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The aim of the review is to analyze the causes and pathophysiological mechanisms of sperm alteration accom-
panying the development of male infertility, the sequence of the development of their dysfunctions in individuals of
different ages. Male infertility is a worldwide problem; up to 20% of married couples are childless. In the Russian
Federation, the problem is even more acute, which complicates the unfavorable demographic situation. Based on
the generalization of the results of various screening studies, from 30 to 50% of men in the Russian Federation have
impaired fertility. The review examines the main classifications and pathophysiological mechanisms of the development
of male infertility. An extended assessment of changes in the morphology and functional properties of spermatozoa,
relevant for the practice of in vitro fertilization, was carried out. The mechanisms of damage to spermatozoa and
the sequence of development of degenerative changes in the cell are considered in detail. The mechanisms of sperm
dysfunction development in men of different ages are compared. The conclusion is made about the need for further
studies of the molecular mechanisms of fertility, deciphering the entire set of interactions between molecules and
cells involved in the implementation of the reproduction function.

Keywords: male infertility; spermatozoa; pathophysiological mechanisms; reactive oxygen species; autoantibodies;
in vitro fertilization; age-related changes.

NATOPUINOAOTUMECKME N BO3PACTHBIE MEXAHU3MBbI

MOP®ODYHKLIMOHAABHBIX U3MEHEHUIA CMEPMATO3OUAOB MPU BECNTAOAUNA
A.A. AoueHko, A.B. lNonesLmkos

DdenepanbHOe rocyIapcTBEHHOE OIOMKETHOE HAaydHOe yupekaeHue «HCTUTYT 3KCIepUMEHTATbHOIM MEIMIIMHBI»,
Cankr-IleTepOypr

[na umtnposanua: HoueHko A.A., Moneswmnkos A.B. Maton3nonornyeckne n BO3pacTHbIe MeXaHn3Mbl MOPOMYHKLUMOHANHBIX U3Me-
HeHWiA cnepmarto3ompoB npu Gecnnoauy // MegnumHckuiA akagemuyeckuii xypHan. — 2020. — T. 20. — N° 4. — C. 17-26. https://doi.
0rg/10.17816/MAJ58099

Moctynuna: 09.11.2020 OnoGpeHa: 07.12.2020 Mpunara: 17.12.2020

Ilenpio 0630pa ObLI aHAIM3 IMPUYMH U IMATO(DU3MOJOIMUYECKUX MEXAHM3MOB ajbTepalliy CIIEPMATO30MIOB, CO-
MPOBOXIAIOIINX Pa3BUTUE MYKCKOTO OECILIOAMSI, MOCIEeA0BATEIbHOCTY Pa3BUTHUS UX (DYHKIIMOHAJIBHBIX OUCHYHK-
LIMIA y JIMI pa3HbIX BO3pacToB. MyxkcKoe Oecruioue MpeAcTaBiIseT BCeMUPHYIO Ipodiemy, mo 20 % ceMeWHBIX I1ap
ABISOTCS Oe3neTHBIMU. B Poccuiickoit @eaepauny mpobdjieMa HOCUT ellie 0ojice OCTPBIN XapakTep, YTO OCJIOXHSIET
HeOJIaroNpusATHYIO TeMorpacdudeckyto cutyamnuoo. Mcxonsa u3 o000IIeHHBIX pe3yJbTaTOB Pa3INYHbIX CKPUHUHTOBBIX
uccienoBanuii, ot 30 1o 50% myxuuH B P® nmeloT HapylleHHy0 (hepTHIbHOCTh. B 0630pe paccMOTpeHbl OCHOBHBIE
KJaccu(puKauuu 1M MaTopU3NOJIOTMIEeCKNE MEXaHU3Mbl Pa3BUTHS MYKCKoro Gecrutogus. IIpoBeneHa paciumpeHHas
OLIEHKA M3MEHEHU MOP(OI0oru 1 (YHKIMOHAIBHBIX CBOMCTB CIIEPMATO30MIOB, aKTyaJbHbBIX IS IMPAKTHKU IIPH-
MEHEHMSI DKCTPaKOPIIOPaIbHOIrO OILIon0TBOpeHus . I[1oapoGHO pa3o6GpaHbl MeXaHU3MbI MOBPEXIEHUS CIIEPMATO30M-
JIOB Y MOCJIENOBATEIbHOCTh Pa3BUTUS JeTeHEPATUBHBIX U3MEeHEHUI B KileTKe. CoMmocTaBeHbl MEXaHU3MbI Pa3BUTHS
IUCHYHKIMU CIIEPMATO30MAOB Y MYKYUH pa3HBIX Bo3pacToB. ChenaH BBIBOI O HEOOXOOUMOCTH NTaIbHEUIITNX MCCIe-
MOBaHUI MOJIEKYJISIPHBIX MEXaHM3MOB (DepTUILHOCTH, PacCIIM(GpPOBKU BCEH COBOKYIHOCTU B3aMMONEHCTBUI MEXIY
MOJIEKYJIAaMU M KJIETKAMM, BOBJICYCHHBIMU B peaiM3alnio (yHKIIUKM BOCIIPOM3BOACTBA.

