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M and M-like proteins are key pathogenicity factors of Streptococcus pyogenes, a widely prevalent and potentially le-
thal bacterium. These proteins confer resistance to the host’s innate and adaptive immune response by attracting specific
human proteins to the streptococcal surface. The nonimmune binding of host immunoglobulins G (IgG) and A (IgA)
to M and M-like proteins via their Fc domains was first described over 50 years ago, but its role in the pathogenicity
of S. pyogenes remains unclear. This discovery has had a significant impact on the development of innovative diagnostic
approaches, technologies, and tools in microbiology, immunology, and molecular biology. The nonimmune binding of
immunoglobulins has been suggested to play a role in immune conditions on mucosal surfaces and their secretions, but
not in blood plasma, while other studies suggest it protects microbes from phagocytosis in the host’s nonimmune blood.
The Fc-binding effect has been shown to increase the pathogenicity of streptococci, contributing to the development of
autoimmune diseases and tissue damage in experimental animals. The experimental autoimmune process can be prevented
by administering purified Fc fragments of immunoglobulins to animals. Streptococcal diseases play a significant role in
the pathogenesis of IgA-nephropathy (IgAN), a mesangial proliferative process caused by initial IgA-Fca deposition in
renal mesangium cells. Literature suggests a relevance of recent ideas about the important role of nonimmune Ig binding
in streptococcal diseases, and further efforts are required to study the binding of Fc fragments of IgG and IgA to M and
M-like proteins of S. pyogenes, with the aim of developing preventive and potentially therapeutic applications. The paper
speculates on the role of nonimmune Ig binding in streptococcal diseases, including cases with various mechanisms of
development. These studies also focuses on preventive and potentially therapeutic applications of Fc fragments of IgG
to M or M-like proteins of S. pyogenes.

Keywords: Strepfococcus pyogenes; streptococcal IgFc-binding proteins; post-streptococcal glomerulonephritis; myo-
carditis; IgA-nephropathy.
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M u M-nogo6Hble OeJKU SIBISIOTCSI OCHOBHBIMU (paKTOpaMU ITATON€HHOCTH ILMPOKO PaCIpOCTPAHEHHOIO M I0-
TEHIUAJLHO CMEPTEJbHOr0 OaKTepUaTIbHOTO MaToreHa Streptococcus pyogenes. DT GelKM 00eCTIeUYnBAIOT YCTOMYNBOCTh
MUKpPOOa K BPOXKIEHHBIM U aJaNTUBHBIM MMMYHHBIM peakIIvsiM, TIpUBJieKas criennduieckre GeJIku desloBeka Ha To-
BEPXHOCTb CTpenTOKOKKa. HemMMyHHOe cBsi3piBaHue MMMyHorooyanHoB G (IgG) u A (IgA) yepe3 ux Fc-momensr M
1 M-nogo6HbIMU GeKaMu ObLIO onrcaHo 6osiee 50 JieT Hazal, HO ero 3HaYeHWe B MAaTOTeHHOCTH S. pyogenes HENb3s1 CUM-
TaTh OKOHYATEJIEHO pelleHHbIM. OOHapykeHre JaHHOTO (heHOMEHa CJIeIyeT OTHECTH K BeChbMa 3HAYUTEIEHBIM JTOCTVIKE-
HUSIM COBPEMEHHOI MUKPOOMOJIOTUH, TOCKOJIbKY OH OKa3al OTPOMHOE BIMSIHME Ha CO3MaHUe MHHOBALIMOHHBIX TIOIXO/IOB,
TEXHOJIOTH U CPEeICTB MUKPOOHOIOTUYECKOI, UMMYHOJIOTMUYECKOW 1 MOJIEKYJISIPHOM TUarHOCTUKK. OH TakXKe MOBJIUSIT Ha
(yHraMeHTabHBIE HCCEN0BAaHUST B 00J1aCTU NAaTOreHe3a aKTyalbHBIX MH(MEKIMOHHbBIX 3a00JIeBaHUIl U MX OCIIOXHEHUH,

List of abbreviations

APSGN — acute poststreptococcal glomerulonephritis; ARF/RHD — acute rheumatic fever / rheumatic heart disease; C4BP — C4b-binding
protein; FH — factor H; GAS — Streptococcus pyogenes or group A streptococci; ISAN — IgA-nephropathy; NAPIr — nephritis-associated
plasmin receptor, glyceraldehyde-3-phosphate dehydrogenase.
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BBI3BIBACMBIX . pyogenes. [1penronaransoch, YTo HEUMMYHHOE CBS3bIBAHME MMMYHOTJIOOYJIMHOB XO3sIMHA MMEET 3HAaYCHUE
B OCHOBHOM IPU UMMYHHBIX COCTOSTHUSIX Ha TTOBEPXHOCTHU CIM3UCTBHIX 000JI0YEK U B CEKPETE, HO HE B IJIa3Me, B TO Bpe-
MsI KaK IpyTve MCCIenoBaHUs CBUAETECTBOBAIN O BAXKHOCTH JaHHOTO (DeHOMEeHa B 3alllMTe MUKPOOOB OT (harommrosa
B HEMMMYHHOI KpOBU MaKpoopraHu3Ma. belTo Takxke moka3zaHo, 4To 3¢deKT Fc-cBsa3biBaHMS MOBHIIIAET MATOTEHHOCTD
CTPENTOKOKKOB KaK B MEPBUYHOM ouyare MHGMEKIMHU, TaK U TIPU XPOHU3ALIMU MPOLIEcca, CIIOCOOCTBYSI Pa3BUTUIO ayTOMM-
MYHHBIX 3a00JIeBaHMi1, BRI3BAHHBIX MHMEKIIME S. pyogenes, TIPUBOIS K TIOBPEXKICHUIO TKaHEW Y SKCIEPUMEHTATbHBIX
JKUBOTHBIX. DKCIIEPUMEHTAIBHBIN ayTOMMMYHHBIN MPOLIECC MOXKHO TIPEeIyIIPEINTh, UCITONb3YS BBEICHUE XXIUBOTHBIM OUYM-
meHHBIX Fe-dparmenToB IgG reTepoJOrMyHbBIX U ayTOJIOTUYHBIX, OJOKMPYS MPOIIeCC Ha PaHHUX CTAAUsIX €ro pa3BUTHS.

