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Despite the huge amount of accumulated data, the study of the main mechanisms of interaction between pro-
teins and epigenetic mechanisms in health and various pathologies remains one of the most important problems of
molecular biology. The search for various endogenous and exogenous factors affecting the epigenome of eukaryotes
continues to be relevant. Lactoferrin is the second most abundant milk protein and has proven to be a very promis-
ing anti-inflammatory, antifungal, antibacterial, and anti-cancer agent. This protein can act as a transcription factor
regulating the expression of some genes. However, little attention has been paid to the use of lactoferrin as an epi-
genetic modulating factor. This review demonstrates that lactoferrin can directly and/or indirectly influence epigenetic
mechanisms (DNA methylation, histone modification, chromatin compaction, and microRNA pathways) in different
types of cells, in particular cancer cells.
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HecMoTpst Ha OrpoOMHOE KOJIMYECTBO HAKOIUICHHBIX JAHHBIX, M3y4YEHHE OCOOEHHOCTEN B3aMMOIECHCTBUS MEXIY
OeIKaMy M SMUICHETMYECKUMMU MeXaHM3MaMU B HOPME M IIPU Pa3JIMYHBIX ITaTOJOTUSX OCTaeTCs OMHON M3 BaX-
HEWIIMX 3amad MOJIEKYIsIpHO OGuosornu. IToMcK SHIOTEHHBIX W 3K30T€HHBIX (DaKTOPOB, BIUSIONIMX Ha 3MUTCHOM
3YKapuoT, TO-TIpeKHEMY aKTyajeH. JlakTodeppuH SBISIETCS BTOPBIM IO PacIpPOCTPAHEHHOCTH OEJIKOM MOJIOKA,
KOTOpBII 00JIagaeT MPOTUBOBOCIIAINTEIbHBIMU, IIPOTUBOIPUOKOBBIMU, AHTUOAKTEPUATbHBIMUA U IIPOTUBOPAKOBLIMU
CBOMCTBaMU. DTOT OEJIOK MOXET IeCTBOBATh KaK (DaKTOP TPAHCKPUIILNK, PETYIUPYIOIINIA 9KCIPECCUI0 HEKOTOPHIX
reHoB. OMHAKO MaJlo BHUMaHMSI YOesieTCsl MCIOJIb30BaHMIO JIaKToeppruHa B KadyecTBe (haKTopa, MOMLYIMPYIOIIETO
SMUTEHeTUYeCKre Momudukanmu (MexaHu3Mbl). B maHHOM 00630pe TpeiacTaBlIeHBl AaHHBIC, YKa3bIBalOIIWe Ha TO,
4TO JAaKTO(GEPPUH MOXET IIPSIMO M/MIM KOCBEHHO BIMSTH HA SMUTEHETHIECKUE MeXaHu3Mbl (MeTuupoBanue JTHK,
MoIM(pUKAIIMS TUCTOHOB, KOMITAKTU3aLMsI XpoMaThuHa U MUKpOoPHK-1yTn) B pasnuyHbIX TUITaX KJIETOK, B YACTHOCTHU
B OIYXOJIEBBIX KJIETKaX.

KimioueBbie ciaoBa: jaktopeppuH; merwivpoBanue JHK; MuPHK; xpomarun; snureHeruka; snu-muPHK;
TET-depMeHTHI; pelienTopbl 3CTpOreHa; (pakKTophbl, MHAYLIMPYEeMbIe TUIIOKCHEIA.

Introduction status without modifying the DNA sequence itself.

DNA methylation and post-translational modifica-

In the past decade, epigenetics has been taking tion of histones are the two most studied epigenetic

a central role in explaining the relationships between events. Other potential epigenetic modifications are

behavior, stress exposure, and health. Inherited or those mediated by non-coding RNAs, especially
acquired epigenetic changes affect gene expression microRNAs.

List of abbreviations

DNMT — DNA methyltransferase; Lf — lactoferrin; ALf — delta-lactoferrin; miRNA — micro-RNA; EZH2 — enhancer of zeste 2;
PRC — polycomb-repressive complex; Lfcin B — lactoferricin B; HIF — hypoxia-inducible factor; JMJD2C — jumonji domain containing
protein 2C; TET — ten-eleven translocation enzymes; ER — estrogen receptor.
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DNA methylation involves the addition of
a methyl group to the 5-carbon position of cytosine
bases through the action of a family of DNA methyl-
transferases (DNMT). The cytosine bases are most
susceptible to methylation and are often found in
the cytosine-phosphate-guanine (CpG) dinucleotide
sequences of DNA, referred to as CpG islands [1].
DNA methylation can directly inactivate genes by
preventing the binding of transcriptional machi-
nery or most mammalian transcription factors with
methylated promoter DNA [2]. Methylated CpGs
can also affect nucleosome positioning or stability
and core histone access, thereby modifying access
of transcription factors to promoter regions [1].