KiroueBbie cJI0Ba: MYXCKOE GeCIIONNE; CIIEPMATO30MIBI; TATOMU3NOIOTUIECKIE MEXAHU3MBI; aKTUBHBIE (DOPMBI
KHUCIIOpO/Ia; ayTOaHTUTeNa; SKCTPAKOPIOPAIbHOE OIUIOMOTBOPEHNE; BO3PACTHBIE M3MEHEHMSI.

Problem of male infertility: General analysis
use contraception [1]. This problem has a world-
According to the WHO definition, infertility is wide character, up to 20% of married couples suf-
the absence of pregnancy in a woman for 1 year fer from childlessness, while half of the cases of
or more in a sexually active couple which does not infertility are male infertility [1, 2]. In the Russian
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AMH — anti-Miillerian hormone; IL — interleukin; IVF — in vitro fertilization; ROS — reactive oxygen species; TGF — transforming
growth factor; TNF — tumor necrosis factor; WHO — World Health Organization.
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Federation, the problem is even more acute, which
complicates the already unfavorable demographic
situation. Based on the generalization of the results
of screening studies, from 30 to 50% of men in the
Russian Federation have impaired fertility, which
reflects the increasing impact of psycho-emotional
stress, adverse environmental, industrial and do-
mestic factors [3, 4].

There is no common classification of male in-
fertility. More often than others, etiological fac-
tors, pathogenetic mechanisms of formation, topo-
logical level of damage, and methods of treatment
are considered as the basis for classifying forms
of male infertility [5]. Another approach involves
the separation of male infertility, secretory infer-
tility (associated with impaired spermatogenesis as
a result of hormonal disorders of the central and
peripheral levels) and excretory infertility (a conse-
quence of diseases associated with impaired ejacu-
late excretion) [4].

The main etiological factors of male infertility
are considered varicocele, urogenital infections,
immunological factors, congenital malformations,
external physical and chemical factors, as well as
sexual dysfunctions, endocrine and idiopathic dis-
orders. Idiopathic disorders are understood as de-
viations of unknown origin that do not fall under
the other specified factors. Over the years, idio-
pathic disorders can manifest themselves in the
pathophysiological mechanisms of male infertility
based on one or more of these factors [6]. It is
noteworthy that the proportion of etiological fac-
tors differs significantly in Russia and abroad. So,
in Europe, idiopathic disorders are leading (more
than 75% of cases of male infertility), followed by
varicocele (12%), urogenital infections (up to 7%),
and immunological and external unfavorable fac-
tors account for about 3% of cases. In Russia,
idiopathic disorders are also confidently leading,
although their level (38%) is 2 times less than in
Europe, while urogenital infections hold second
place, their contribution to the development of
infertility is estimated at 32%. This is followed by
varicocele (27.5%), immunological factors (17.5%),
congenital malformations and unfavorable external
factors (about 7% in both cases). The contribution
of sexual dysfunctions and endocrine disorders to
the development of male infertility in Russia is esti-
mated at 0.5 and 2.5%, respectively [7, 8]. There is
no consensus among russian experts regarding the
significance of certain etiological factors of male
infertility. According to V.A. Bozhedomov and
co-authors the share of immunological factors is
estimated to be 17.5% [7], comparing with only
2.5% in the works of V.N. Shirshov, repeating the
data for Europe [8].