CyulecTBeHHOe MecTo B maroreHese IgA-Hedpomatuu (IgAN) mpuHAWIEKUT CTPENTOKOKKOBBIM 3a00JIEBAaHUSIM.
IgAN omumchIBalOT Kak Me3aHTHaJIbHO-TIPOdepaTUBHBIN TIpolecc, OOYCIOBICHHBIN MTePBOHAYAIBHBIMU OTJIOXEHUSMU
MUKpoOHOoTro IgAFc-cBas3biBatomiero 6eka B KJIeTKaxX IMOYEYHOro Me3aHrmyMa. JIuTepaTypHble NaHHBIE YKa3bIBalOT Ha
yCIeIIHOEe MOAEIMPOBaHUE OTIEAbHBIX MpU3HaKoB IgAN U pacIMpsIOT HalllM MpeACTaBIeHUs O MAaTOTeHHBIX CBOMCTBAX
u ¢yHkiusax Feca-peuentopHbix M-6eikoB S. pyogenes. PaccMOTpeHHbIE B 0030pe JaHHbIE MOAYEPKUBAIOT TaKXKe aKTy-
aJIbHOCTD BBIIBUTA€MBIX MIPEICTABICHUM O BaXKHOI pOJIM HEMMMYHHOTO CBS3BIBAHUSI UMMYHOTJIOOYJIMHOB B CTPENTOKOK-
KOBOI MATOJIOTUM, JaXe B CAydasiX, Pa3aInvarolInXcs MO MEXaHU3MYy pa3BUTHUSA. DTU MCCIEIOBAHUS, B TOM YUCIIEe U BO3-
MOXHBI/ TTOUCK CPEACTB U METOAOB MPOMUIAKTUYECKON U MOTEHIIMAIbHO TepaneBTUYECKON HANPaBIeHHOCTH, TPEOYIOT
HOBOTO BHMMAaHMS K UccieqoBaHUsAM cBs3biBaHUsl Fc-pparmeHntoB IgG u IgA M u M-nogo0HbIMU OesikaMu S. pyogenes.

Kmouessie cioBa: Streptococcus pyogenes; 1gFc-cBsa3biBaoiasi akTUBHOCTb CTPENTOKOKKOB; IMOCTCTPENTOKOKKOBBIM

roMepyaoHedpuT; Muokapaur; IgA-Hedpomnarusi.

Introduction

Streptococcus pyogenes or group A streptococ-
ci (GAS) is a group of gram-positive pathogens that
cause numerous human diseases. These pathogens are
responsible for conditions such as scarlet fever, phar-
yngitis, sinusitis, otitis media, pyoderma, impetigo,
erysipelas, necrotizing fasciitis, myositis, septicemia,
and toxic shock syndrome, which can be highly lethal
due to rapid progression and systemic organ dam-
age. Additionally, autoimmune conditions like post-
streptococcal rheumatic fever and glomerulonephritis
may result from a previous GAS infection. These dis-
eases remain a significant health threat, particularly
in developing countries [1—3]. The proteins of the
M protein family located on the surface of these bac-
teria play a crucial role in the pathogenesis of these
diseases [4, 5]. The M protein forms a dense fibril-
lar layer that extends about 500 A from the cell wall.
Its fibrillar appearance is due to its dimeric a-helical
coiled-coil structure, consisting of 330—440 amino
acids [6, 7]. The location of the M protein on the
bacterial surface makes it the main target of the host’s
immune system. Previously it was thought that GAS
carried a single M protein with a specific antigen func-
tion. However, now we understand that at least three
M protein family members exist: Emm, Mrp, and
Enn [8]. The Emm protein is present in all strains of
GAS, while the other two M-like proteins are present
in 85% of GAS isolates. Genes in the Mga-regulon
[9—11] encode all M proteins. The Emm protein has
been established as the standard for emm genotyping of
GAS [12], and currently, around 200 emm genotypes
of GAS are known [7, 12]. One of the main functions
of the M protein is to ensure the bacterium’s resistance
to elimination by the host’s innate and adaptive im-
mune system. This resistance is established through
the interaction of several human plasma proteins with
the surface of GAS cells, preventing opsonization with
C3b component complement and specific antibodies,
which allows the bacterium to evade phagocytosis.

The mechanism of this interaction and the structural
interaction with M proteins are well studied or cur-
rently being investigated. The most important human
plasma proteins that interact with the M protein are
fibrinogen [13—15] and C4b-binding protein (C4BP)
[16—18]. Fibrinogen is a blood coagulation protein
that acts as a steric shield blocking complement com-
ponent binding [19]. Factor H (FH) is less studied,
but its role in GAS pathogenicity has been shown in
transgenic mice [20—22]. C4BP and FH are regula-
tors of complement activation and interact with other
complement proteins to reduce C3b levels, thereby
protecting the host’s tissues from complement dam-
age. C4BP and FH also compete with opsonizing an-
tibodies for M protein epitopes [19]. The other protein
recruited by the M protein into the focus of infection
is also a component of the blood coagulation system —
plasminogen (Pla), which binds directly to the M-like
protein of bacteria [23—26] or indirectly through fibrin-
ogen. Plasminogen is transformed into enzymatically
active plasmin under the action of streptokinase A.
It has been shown that plasmin can cause proteolysis
of the C3b component of the complement, leading to
a decrease in the level of opsonization of bacteria and
their phagocytic uptake by neutrophils [27]. Plasmin
localized on bacteria promotes the transition of a local
streptococcal infection into an invasive one [26, 28].
Fifty years ago, another form of the interaction of
M protein with plasma proteins was discovered — the
nonimmune interaction of M protein with immuno-
globulins G (IgG) and A (IgA) due to their Fc frag-
ments [29—34]. A number of types of streptococcal M
proteins have been shown to bind human IgG, IgA, or
both. IgG is mainly found in plasma, but can also be
detected in lymph and in small amounts on mucous
surfaces, while IgA is the main class of antibodies on
mucous membranes [35]. The binding of immunoglob-
ulins by M and M-like streptococcal proteins is a tem-
perature and allosterically dependent process [36].
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Immunoglobulin Fc-binding
by Streptococcus pyogenes