Histone post-translational modifications include
acetylation, methylation, phosphorylation, su-
moylation, and ubiquitination. Histone acetylation
and histone methylation are covalent post-trans-
lational modifications by which acetyl or methyl
groups are transferred to amino acids on the histone
tails, altering gene accessibility and therefore expres-
sion by modification of the chromatin structure [3].
Notably, acetylation is associated with an open
chromatin state marking an active region of tran-
scription, whereas methylation can be present both
in actively transcribed and in repressed regions [4].

Non-coding RNAs have an essential role in the
molecular mechanisms of epigenetics. Indeed, sev-
eral micro-RNAs (miRNAs) have an active role
in the epigenetic machinery, creating highly con-
trolled feedback circuits that accurately tune gene
expression. These subgroups of miRNAs, called
“epi-miRNAs”, target specific epigenetic regula-
tors, such as DNA methyltransferases (DNMTs)
and histone deacetylases (HDACs) [3].

Lactoferrin (Lf) belongs to the transferrin (Tf)
family and is a non-heme iron-binding glycopro-
tein with a molecular weight of 78 kDa that con-
tains around 690 amino acid residues [5]. Lf was
firstly identified by Sorensen and Sorensen in 1939
in bovine milk as a red protein in whey [6], and
later in 1960, it was isolated from human milk
by Johansson [7]. Interestingly, Lf from differ-
ent mammalian species has a similar amino acid
sequence. For example, human Lf and bovine Lf
share approximately 68% sequence identity whereas
human and chimpanzee Lf share almost 97% se-
quence identity [8]. This protein is also found in
mucosal secretions, including plasma, saliva, tears,
vaginal fluids, semen, nasal, gastrointestinal fluids,
and urine [9]. Besides its role as an iron trans-
porting protein, lactoferrin also plays a role as an
innate host defense system against infection from
a variety of bacteria, fungi, viruses, and even some
parasites [10]. Additionally, Lf has antioxidant and
anticancer activities [11].

There are two forms of Lf, the iron-free
form (apo-Lf) and the iron-containing form

(holo-Lf) [12]. Lf has also three different isoforms:
Lf-a, Lf-y, and Lf-p. Lf-a is the iron-binding form,
while Lf-y and Lf-B have a ribonuclease activity,
and these two isoforms do not bind iron [13]. Lfis
also able to bind to a wide range of compounds,
including DNA, lipopolysaccharides, heparin, and
many metal ions [14]. Human Lf gene possesses
two promoter regions P1 and P2 [15]. Transcription
from P1 promoter leads to the production of the
secreted Lf and transcription from P2 leads to the
production of delta-Lf (ALf). ALf is an intracellu-
lar protein that acts differently from Lf and shows
anti-proliferative properties and induces cell cycle
arrest. It is an efficient transcription factor interac-
ting via a ALf response element found in the Skp /,
Bax, SelH, and DcpS promoters [16]. Although
the plasma membrane acts as an impermeable bar-
rier to most macromolecules, Lf can reach the cy-
tosol of living cells and then is transported into the
nucleus, where it binds to DNA [17, 18].

In 2014 Verduci et al. [19] suggested that a di-
rect relationship of some components of human
breast milk with epigenetic changes could exist.
Taking into consideration the fact that Lf can be
transported into the nucleus of living cells, it is
reasonable to investigate the effect of Lf on epigen-
etic mechanisms in wide range of many cell types.
Impressively, Lf can directly and/or indirectly af-
fect epigenetic mechanisms in different cell types,
and some of these mechanisms are related to its
effect and role in these cells.