Idiopathic disorders leading to the development
of male infertility are the most common cause

of the disease both in Russia and in the world,
however, it is this group of disorders that is very
difficult to study due to the unclear genesis and
complex nature of this pathology. The problem of
urogenital infections as a cause of prostatitis de-
serves an additional study and is beyond the aim
of this work. This problem is still far from being
solved [9]. The problem of varicocele involving sur-
gical treatment and the associated pathophysiologi-
cal changes in the testis and maturing spermatozoa
also deserves a separate review.

Among other etiological factors of male infer-
tility, obesity is most often mentioned, the typi-
cal consequence of which is erectile dysfunction
[10—12]. The key link in the pathogenesis of vas-
culogenic erectile dysfunction and obesity is dys-
function of the vascular endothelium. Other links
between obesity and erectile dysfunction include
high levels of free fatty acids and adipokines in
the blood, severity of systemic inflammation, oxi-
dative stress, and insulin resistance. In the case
of endothelial dysfunction, a decrease in the pro-
duction of nitric oxide NO causes a disturbance
in the reactivity of vascular smooth muscles [13].
Obesity is often associated with changes in the level
of sex hormones, while the exact mechanisms of
the pathogenesis of hypogonadism in obesity are
complex and are not fully understood [12].

Chronic obesity reduces testosterone produc-
tion by Leydig cells and leads to their destruction,
which is the result of an increase in TNFa pro-
duction and macrophage activity. Obesity decreases
intra-testicular testosterone levels due to leptin
which suppress the expression of the cytochrome
p450 gene involved in testosterone synthesis [14].
All this affects the spermogram parameters, mor-
phology and functional state of sperm [15, 16].

The aim of the review is to analyze the causes
and pathophysiological mechanisms of sperm alter-
ations accompanying the development of male in-
fertility, the sequence of development of functional
sperm dysfunctions in persons of different ages.

Pathophysiological mechanisms of sperm alteration

To analyze the causes and pathophysiological
mechanisms of sperm alteration during male in-
fertility, it is reasonably to divide its causes into
secretory and excretory [4, 9]. A separate group is
made up of genetically determined malformations,
associated with point mutations or chromosomal
aberrations which lead to abnormalities in the
structure of the reproductive organs and various se-
vere deviations in the process of spermatogenesis in
both secretory and excretory forms. Further analy-
sis concerns the secretory form of male infertility.

The secretory form of infertility is associated
with insufficient testis tissue and can be congeni-
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tal or acquired caused by insufficiency of the go-
nads [17]. The general factor in the development
of the secretory form of male infertility is a viola-
tion of the integrity of the blood-testicular barrier,
which always leads to tissue alteration, damage to
gametes at different stages of development, chronic
inflammation and autoimmune damage to gametes
and testes [18]. All of these causes are accompa-
nied by violations of the integrity of the blood-
testicular barrier due to chronic inflammation and
accumulation of reactive oxygen species (ROS) in
the testicular tissues [12, 19, 20]. Varicocele also
leads to a violation of the blood-testicular barrier
integrity, the trophism of cells of the seminiferous
tubules and vascular endothelium [21]. Obesity
also is accompanished to venous congestion and
the accumulation of peroxide radicals (ROS and
lipid peroxidation products) [22—24].