The binding of human and mammalian immuno-
globulin Fc fragments by microbes was first observed
in Staphylococcus aureus through the interaction of
protein A and the Fc fragment of human IgG [37].
In 1966, A. Forsgren and J. Sjoquis established that
this interaction was a pseudo-immune reaction,
rather than an antigen-antibody interaction [38].
The Fc fragment of human IgG was also found to
bind to streptococci, with four types of streptococ-
cal IgGFc receptors identified in addition to type I
bacterial Fc receptors (protein A) [29, 39, 40].
The characteristic IgGFc receptors of S. pyogenes
strains were designated type II, and they interact
with human IgG 1—4 and polyclonal rabbit and pig
IeG [39, 40].

Studies by P. Christensen, C. Schalen, and co-
authors revealed the ability of some GAS strains to
bind both monomeric and aggregated human IgG,
including in the presence or absence of normal se-
rum [41, 42]. This activity is primarily found in “ne-
phritogenic” strains of types M12 and M49, isolated
from patients with post-streptococcal glomerulone-
phritis [41, 42]. In addition to Fc-receptors, the abil-
ity to bind immune complexes was also discovered
in GAS [43]. Type III Fc receptors (protein G) are
typical of human-derived group C and G streptococ-
cal strains, while type IV is characteristic of group G
streptococci causing infection in cattle, and type V
has been identified in Strepfococcus zooepidemicus
[39, 40]. The discovery of this phenomenon has had
significant impact on microbiological, immunologi-
cal, molecular diagnostic approaches and research
into the pathogenesis of topical infectious diseases
caused by S. pyogenes [8, 34, 44, 45].

The unique ability of M type GAS to bind mainly
human and rabbit IgG has made it possible to study
the role of nonimmune IgG binding in pathology.
The Fc-binding activity of GAS may be determined
by the bacteria’s ability to cause diseases mainly in
humans, which it has developed over its evolution
in the human body. Recent research has shown that
the IgGFc-binding proteins of GAS have a high
degree of homology to M proteins, and common
Mga-regulon genes [46—48] regulate their synthesis.

IgG binding sites are localized in the region
between the CH2 and CH3 domains of the im-
munoglobulin G heavy chain with the involvement
of three amino acid residues of histidine at posi-
tions 435, 433, 310 and tyrosine at position 436 in
this binding [8, 49]. S. pyogenes also has the ability to
bind the Fc fragment of the IgA molecule. Initially,
nonimmune binding of IgA was shown in strains of
types M4, M11 and M57 [50] reacting with human
myeloma IgA. Later, this activity was also detected
in M49 and M60 types of GAS strains [51]. These

M types of GAS are binding both subclasses of hu-
man IgA: IgAl and IgA2 [8, 34].

The interaction of M and M-like GAS proteins
with immunoglobulins is multi-faceted in infected
organisms. Fc-bound immunoglobulin molecules
block bacterial opsonization, while the “stockade”
of Fc-bound immunoglobulin on the surface of
bacteria provides protection from phagocytic up-
take. The binding of plasma proteins by microbial
cells can result in their sequestration and removal
from circulation, thereby evading the host immune
response. The ability of streptococcal M proteins
to bind IgG, immune complexes, and IgA is deter-
mined by the presence of Fcy and Fca receptors,
which differ in their amino acid sequence [8]. Three
IgG and one IgA receptors have been described [8].
Streptococcal proteins of the M protein family Emm,
Mrp and Enn bind both IgG and IgA, while the
M-like Arp protein is active only against human IgA
[8, 34]. The binding of plasma proteins by S. pyo-
genes may be fraught with their imbalance in the
macroorganism. It has also been shown that strep-
tococcal IgGFc-binding strains are capable of induc-
ing the synthesis of anti-IgG class G when injected
into rabbits [52—55]. As a result, it leads to a high
concentration of circulating IgG-containing immune
complexes in the blood. All the consequences of
these events and their role in streptococcal pathol-
ogy are still far from being completely understood.

Autoimmune diseases of streptococcal etiology

Considerable literature on the pathogenesis of
poststreptococcal heart and kidney complications has
been accumulated in the scientific community. These
conditions result from the transition of an infectious
process into an immunopathological state. There
must always be a triggering factor for this transition
to occur, which is part of a series of interrelated reac-
tions between the pathogen and host. Understanding
the sequence of pathogenic events is crucial in de-
termining the nature of the initiating factor.

The mechanism behind autoimmune compli-
cations from a group A streptococcal infection
(GAS-infection) remains a topic of scientific dis-
cussion. Examples of these conditions include acute
poststreptococcal glomerulonephritis (APSGN) and
rheumatic heart disease (RHD), which appear to
involve nonimmune IgG binding. For a long time,
APSGN was believed to be a complication of in-
fections caused by specific strains of S. pyogenes,
including those causing skin and upper respirato-
ry tract infections [56, 57]. However, current re-
search recognizes that Group A streptococci are
not the only cause of glomerulonephritis. Studies
of individual cases and outbreaks have shown that
the condition can develop after infections caused
by various other streptococcal species, including
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S. zooepidemicus [58, 59], Streptococcus pneumo-
nia [60, 61], Streptococcus constellatus [62], and
Streptococcus anginosus [63].

