

Надежда Борисовна Рудомётова канд. биол. наук, научный сотрудник. ORCID: https://orcid.org/0000-0002-1684-9071;

eLibrary SPIN: 5283-6608; e-mail: nadenkaand100@mail.ru

Дмитрий Николаевич Щербаков — канд. биол. наук,

ведущий научный сотрудник.

ORCID: https://orcid.org/0000-0001-8023-4453;

Scopus Author ID: 37027118800; eLibrary SPIN: 9616-0933; e-mail: dnshcherbakov@gmail.com

Лариса Ивановна Карпенко — д-р биол. наук, доцент, ведущий научный сотрудник.

ORCID: https://orcid.org/0000-0003-4365-8809;

Scopus Author ID: 7005000410; eLibrary SPIN: 2026-5992; e-mail: karpenko@vector.nsc.ru

Nadezhda B. Rudometova —

Cand. Sci. (Biol.), Research Associate.

ORCID: https://orcid.org/0000-0002-1684-9071;

eLibrary SPIN: 5283-6608; e-mail: nadenkaand100@mail.ru

Dmitry N. Shcherbakov — Dr. Sci. (Biol.),

Leading Research Associate.

ORCID: https://orcid.org/0000-0001-8023-4453;

Scopus Author ID: 37027118800; eLibrary SPIN: 9616-0933; e-mail: dnshcherbakov@gmail.com

Larisa I. Karpenko — Dr. Sci. (Biol.),

Assistant Professor, Leading Research Associate. ORCID: https://orcid.org/0000-0003-4365-8809;

Scopus Author ID: 7005000410; eLibrary SPIN: 2026-5992; e-mail: karpenko@vector.nsc.ru

Надежда Борисовна Рудомётова / Nadezhda B. Rudometova Адрес: Россия, 630559, Новосибирская область, р. п. Кольцово

Address: Koltsovo, Novosibirsk Region, 630559, Russia

E-mail: nadenkaand100@mail.ru