Pathological increased permeability of the
blood-testicular barrier is a feature of infectious and
non-infectious prostatitis [9]. In the presence of
viral or bacterial (gonococcal and non-gonococcal)
pathogens, the permeability of the blood-testicular
barrier increases due to a weakening of cell con-
tacts between vascular endothelial cells under the
action of proinflammatory cytokines (IL-1, IL-6,
IL-8, TNF) [25]. ROS production is an integral
feature of acute inflammation in the prostate and
gonads [26, 27]. The result of the chronization of
the process is the replacement of the prostatic glan-
dular tissue with fibrous connective tissue. It sharp-
ly impairs the sperm quality and complicates its
evacuation. The same process takes place in sterile
(stagnant) prostatitis, when massive death of sper-
matozoa leads to migration of neutrophils into the
prostate and a further increase in local production
of ROS [28]. The result again is an increase in the
permeability of the blood-testicular barrier, damage
to gametes and the infertility formation [29]. These
studies also provide a basis for the search for new
methods of pharmacological correction of ROS
levels [30].

Alteration of tissues, acute and chronic inflam-
mation, activation of phagocytes become stages of
an autoimmune attack of sperm and testicles. This
existence of autoimmune reactions was raised after
attributing these structures as the barrier organs for
the immune system and autoimmune orchitis was
described [31]. This trend of research has become
one of the most popular directions in the study of
the mechanisms of male infertility in recent years.
Now materials of high-level studies prove all stages
of the development of autoimmune reactions di-
rected to spermatozoa and gonads from processing
and presentation of autoantigens to the formation
of autoantibodies [32, 33].

According to the Gell and Coombs classifi-
cation these developing autoimmune conditions

)

can be attributed to type II and III allergic re-
actions [34]. In the course of type II reactions,
formed antisperm antibodies belong to the IgG
and IgA classes, but IgG autoantibodies have an
important diagnostic value [33]. In this regard, the
results of some authors, which emphasize the role
of antisperm IgA antibodies in the development of
pathology, require critical analysis [35]. Probably
the ability to bind to spermatozoa is possessed by
autoantibodies of both classes, which significantly
affect the mobility of gametes and lead to their
agglutination. However, IgA antibodies are unable
to activate the classic complement cascade, so their
damaging effect will not be critical. Moreover, in
the acidic environment of the vagina and uterus
during fertilization, a significant part of the im-
mune complexes disintegrate. On the contrary,
IgG-antibodies are able not only to bind to autoan-
tigens, but also to activate the classical complement
pathway as well as trigger neutrophil degranulation
and type III allergic reactions after the large im-
mune complexes formation.

The pathogenetic role of IgA localized on sperm
membranes requires further research. The problem
is the lack of data on the sites of the urogenital
duct, where IgA binds to spermatozoa. The role
of IgA in autoimmune reactions has not yet been
described in principle [36]. On the contrary, in re-
cent years the development of autoimmune patho-
logies has been associated with IgA deficiency [37].
The appearance of IgA on sperm membranes may
be a consequence of its binding to herpetic de-
terminants in the course of viral neutralization.
Moreover, it is important to evaluate the molecu-
lar form in which IgA is found on the surface of
the sperm. If this is serum monomeric IgA form,
then its level can be considered as a criterion for
the destruction of the blood-testicular barrier, and
the binding itself can occur directly in the testis
or in the epididymis. If bound IgA has dimeric
or tetrameric form, then this will indirectly indi-
cate its transport through the monolayer glandular
epithelium of the prostate and other glands. Only
glandular epithelium is capable of dimerizing IgA,
supplying it with a secretory component and trans-
porting it to the surface. In this case, the most
likely that IgA bind to spermatozoa in the urethra
during it passes through the prostate gland.