The identification of nephritogenic streptococ-
cal antigens remains a topic of ongoing controversy
and discussion. Experimental and clinical evidence
suggests a potential connection between the devel-
opment of pathological processes in the renal tissue
of APSGN and certain products of GAS, including
streptokinase (Ska) [64, 65], glyceraldehyde-3-phos-
phate-dehydrogenase (GAPDH) with the ability to
bind plasmin and named by researchers as a plasmin
receptor associated with nephritis (NaPlr) [66], and
cysteine proteinase (exotoxin B, SpeB) [67, 68]. This
connection is supported by the detection of these an-
tigens and antibodies to them in biopsy samples from
affected kidneys and in the blood of patients with
APSGN. These antigens also induce the production
of monocyte chemoattractant protein 1 (MCHB-1)
in mesangial cells and the synthesis of proinflam-
matory cytokines, such as IL-6, TNF-a, IL-8, and
TGF-b [56, 69]. The evidence for the nephritogenic-
ity of the three antigens is not conclusive. For in-
stance, a strain of S. zooepidemicus (MGCS10565)
that caused a major epidemic of glomerulonephritis
in Brazil [59] lacked the exotoxin B gene in its ge-
nome, casting doubt on the initiating role of exo-
toxin B in the development of APSGN. This high-
lights need for a critical evaluation of the molecular
mechanisms and pathogenesis of APSGN based on
genome analysis [59]. Thus, even if exotoxin B (cys-
teine protease) plays a role in APSGN, it is likely
not the sole cause and may not initiate the process
in all cases.

The role of Ska in inducing experimental glo-
merulonephritis is also questionable. Experiments
with this GAS product were performed on mice
[64, 70], but it is known that Ska does not activate
mouse plasminogen into plasmin, a critical step in
the development of post-streptococcal glomerulo-
nephritis. This was confirmed in our experiments
(Table 1) [71]. Hence, modeling glomerulonephri-
tis in mice may not be attributed to the disease in
humans. Additionally, the detecting of Ska on the
basement membrane of the renal glomeruli of mice
could simply reflect the accumulation of immune
complexes containing Ska in these areas.

The plasmin complex with NAPIr is considered
to have a significant role in the development of
APSGN. Anti-NAPIr antibody levels are found in
92% of the sera from convalescent APSGN patients
and in 60% of the uncomplicated streptococcal in-
fections in Japan. NAPIr is present in early biop-
sies of APSGN. Its role as a nephritogenic factor is
thought to be related to its plasmin-binding capac-
ity, which facilitates immune complex deposition
and inflammation [56, 57, 66, 72]. T. Oda and co-
authors suggest that the plasmin receptor may act as

a nephritogenic factor, as it was found in glomeruli
along with pyrogenic toxin (SpeB) in various cells
such as neutrophils, endothelium, mesangial cells,
and partially in macrophages [72]. However, the
study did not provide any evidence linking these
findings with the progression of APSGN, inflam-
mation, or serological indicators, making it diffi-
cult to determine the initiating role of this factor.
Plasmin, a broad-spectrum serine protease, has the
ability to destroy mesangial tissue in the kidneys.
In a healthy body, plasmin is constantly formed
through the action of urokinase without causing
harm to the kidney tissue, and NAPIr is present in
most individuals. These data suggest the presence
of multiple antigens with nephritogenic potency or
an unknown cause of APSGN. Not all antigens or
antibodies found in renal glomeruli can result in
pathological changes in the organ, especially in its
initiation. It is believed that there is another factor,
aside from the listed nephritogenic factors, that op-
timizes their effect and initiates the lesion.

R.M. MclIntosh and co-authors [73, 74] were
the first to question about the role of GAS interac-
tion with human immunoglobulins in the genesis of
APSGN. They proposed the potential role of anti-
IgG antibodies in this pathology. The study showed
that S. pyogenes neuraminidase causes desialization of
IgG and autologous anti-IgG antibodies. Its deposits
were found in the renal tissue of rabbits infected
with GAS. Analysis revealed that anti-IgG and anti-
IgM autoantibodies were present in most patients
with APSGN in the first week of the disease. It is
important to understand the conditions that cause
a person’s own IgG (or in an experimental animal)
to become an autoantigen. Pathogenic streptococci,
whose M and M-like proteins nonimmune bind IgG,
actively colonize the mucosa of the upper respiratory
tract and form infectious foci involving autologous
anti-IgG antibodies, leading to deposits in the renal
tissue of infected rabbits. The analysis showed that
anti-IgG and anti-IgM autoantibodies were present
in most patients with APSGN in the first week of
the disease.

The pathogenic streptococci, with M and M-like
proteins that no immunologically bind to IgG, ac-
tively colonize the upper respiratory tract and create
infectious foci with a large number of IgG molecules.
A focus of infection with 103 CFU of GAS dur-
ing seeding contains a substantial amount of IgG
molecules associated with bacteria. This allows us
to propose the following hypothetical scenario for
APSGN development. Bound IgG is degraded by the
enzymes GAS-IgG-degrading enzyme (IdeS), endo-
glycosidase (EndoS), and exotoxin B (SpeB), which
cleave the gamma chain of native IgG in the hinge
region of the molecule [75, 76]. This differs from the
papain cleavage site [77, 78]. As a result, IgG frag-
ments are formed and, in addition to the bacterial
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Table 1

Activation of the plasminogen of different species specificity in the presence of streptokinase C and streptokinase isolated
from GAS type M1 (40/58) [71]

e e || B
1 Human plasminogen 10 ug + streptokinase M1(40/58) 0,5112 0,5
2 Human plasminogen 5 ug + streptokinase M1(40/58) 0,3823 0,38
3 Rabbit plasminogen 20 ug + streptokinase M1(40/58) 0,0019 0,002

M1(40/58)
4 Mouse plasminogen 20 ug + streptokinase M1(40/58) 0,001 0
M1(40/58)
5 “Streptase” + human plasminogen 10 ug 0,6947 0,7
6 “Streptase” + rabbit plasminogen 20 ug 0,0115 0,01
7 “Streptase” + mouse plasminogen 20 ug 0,0003 0
8 Human plasminogen 10 ug —0,0015 0
9 Rabbit plasminogen 20 ug —0,0026 0
10 Mouse plasminogen 20 ug —0,0029 0
11 Streptokinase M1 (40/58) 20 ug —0,0046 0
12 “Streptase” 10 ug —0,0052 0

Note: “Streptase” is a commercial streptokinase from group C streptococcus.