Effect of lactoferrin on chromatin structural
organization

Using small-angle neutron scattering (SANS)
Lebedev et al. [20] studied a possible effect of the
interaction of human Lf with oleic acid complexes
(ChLfOA) in the model system, isolated HelLa nu-
clei. Their results revealed that complexes of Lf with
oleic acid influence chromatin structure following
penetration into nuclei. Accordingly, they reported
that studied complexes caused chromatin compac-
tion (Fig. 1). Chromatin compaction can lead to
a decrease in the expression of genes in compacted
regions, and thus interfere with the functioning of
tumor cells, and can determine the antitumor effect
of Lf. Significantly, they mentioned that the pre-
sence of oleic acid (OA) micelles or OA molecules
is not the main reason of the effect of ChLfOA
complexes on chromatin organization. This can
suggest that Lf is the main cause of this effect.

Effect of lactoferrin on miRNA profile

Considering the importance of epigenetic modi-
fications in the degree of malignancy, Zadvornyi
et al. [21] investigated the effect of recombinant
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Fig. 1. Effect of lactoferrin complexes with oleic acid on chromatin compaction in isolated HeLa nuclei. Lf — lactoferrin;

ChLfOA — human lactoferrin with oleic acid

human Lf on miRNA profile in two human pros-
tate cancer cell lines DU145 and LNCaP. Results
revealed that under the action of exogenous Lf in
both cell lines there was an increase in the expres-
sion of miRNA-155 and miRNA-205. miRNA-155
regulates the synthesis of such pro-inflammatory
cytokines such as IL-1 and IL-6 which lead to
a decrease in the expression of ERa and proges-
terone receptor (PR) [22]. Moreover, estrogen re-
ceptor alpha promotes malignancy and osteoblastic
tumorigenesis in prostate cancer cells [23]. Thus,
inhibition of ERa signaling in prostate cancer cells
may reduce its malignancy. Furthermore, it is im-
portant to mention that physiologically DNMT
activity is under hormonal control, and DNMT]
levels vary with menstrual cycle phase and with
estrogen and progesterone secretion in endometrial
explant tissues [24] (Fig. 2).

a ERa
DNA Histone
DNMTs demethylation modifying
proteins enzymes

Chromatin remodeling
Change in gene
expression level

Liganded estrogen receptor alpha (ERa) with
17B-estradiol promotes DNA methylation, regulates
passive and active DNA demethylation, and co-
operates with different histone modifying enzymes
and chromatin remodeling complexes (Fig. 2, a).
ERa recruits co-repressor proteins such as HDACI
from nucleosome remodeling and deacetylase
(NuRD) complex and EZH2 from the PRC2
complex [25]. At first the HDAC deacetylates the
histone 3’s 27" lysine residue (H3K27), and then
EZH?2 places three methyl groups on H3K27. After
that DNMT3B recognizes the methylated H3K27
and methylates the cytosine in a CpG island that
represents a repressive mark on the DNA [26]
(Fig. 2, b).

Liganded ERoa with 17B-estradiol also blocks
DNMTT1 expression and forms complexes with ac-
tive demethylation proteins such as TET2 [27, 28].
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Fig. 2. Effects of estrogen receptor alpha on epigenetics mechanisms. (a) Estrogen receptor alpha has a regulatory effect
on DNA methyltransferses, DNA demethylation proteins, and histone modifying enzymes, so that estrogen receptor
alpha indirectly could affect chromatin status and genes expression levels. (b) Liganded estrogen receptor alpha-induced
methylation mechanism. Step 1: Liganded estrogen receptor alpha binds to the estrogen responsive element in the DNA.
Step 2: Estrogen receptor alpha recruits polycomb repressive complex 2, histone deacetylase 1, and enhancer of zeste
homolog 2. Step 3: Histone deacetylase removes acetyl groups from the histone 3’s 27" lysine residue, and then EZH2
places three methyl groups on H3K27. Step 4: DNA methyltransferase 3B recognizes the methylated H3K27 and methylates
the cytosine in a CpG island. ERo. — estrogen receptor alpha; DNMT — DNA methyltransferase; HDAC — histone
deacetylase 1; PRC2 — polycomb repressive complex 2; EZH2 — enhancer of zeste homolog 2; H3K27 — histone 3’s
271 lysine residue; AC — acetyl groups; 3Me — three methyl groups
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Fig. 3. Effect of lactoferrin on human prostate cancer cell lines DU145 and LNCaP (based on the results of Reale, Di
Croce, Nuytten, Zadvornyi, Chavali, Liu and their colleagues [29—31, 21, 34, 35]). (@) Recombinant human lactoferrin
causes an increase in the expression of miRNA-155 and miRNA-205 in the DUI145 and LNCaP cell lines. These
miRNAs were involved in the change of epigenetic status of cells. (b)) miR-133a and miR-200b up-regulation after
lactoferrin exposure in DU145 cell line leads to many changes in epigenetic statues. Lf — lactoferrin; ERo — estrogen
receptor alpha; PR — progesterone receptor; DNMT — DNA methyltransferase; PRC2 — polycomb repressive complex 2;