The appearance of anti-sperm IgG-antibodies is
a univocal consequence of chronic inflammation,
since no epithelium has a special system for IgG
transporting to the surface. Therefore, the release
of IgG on the surface of the epithelium into the
lumen of the canal is the result of weakening of
the isolating contacts between epithelial cells un-
der the action of inflammatory cytokines and ROS.
The binding of IgG to sperm can occur in the sem-
iniferous tubules in autoimmune orchitis, in the
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epididymis under epididymitis, or in the urethra
in the case of prostatitis. In any case the question
of the pathogenetic role of IgA and IgG in male
infertility requires further research.

The appearance of IgG on the spermatozoa
membrane and the immune complex formation
leads to the neutrophil activation and degranula-
tion and a new round of ROS production, which
is accompanied by further tissue damage. This has
been shown in the framework of numerous clinical
and experimental studies [38, 39].

The binding of autoantibodies to the spermato-
zoa can inhibit the acrosome reaction completely
block its fertilizing ability [40]. Therefore, the
assessment of the A23187-induced acrosome re-
action was one of the first points of using flow
cytometry in the study of sperm alteration in in-
fertility [41, 42].

Changes in the morphology and functional
characteristics of spermatozoa in infertility

A decrease in the concentration of sperm and
their total number in the ejaculate is considered
an important sign of male infertility. The Russian
norm is based on the WHO indicators [1], amoun-
ting to at least 15x 10° spermatozoa in 1 ml of
semen (with lower values — oligozoospermia)
with a total number of cells in the ejaculate equal
to 39 x 10°. Meanwhile, the British and American
criteria for the norm are much stricter: a concen-
tration equal to 13.5 % 10° spermatozoa in 1 ml is
already interpreted as infertility and a firm con-
clusion about male fertility is made when the cell
concentration is over 48x10° spermatozoa per
1 ml. This is more than 3 times higher than the
WHO standards [43]. Other British experts urge
to completely abandon the numerical norms of
concentration and total sperm count, completely
moving on to assessing the functional properties
of the material [44].

The pathogenetic factors have a significant im-
pact on the morphology of male gametes, which is
revealed by the analysis of traditional spermogram.
Normally, at least 4% of cells in the ejaculate have
the classical morphology (a smaller proportion is
called teratozoospermia). As a rule, the patient with
infertility has two or all three morphological signs
of it (oligozoospermia, asthenozoospermia and
teratozoospermia) [8].

The influence of pathogenetic factors extends
not only to the shape of the spermatozoa, but
also to the structure of its nucleus, the density
of chromatin packing, the state of the acrosome,
the composition of membrane lipids and the state
of the cell’s recognition apparatus. The most de-
tailed descriptions of the consequences of exposure
to ROS, various viruses and autoantibodies.

The influence of oxidative stress is associated
with a decrease in the reserve of catalase, glu-
tathione peroxidase, glutathione-S-transferase,
NO-synthase and superoxide dismutase under the
action of ROS. These enzymes play an impor-
tant role in spermatogenesis, and their deficiency
critically affects the density of chromatin packing
and protection of DNA from damage [45]. In the
epididymis spermatozoa contain a non-compact
DNA, which makes them inert [46]. Under the
influence of hydrogen peroxide the oxidation of
nuclear proteins occurs, which ensures the densi-
fication of DNA [47, 48]. Low concentrations of
hydrogen peroxide also cause tyrosine phosphoryla-
tion, which increases the area on the sperm mem-
brane where the sperm binds to the oocyte [49, 50].
There is also evidence that the presence of hydro-
gen peroxide is necessary for the acrosomal reac-
tion to proceed, although the mechanism of the
influence of H,0,, HO5, and O; is not completely
clear [51]. Simultaneously the results confirm the
danger of ROS high concentrations exposure to
maturing and mature spermatozoa. ROS disrupt
the work of mitochondria and reduce the energy
reserve of the cell, which leads to a decrease in
motility, as well as disrupt the acrosome func-
tion and reduce the ability of sperm to penetrate.
ROS can also cause oxidative damage to DNA [19].