Table 2

Summarized an experimental data on the relationship between the types of IgGFcR-proteins and the ability
of the corresponding bacterial species to induce glomerulonephritis [43, 44, 79-82]

Bacteria used for rabbit injection | M-type of GAS or strain | Type of IgGFcR protein MLl o:“rjcr:r?gg;sc\;\:i:ggl;i)trsnssr:z)nephritis/
Streptococcus pyogenes M1 11 13/16
M4 2/2
MI12 17/21
MI15 7/8
M22 17/19
Streptococcus dysgalactie G148 I 2/20
Staphylococcus aureus Cowan I | 0/19

antigens, create a strong autoantigenic stimulus that
triggers the synthesis of antibodies to these fragments
and, essentially, autoantibodies to IgG. This leads to
the formation of high concentrations of autoimmune
complexes of the IgG-anti-IgG type.

The human body must continually remove harm-
ful substances through binding of immune complexes
to the renal basement membrane’s tissue Fc recep-
tors. The accumulation of these complexes trig-
gers complement activation, attracts leukocytes and
phagocytes, and leads to the development of immune
inflammation foci in kidney tissue. This inflamma-
tion creates conditions for the destructive action of
the C5b-C9 membrane-attacking complement com-
plex and the subsequent action of exotoxin B or plas-
min. The hypothesis about the initiation of APSGN
is based on summarized data from our experiments
on rabbits [43, 44, 54, 79-81].

To model glomerulonephritis in rabbits, we ad-
ministered heat-killed cells of GAS types M1, M4,
M15, and M22 that bind to the Fc fragment of
native IgG, as well as type M12 that binds to im-
mune complexes (Table 2). It has been shown that
after binding of IgG by streptococci, antibodies
specific to rabbit and human IgG are produced in
rabbits. The blood of experimental animals showed
the presence of anti-IgG antibodies in titers rang-
ing from 1:80 to 1:640, depending on the time of
sampling and individual characteristics of the rabbits.
Glomeruli showed deposits of IgG and complement
component C3. These deposits were accompanied
by an increase of pro-inflammatory cytokines, such
as IL-13, TNF-a, and IL-6, and infiltration of tis-
sues by lymphocytes/macrophages, eventually lead-
ing to the formation of local immune inflammation,
with subsequent degeneration and destruction of the
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Fig. 1. Immunomorphological changes in cortical and medullary layers of the rabbit kidney, induced by Streptococcus pyogenes
strain emm12 [43]: a — the expression of TNF-a by glomeruli mesangial cells (arrow); b — IgG deposition in the wall of
the proximal tubule (arrow); ¢ — deposition of C3 component of complement in the cells of the distal tubules (arrows); d —
atrophy of the tissues of the renal glomeruli, the abundance of red blood cells in the cavity. a—¢ — immunohistochemical

staining, X750; d — staining with hematoxylin-eosin, X550

tissue. The process culminated in the development of
membranous-proliferative glomerulonephritis, with
some variability in the dynamics of morphological
changes in individual rabbits (Fig. 1 and 2).

Our experiments on rabbits confirmed a high
likelihood of developing APSGN according to the
previously discussed hypothesis. They demonstrated
that immune inflammation leads to changes similar
to those observed in human membranous—prolifera-
tive and fibroplastic glomerulonephritis [80]. Strains
that cannot bind to the Fc fragment of IgG, or mu-
tants lacking this trait, did not produce anti-IgG an-
tibodies and lacked “nephritogenicity”. Interestingly,
the M22 strain, which has two M protein genes in
its genome and its mutant clones, which still had
either of the two M proteins, showed nephritoge-
nicity, unlike the double mutant completely lacking
Fcy-receptors. In contrast to commercial Fc-receptor
preparations A and G proteins, administering purified
M?22 type M proteins to rabbits caused experimental
glomerulonephritis in rabbits [44].

It has been demonstrated that the early introduc-
tion of human or rabbit purified Fc fragments of IgG
to experimental animals in the early stages of glo-
merulonephritis development can prevent or reduce
the severity of the disease [82, 83]. The process was
initiated by GAS type M1 (Table 3; Fig. 3). There

are two potential mechanisms for suppressing the

disease in the renal tissue:

a) Fc fragments of IgG interfere with the IgGFc-
binding activity of the injected bacteria, prevent-
ing the formation of autoantigens and reducing
the production of anti-IgG autoantibodies;

b) Fc fragments of IgG block tissue Fcy-receptors,
inhibiting immune inflammation and reducing
the expression of inflammatory mediators.

The ability Fc fragment of IgG to suppress the
development of experimental glomerulonephritis in
rats was first reported by C. Gomes-Guerrero and
co-authors [84]. This work had a clear practical ori-
entation and highlights the potential use of prepara-
tions of IgG Fc fragment for preventing APSGN in
GAS-infections. Further research is needed to study
the mechanism behind this effect of Fc fragments
of IgG and to determine if they can compete with
bacterial and tissue Fc receptors.

The results of experiments on the induction of
glomerulonephritis with a recombinant Fcy protein
GAS emml12 were quite interesting. In our experi-
ments, we were able to clone the IgGFc-binding
protein of the genotype emml2 strain in E. coli,
which, when it was injected to rabbits, caused in
the kidneys a process similar to APSGN. This result
is direct proof of the role of streptococcal IgGFc-
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Fig. 2. Membranous-proliferative glomerulonephritis in a rabbit after injection of IgGFc-positive GAS strain of type M1 [81]:
a — thickening of the basement membrane and interposition of mesangium cells, X8000; b — fusion of podocyte and mem-
brane, disintegration of endothelium, X8500; ¢ — interposition of mesangium and degranulation of basophils in capillaries,
%x8000; d — hypertrophy and disintegration of podocytes, endothelium, fragments of cells in vessels, x13500

Table 3

The effect of Fc fragments of IgG on the development of experimental
glomerulonephritis [82, 83]

. Number of rabbits with glomerulonephritis/
GAS strain Fragment of IgG e G e 1]
M1(40/58) IgG Fc human 0/4
IgG Fc rabbit 1/5
IgG Fc isolated from autologous 0/5
rabbit serum
IgG Fab rabbit 4/5
PBS 5/5
ISSN 1608-4101 (Print) Tom Bbinyck MeAVLIMHCKMA QKOAEMNYECKMI XKYPHAA
ISSN 2687-1378 (Online) Volume 23 Issue 2 2023 Medical Academic Journal
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Fig. 3. Morphological changes in cortex and medullar substances of the rabbit renal tissue induced by Strepfococcus pyogenes
of genotype emml [82]: a — the capsular cavities of the glomeruli strongly expanded, in the capillary loops of the glom-
eruli necrosis and atrophy are observed, in the wall of the proximal tubules of the cortex desquamation of epithelial cells
is revealed (shown by arrows); b — swelling and thickening of the membranes of the wall of distal tubules in the medulla
with the simultaneous proliferation of the fibrous interstitial tissue; ¢, d — absence of pathological changes in the cortex and
the medulla of the kidney obtained from rabbits treated with Fc fragments of IgG. Staining with hematoxylin-eosin, %750

Fig. 4. Histological changes detected in rabbit kidney after injection of a recombinant Fcy-protein from the GAS strain
genotype emm12 (our new unpublished data): a — pathologically altered glomeruli are visible in the cortical layer, capsule
cavities are expanded or compressed, necrosis and atrophy in capillary loops, destruction is observed in the proximal tubules;
b — the wall of the tubules is thickened and edematous or atrophic. Epithelial cells of the lumen of the tubules with signs
of necrosis; protein masses are detected; ¢ — lymphocytic infiltrates are detected; they are dominated by small and medium
lymphocytes, immature and mature plasma cells. @, b — staining with hematoxylin-eosin, a — %250, b — %x500; ¢ — im-

munohistochemical staining, X750

binding proteins in the genesis of glomerulonephri-
tis. Morphological changes, which were detected in
the renal tissue of rabbit, are presented in Figure 4.
The immunomorphological picture, using the re-
combinant Fc receptor, was typical of experimental
glomerulonephritis, with altered glomeruli in the
cortical layer and expanded cavities of their cap-
sules. Necrosis, atrophy, and destructive changes
were also observed in capillary loops and proximal
tubules. Connective tissue fields showed growth of
fibrous interstitial stroma tissue around the damaged
tubules. Inflammatory cell infiltrates contained small
and medium-sized lymphocytes, immature and ma-

ture plasma cells, which actively produce immuno-
globulin. Deposits of IgG and complement compo-
nent C3 were detected in the renal glomeruli, and
titers of anti-IgG antibodies in rabbit blood ranged
from 1:80 to 1:640.

Therefore, we were successful in creating an
experimental model of the pathological process re-
sembling membranous-proliferative, fibroplastic glo-
merulonephritis in humans using both GAS strains
positive for IgGFc-binding, and purified Fcy-proteins
derived from them. This provides strong support for
the theory that these proteins and the accompany-
ing immunological changes play a role in initiating
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PSGN. At present, we do not have concrete evi-
dence to clearly explain the antigenic transformation
of bound IgG due to interaction with streptococcal
Fcy-binding proteins, only the possibility of a con-
formational transformation of IgG molecules bound
to streptococci.

The pathogenesis of rheumatic fever and rheu-
matic heart disease (ARF/RHD) is not fully under-
stood. Some authors believe that the similarity be-
tween S. pyogenes antigens and host proteins triggers
the autoimmune process in the process of strepto-
coccal infection [4, 85—87]. Studies have shown that
molecular mimicry of streptococcal antigens gener-
ates antibodies that cross-react with GAS antigens
and host tissue proteins, including cardiac myosin,
collagens IV, tropomyosin, laminin, vimentin and
keratin [85]. The possibility of the existence and in-
volvement of cross-reacting antigens (PR-antigens)
in this pathology should not be in doubt from
a theoretical standpoint, since evolution could have
selected and preserved homologous amino acid se-
quences of bacterial proteins in mammalian proteins.
The question remains whether “mimicry” could be
the initial cause of damage to a specific organ. If
PR-antigens could independently initiate tissue dam-
age without external involvement, then antimicrobial
immune sera and immune sera to the corresponding
microbe antigens could simulate pathology in experi-
mental animal organs. However, such a possibility
is not proven today.

Rheumatic fever and rheumocarditis are human-
specific diseases that are complications of strep-
tococcal infections, so determining the pathoge-
netically significant links of this pathology requires
solving the difficult task of selecting a “reliable”
animal model [45, 86, 88—90]. Animal models in-
cluding cattle, sheep, pigs, dogs, cats, guinea pigs,
rats and mice have been repeatedly used to repro-
duce autoimmune and inflammatory reactions of
the ARF/RHD type. Some rodent models have
significantly contributed to a better understanding
of the fundamental mechanisms of myocarditis and
valvulitis that developed under the influence of bio-
logically active GAS products. For example, when
Lewis rats [86, 89] were injected with streptococ-
cal antigens, the development of myocarditis and
valvulitis with infiltration of tissue by mononuclear
leukocytes was detected, which is a pattern similar
to that found in ARF/RHD in humans [90]. At the
same time, the production of antibodies cross re-
acting with cardiac tissue proteins was observed.
The authors consider this model reliable for study-
ing the mechanisms leading to myocardial and heart
valve pathology, but emphasize that “comparing ex-
perimental results with clinical observations to ex-
trapolate the sequential events following infection
with GAS leading to autoimmune complications
requires caution and prudence” [86].