Studies have confirmed the significant effect of
herpes and papilloma viruses on sperm motility.
Based on ejaculate analysis of 71 infertile patients
aged 22 to 44 years with the papilloma virus, it was
shown that among the variants of pathozoosper-
mia, asthenozoospermia was most often detected
(56% of cases). Asthenoteratozoospermia (21%)
and oligoasthenoteratozoospermia (16%) were less
common. Oligoasthenozoospermia had the lowest
frequency (6%). In most cases pathozoospermia was
combined with papillomavirus types 16, 18, 33 [25].
Similar results were obtained in infertile patients
infected with herpes viruses types 1-7 [52, 53].

Finally, ROS have a significant effect on the
density of chromatin packing and the level of
apoptosis of spermatozoa. Based on the exami-
nation of 433 infertile and 35 fertile men, it was
shown that the activation of free radical processes
and the imbalance of pro- and antioxidant sys-
tems play a leading role in the pathogenesis of
male immune infertility. There is a direct rela-
tionship between ROS synthesis, the percentage
of IgG*-spermatozoa and apoptotic gametes with
DNA fragmentation [39]. Moreover, infertility is
caused not only by the initiation of DNA fragmen-
tation, but also by ROS-induced changes in the
histone/protamine ratio in the chromatin structure
which leads to an increased risk of developing fetal
abnormalities and miscarriage [54, 55]. There are
also results of clinical observations indicating the
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modification of the sperm membrane and its re-
cognition apparatus under the action of ROS [56].

The literature contains data on the sequence
of sperm alteration leading to the male infertility.
The first event indicating a decrease in sperm fer-
tility is a change in glycocalyx structure associated
with decreasing of membrane charge. The second
event is the destruction of the chromatin as well as
decreasing in the mitochondrial potential. Finally,
the destruction of the chromatin and a decrease in
ATP production are accompanied by a decrease in
intracellular transport and inhibition of acrosome
function, sharply weakening the sperm ability to
penetrate. Of these factors, the mitochondrial po-
tential is the most reversible and widely variable at
the stage of early apoptosis. The rest of the indica-
tors vary within very narrow limits, which indicates
the irreversibility of the changes [57].

Age-related changes in the structure
and propetties of spermatozoa

Literature data unanimously confirm the obvi-
ous fact of age-related decline in male fertility [58].
However, there are two aspects of age-related de-
crease in male fertility: the first is associated with the
analysis of the age-related dynamics of spermogram
indices, and the other — with the physiological
and pathophysiological interpretation of these data.

Analysis of age-related changes in spermo-
gram. Very important results for the analysis of
the age-related aspect of male fertility are given in
Ibishev et al. [25]. Based on the analysis of a large
cohort of patients the authors indicate that the pro-
portion of patients under 24 years old is only 1.4%,
24-26 years old — 9.9%, 26-28 years old — 26.8%,
28-30 years old — 9.9%, 30-32 years old — 12.7%,
32-34 years old — 11.3%, 34-36 years old — 5.6%,
36-40 years old — 7.0%, 40-42 years old — 11.3%,
over 42 years — 4.2%. Apparently, this age dis-
tribution is associated with a whole complex of
socio-psychological reasons, the analysis of which
is not the purpose of this review. However, it
should be borne in mind that after 24 years, pa-
tients begin to realize the need to seek medical
help in connection with problems in the repro-
ductive sphere. Of no less interest are the data on
the number of spermatozoa and their motility in
patients: in 56% of cases, asthenozoospermia was
revealed, in 21% of cases — asthenoteratozoosper-
mia, in 17% — oligoasthenoteratozoospermia, and
in 6% of cases — oligoasthenozoospermia. The ef-
fect of various papilloma viruses on the number of
sperm in ejaculate, the percentage of mobile forms
and the percentage of morphologically normal cells
was also assessed. There was a significant corre-
lation between the sperm motility and the num-
ber of types of papilloma viruses detected in the

patient, although with a low degree of conjugation
(r=-0,267 at p <0,05) [25].

Age-related changes in standard spermogram
indices were first published back in 1950-1953 by
J. McLeod and R. Gold in a series of 7 papers de-
voted to different indicators of semen analysis in
men with infertility [59]. They proved a twofold
decrease in the intensity of sexual activity in fertile
men after 30 years, a decrease in ejaculate volume,
absolute and sperm count, as well as their mobility.
In men with infertility, these changes were more
pronounced.

In subsequent years, the level and accuracy of
research increased significantly, although the meth-
odological differences require certain clarifications
when comparing the results of the 1970s-1980s
with modern data [60, 61]. The results of studies
of fertile men 21-50 years old indicate that the
minimum ejaculate volume was observed before
25 years (about 3.4 ml) and after 46 years (about
3.2 ml). The sperm concentration was minimal up
to 25 years (about 97 X 10° in 1 ml), increased to
100-106 x 10° after 26 years of life and remained
at this level up to 46-50 years. Moreover, in men
after 40 years, there was a slight decrease in sperm
motility and the proportion of cells with normal
morphology [61]. In the same years, a morpho-
logical analysis of material after testicular biopsy
in men 21-50 and 51-80 years old was carried
out [62], which showed age-related extinction of
the functions of the testes, which was expressed in
a decrease in the mass of the organ, the volume and
area of the spermatic cord, and a reduction in the
area of interstitial tissue while replacing glandular
tissue with fibrous connective tissue.

Recent studies have expanded the age interval
of the surveyed population and gave an opportu-
nity to compile a more accurate picture of age-
related changes. On the basis of 25-year studies
of a cohort of men (1023 people) with 5-year in-
tervals, the age-related dynamics of indicators in
the same individuals was traced [63]. It was found
that the volume of ejaculate began to decrease af-
ter 46 years (which is confirmed by the data by
Schwartz et al. [61]), but only after 55 years it
decreased by 2 times from the indicators of the
same men before 30 years. The concentration of
spermatozoa in the ejaculate remains stable in the
age range of 30-50 years, but decreases by 20-25%
(to 42x10°%) after 55 years with a large scatter of
data. It is important to pay attention to a significant
decrease in the concentration of spermatozoa in the
ejaculate by 2008 compared to the late 70s — ear-
ly 80s, as indicated by many authors [5, 8]. Sperm
motility begins to decline after the age of 46, and
this process continues smoothly until the age of
55 or more. Finally, the proportion of morphologi-
cally normal forms turned out to be a very stable
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individual indicator, which slightly decreased (from
6.0 to 5.0% of morphologically normal forms) over
25 years of observation [63].

Mechanisms of age-related changes in sper-
matozoa. The list of reasons of age-related changes
in sperm is quite similar with features of inferti-
lity indicated above. It includes long-term exposure
to ROS, leading to DNA damage and the forma-
tion of numerous mutations in germ and somatic
cells, aging of chromosomes associated with short-
ening of telomere regions [64, 65], chronic (mainly
viral) infections [25], age-related decrease testos-
terone production [66, 67], metabolic disorders
associated with diabetes and obesity [12, 68], as
well as numerous concomitant pathologies, includ-
ing diseases of the cardiovascular system [69, 70].