)

In our experiments, we used rabbits to induce
streptococcal myocarditis. We believed that the M and
M-like GAS protein’s IgGFc-binding receptors do
not significant differences in the binding of human or
rabbit IgG [8]. After injecting the rabbits with inacti-
vated M1 GAS bacterial cells, as in the APSGN mod-
el, we found that the IgG and C3 complement com-
ponents had deposited in the sarcolemma, intermiofi-
brillar spaces, edematous interstitial tissue, and on the
basement membrane of capillaries. We also detected
positive staining of activated monocytes/macrophages
for 1L-6, IL-1b, and TNF-a in the same rabbits.

The changes in the rabbit’s myocardium were
characterized by pronounced destructive-degen-
erative changes in the sarcoplasm and myofibrils.
In particular, there was a partial or complete dis-
integration of the cristae, destruction of the matrix,
and a decrease in glycogen in sarcoplasm with a large
number of hypertrophied mitochondria. The damage,
mitochondrial destruction, and sarcoplasmic edema
were observed in the marginal zones of muscle fibers
near the basement membrane of capillaries, where
signs of myofibril destruction also appeared (Fig. 5).
A pronounced inflammatory reaction was also noted.
The eviction of monocytes from the bloodstream into
the perivascular space’s serous-fibrinous edema zone
was observed in the capillaries of the myocardium.
This was likely due to the activated monocytes/mac-
rophages’ enhanced production of pro-inflammatory
cytokines, which damaged the mitochondria, espe-
cially in the cardiac muscle. The destruction of mito-
chondria also led to the disintegration of myofibrils,
which were located between many myofibrils and
the sarcoplasmic reticulum. The immunomorpho-
logical changes in the myocardium of rabbits in-
jected with Fc-positive GAS IgG can be considered
comparable to rheumatic myocarditis in patients in
terms of destructive changes. Conversely, there was
no myocardial damage when introducing a strain of
GAS negative for Fc-binding IgG [45, 88]. To es-
tablish the role of streptococcal IgG Fc-binding
M and M-like proteins in inducing experimental
myocarditis, we used isogenic mutants of the M22
type GAS, which were defective in either two or
one of the fcr genes responsible for the expression
of Mrp or Emm proteins. In rabbits injected with
the original M22 strain or its isogenic mutants lack-
ing one of the M proteins, we detected IgG and C3
complement deposits in the structural elements of
the cardiac muscles, as well as increased production
of proinflammatory cytokines IL-1f3, I1L-6, TNF-q,
and the destructive-degenerative changes described
above. However, none of the rabbits that received
injections of the double mutant M22, lacking both
M proteins, displayed deposits or destructive changes
characteristic of myocarditis [45]. These experiments
confirmed the role of streptococcal IgGFc-binding
M and M-like proteins in initiating myocarditis in
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Fig. 5. Morphological changes (shown by arrows) in the myocardium of the rabbit after injection of Streptococcus pyogenes
type M1, binding the Fc fragment of human or rabbit IgG [45]: a—c — the destruction of mitochondria and myofibrils
(TEM Xx16000, 16000 and 24000, respectively); d — the morphology of the normal rabbit myocardium, which received

injection of control IgG Fc-negative strain (TEM X16000)

rabbits. The same proteins were also responsible for
the development of experimental glomerulonephritis
in previous experiments. Although myocarditis and
glomerulonephritis are different complications of
GAS infection caused by various M types, our results
suggest that there is a common link in their genesis,
which is realized through the ability of these pro-
teins to induce an autoimmune response, leading to
immune inflammation and tissue damage in organs.

IgA-nephropathy

IgA-nephropathy (IgAN) is the most prevalent
form of primary glomerulonephritis and is often
a leading cause of chronic renal failure, requiring
dialysis or transplantation for 30—50% of patients

[91-93]. The diagnosis of this disease is established
by the presence of IgAl subclass immunoglobu-
lin A deposits in the mesangial cells of renal glom-
eruli [91, 94, 95]. It is believed that the pathogenesis
of IgAN is linked to the synthesis and accumulation
of insufficiently galactosylated and sialylated IgAl
molecules in the blood of affected patients [91].
These molecules form dimeric or polymeric IgAl
complexes, as well as IgAl-containing immune
complexes with anti-glycan IgG antibodies [96, 97].
The deposit of these complexes in the mesangium
serves as a trigger for inflammation and the devel-
opment of IgAN [97]. The course of IgAN can be
both chronic with periods of remission [95], and in-
fluenced by factors such as a gluten-free diet [98].
IgAN can arise as a primary disease [96, 99] or as
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a result of immune system dysregulation in mucous
membranes [100]. The etiology of IgAN includes
factors such as viral and bacterial infections, with
a notable role assigned to GAS infections [101, 102].
Each of these factors contributes to the development
of IgAN in its own way. For instance, galactose-
deficient forms of IgAl in the presence of M4 and
M60 S. pyogenes 1gAFc-binding infections interact
more strongly with the Arp M-like protein (or Enn)
IgAFc receptors, forming IgAl-IgAFca complexes
that deposit in the glomeruli and result in mesan-
gial proliferative IgAN [103, 104]. The IgAFc re-
ceptor can be either Emm proteins, expressed in
most emm genotypes of GAS, that bind both IgA
[8, 34] and IgG, or Arp proteins, expressed in GAS
of emm genotypes 4 and 60, that mainly bind IgA
and weakly bind IgG. Thus, the pathogenesis of
IgAN involves various IgA-containing complexes,
including “pathogenic” IgAl dimers and polymers
with anti-glycan IgG antibodies, and IgA complexes
with Fca protein of GAS.