However, some of the possible causes of age-
related changes in the morphology and functional
properties of sperm cells mentioned in the literature
require additional analysis. Cellular aging can man-
ifest itself at several levels. By-products gradually
accumulate in senescent cells, as a result of which
the level of activity of all physiological systems
gradually decreases. This is what V.M. Dilman,
putting forward the accumulation component of
the aging process [68]. Mitochondrial changes are
some of the most notable features of senescent cells,
and several theories place mitochondria at the cen-
ter of aging as an example of long-term ROS cell
and tissue damage, although alternative theories ex-
ist [71]. However, oxidative stress is not associated
with mitochondrial aging only. The level of energy
metabolism, changes in mitochondrial DNA, and
mitochondrial testosterone production are no less
significant. The age-related decrease in mitochon-
drial functions is sometimes associated with the ac-
cumulation of many toxic factors in the mitochon-
dria of all cells, including spermatozoa. With age,
this process can lead to a significant decrease in
their energy function. Particular emphasis is placed
on the decisive importance of sperm mitochondria
for male reproductive function, so mitochondria
can be a link between aging and loss of fertility [72].

A new approach links age-related decline in
sperm quality with depletion of spermatogenic
epithelial cells, which is also affected by all of the
above damaging factors [73]. This hypothesis leads
to a completely new treatment for male infertility
associated with the transdifferentiation of the pa-
tient’s somatic cells into induced pluripotent stem
cells. Initially, this method was developed to obtain
mesenchymal stem cells capable of providing the
renewal of fibroblastic cells. However, it must be
taken into account that the rudiments of future
germ cells are very early isolated from other main
directions of embryonic development. The solution
of the proposed problem is tantamount to dedif-
ferentiation of somatic cells to the stages of primary

ecto- and endoderm. Therefore, despite the large
amount of research in this area, the assigned tasks
are still very far from being solved.

The study of anti-Miillerian hormone (AMH),
a glycoprotein belonging to the family of trans-
forming growth factor (TGF), showed some pos-
sibilities of its application for treatment of age-
related disorders of the male reproductive system.
AMH plays a fundamental role in the regression of
the Miillerian ducts in the male embryo. In boys,
it is largely produced in the Sertoli cells until pu-
berty, and then slowly decreases to residual values
throughout the rest of the life of men. Sertoli cells
produce AMH throughout their life not only into
the blood, but also into the seminal plasma [74].
It is assumed that AMH can lengthen the activity
of the germinal epithelium, which leads to a pos-
sible cooperation of this method and the method of
renewal of the germinal epithelium due to inducible
human stem cells [75].

Age and epigenetic changes. Epigenetic
changes in spermatozoa can be an important bridge
between many mechanisms of the male inferti-
lity formation, including age-related changes [76].
Auvailable data suggest that there are very clear pat-
terns of aging in the sperm epigenome that can
be directly detected in DNA methylation patterns.
Importantly, these alterations are so consistent
that a predictive model has been successfully gene-
rated to predict an individual’s age based only on
sperm DNA methylation signatures. DNA methyla-
tion plays an important role in the development of
negative changes in the genome, since it is associ-
ated with variations in the promoter regions [77].
Methylation marks at cytosine residues, typically
found at cytosine phosphate guanine dinucleo-
tides (CpGs), and have been shown to be capable
of transcription regulation based on the presence
or absence of this mark [78]. The link between hy-
permethylation of the MTHFR, PAXS, NTF3,
SFN, HRAS, JHM2DA, IGF2, H19, RASGRF1,
GTL2, PLAGI, DIRAS3, MEST, KCNQI1, LITI1
and SNRPN genes with low sperm fertility and
male infertility has been proven [79]. In addition to
DNA methylation, sperm fertility can also be influ-
enced by the modification of histones [80], changes
in the chromatin structure [81], and the expression
of noncoding RNA [82]. It is significant that the
negative consequences of epigenomic changes for
male health may be the result of exposure through-
out life from the embryonic period to old age [83].
The same epigenomic changes are associated with
exposure to adverse environmental factors at any
period of life [84]. However, all these changes are
reversible; therefore, one of the main research goals
in this area is to assess the age of a man and/or
a combination of factors, after which these changes
become irreversible and lead to male infertility [76].
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All the age-related changes in spermatozoa in-
evitably affect their fertilizing ability [85]. However,
changes in the modern lifestyle, an increase in the
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