The contribution of IgA1l and its interactions with
IgG antibodies to the initiation of IgAN needs to be
further understood, as it is known that these factors
can cause glomerular damage, including in the pres-
ence of streptococcal infections. Our experiments us-
ing a strain of type M60, which primarily binds to

o)

the Fc fragment of human IgA, have demonstrated
its high IgA-nephritogenic potential [105]. In these
investigations, animals displayed an inflammatory
response characterized by pronounced lymphocytic
infiltration of affected nephron structures, deposits of
IgA and C3 complement components in the mesan-
gium of the glomeruli (Fig. 6), and increased produc-
tion of the proinflammatory cytokine TNF-a [105].
Lesion rates varied significantly, likely due to indi-
vidual differences in rabbit sensitivity. Japanese re-
searchers also noted similar findings when modeling
IgAN in mice [106]. No deposit of IgG was observed
in rabbits, likely because of the presence of com-
plexes of IgA with the Fca-receptor protein GAS
type M60. This supports the conclusion of Swedish
researchers who found the Fcoa protein Arp in bi-
opsies from patients with IgA-nephropathy [103].
The presence of IgA-containing complexes in me-
sangial cells of glomeruli is a reliable indicator of
IgAN caused by GAS [104], so the researchers ap-
pear to have successfully created a “rabbit” model
of IgAN using an IgAFc-binding strain of GAS.
Modern concepts differentiate between two forms
of IgAN, one characterized by deposits of IgA with
anti-IgA antibodies of the IgG class, and another
marked by complexes based on IgAFc-receptor pro-
teins of GAS [103]. These differences may determine

Fig. 6. Immunomorphological changes in the cortical and medullary substances of the rabbit kidney induced by Streptococ-
cus pyogenes type M60 [105]: a, b — deposits of IgA in the mesangial cells of the renal glomeruli (arrows); ¢ — deposition
of C3-complement components in the cells of the tubules (arrows) of the medullary layer of the kidney; d — deposits of
C3 component complement in the cells of the proximal tubules (arrows) surrounding the renal glomerulus in the cortical
substance. Immunohistochemical staining, X750
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the mechanism of complex deposition on glomeru-
lar structures. In the first form, deposit may occur
through Fc receptors of the tissue [107], while in
the second form, the Fca-binding Arp protein GAS
serves as an intermediary [104]. It remains unclear if
the deposits in renal glomeruli contain defective IgA,
which would further align the proposed model with
human IgA-nephropathy. It should be noted that only
humans and primates have IgAl, so modeling IgAN
in rabbits will always involve only IgA and the pres-
ence of abnormal IgA in experimental animals can-
not be ruled out due to dysbiosis and impaired mu-
cosal immunity. There have been prior experiments
in rodents that have replicated true IgAN symptoms,
such as the synthesis of galactose-deficient IgA and
its deposit in the mesangium, as well as characteristic
glomerular lesions. Examples include IgAN models
in rats [108], including one using the parainfluenza
virus [109]. Effective models of IgAN have been cre-
ated in mice, where the process was determined by
the synthesis of galactose-defective IgA [110, 111].
Researchers have demonstrated the mechanisms of
formation of IgA-containing complexes and their de-
position in the mesangium using this mouse model.
Abnormal IgA, soluble CD89 protein, transferrin re-
ceptor, and transglutaminase enzyme are involved
in these reactions [112, 113]. Works examining the
pathology of the lymphoid tissue of the pharynx and
larynx in humans [114, 115] also found the pres-
ence of defective IgAl not only in serum, but also
in tonsillar lymphocytes. The analysis of extensive
data suggests that kidney pathology caused by GAS
infections can be studied in animal models com-
parable to human APSGN and IgAN. The former
is initiated by Fcy-receptor M proteins, while the
latter is initiated by Fca-receptor GAS proteins.

APSGN typically proceeds as a membranous-
proliferative process, resulting from the deposition of
immune complexes in renal capsule glomeruli, while
the mesangial-proliferative process is characteristic
of IgAN, due to the deposition of Fca-binding pro-
tein in mesangial cells of glomeruli. These findings
highlight the importance of considering the nonim-
mune binding of immunoglobulins G and A in the
complications of streptococcal infections, even for
different pathological processes.

Conclusions

Group A streptococci of various M types are ca-
pable of nonimmune binding to human and some
mammal’s IgG, IgA, and immune complexes.
Studying this phenomenon in S. pyogenes is of great
scientific interest for understanding the pathogenic
properties of this pathogen and the pathogenesis of
autoimmune consequences of streptococcal infec-
tion. To achieve this, modeling these processes in
rabbits is the most suitable method, as it has several

advantages. Unlike mouse IgG, rabbit IgG has the
ability to bind to M and M-like proteins, albeit to
a lesser extent than human IgG. Since GAS infec-
tions are only limited to the human population, it
is not possible to study autoimmune complications
such as streptococcal glomerulonephritis or myocar-
ditis in no immunized rabbits. Furthermore, rabbits
lack autoantibodies to their own immunoglobulins,
making it an ideal background for immunomorpho-
logical studies of streptococcal pathology. The initia-
tion factors of pathology are crucial, as they lead to
the search for therapeutic and preventive measures,
especially in cases where the cause is unknown or
disputed. The conditions or factors that trigger the
transition from infection to a complication should be
considered as initiation factors, and the effectiveness
of therapeutic and preventive measures can serve as
a criterion for the study’s effectiveness. In the case
of GAS, the immunoglobulin-binding function of
M proteins and the use of IgG preparations and their
Fc fragments to prevent the transition from infection
to a complication deserve attention. Further study is
needed to understand the phenomenon of nonim-
mune binding and specific aspects of the problem,
such as the mechanisms of induction of glomeru-
lonephritis or myocarditis by recombinant M and
M-like proteins of S. pyogenes and the pathogenesis
of streptococcal IgA-nephropathy, to evaluate the
role of GAS’s immunoglobulin Fc-binding proteins
in the development of these complications.
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