EZH2 — enhancer of zeste homolog 2; HDAC — histone deacetylase

These proteins remove the repressive methyl mark
from the DNA and thereby promote gene expres-
sion. Furthermore, ERa interacts with histone ace-
tyl transferases and with ATP-dependent chromatin
remodelers that alter and regulate gene transcrip-
tion [25].

At the end of 2019 Reale et al. [29] were the first
to report miR-205 as an epi-miR, because there
is evidence of a double inhibitory feedback loop
with enhancer of zeste 2 (EZH2). EZH?2 is a his-
tone methyltransferase — the main component of

the polycomb-repressive complex 2 (PRC2) [30].
PRC?2 is a transcriptional-repressor complex, which
mediates methylation of histone H3 lysine 27
(H3K27) that leads to chromatin compaction [31]
(Fig. 3, a).

Zadvornyi and colleagues [21] also reported that
exogenous Lf increases the levels of miR-133a and
miR-200b only in Lf-treated DU145 cells. Both
miR-133a and miR-200b function as tumor sup-
pressors. miRNA-200b is involved in regulation the
expression of the intercellular adhesion molecule
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E-cadherin, which in turn decreases the invasive
activity of the cells [32], and miRNA-133a is an in-
hibitor of the proliferative activity [33]. Noteworthy,
miR-133a was classified as a candidate as an epi-
miR by Reale and colleagues [29] by mentioning
that miR-133a could be associated with polycomb-
repressive complex 1 (PRC1), polycomb-repres-
sive complex 2 (PRC2), and histone deacetylase
(HDAC) pathways. miR-133a was also reported
to play key role in the regulation of DNMT-1,
DNMT-3A and DNMT-3B in diabetic cardiomyo-
cytes, and so acts as an epi-miRNA [34]. It is also
important to mention that Liu et al. [35] reported
miR-200b as an epi-miR, because miR-200b di-
rectly down regulates DNMT-3A/DNMT-3B and
indirectly down-regulates DNMT-1 by targeting
the transcription factor spl in ovarian cancer cells
(Fig. 3, b).

Effect of lactoferrin on DNA methylation

In addition to Lf effects on chromatin compac-
tion and miRNA profile, human Lf showed the
ability to affect indirectly DNA methylation. For
example, human Lf indirectly affects DNA me-
thylation at a subset of genomic loci by targeting
B-amyloid generation (Fig. 4). This conclusion is
based on a study aimed at investigating the ef-
fect of exogenous human Lf as a neuroprotective
agent in APPswe/PS1dE9 transgenic mice, the
model of Alzheimer’s disease (AD) [36]. APPswe/
PS1dE9 mice are characterized by overexpression
of the Swedish mutation of amyloid precursor pro-
tein (APP) and B-amyloid (AB) accumulation in
the brain [37]. After intranasal administration of
human Lf, stably transfected mouse neuroblasto-
ma 2a (APPsw N2a) cells were isolated from the
brains of APPswe transgenic mice. Results indicat-
ed that human Lf promoted the non-amyloidogenic
metabolism of APP processing through activation
of a-secretase a-disintegrin and metalloprotease10
(ADAM10), resulting in enhanced cleavage of the
a-COOH-terminal fragment of APP and the corre-
sponding elevation of the NH2-terminal APP prod-
uct, soluble APP-a (sAPPa), which consequently
reduced AP generation [36]. Another study revealed
a subset of genomic loci that shows a significant
change in DNA methylation following B-amyloid
treatment [38]. Authors mentioned that these sig-
nificantly changed loci were associated with genes
involved in neuronal differentiation, neurogenesis,
and apoptosis control, which in turn may contrib-
ute epigenetically to AD progression by propagating
neuronal loss of function and death. These results
provide a basis for a possible protective mechanism
of Lfin AD, as Lf has also a protective role against
neurodegeneration in rodents after its intraperito-
neal and nasal administration [39, 40].

/‘\
%)
Currently, the participation of lactoferrin in
cell hypoxia has been established [41, 42]. At the
same time, the role of hypoxia in the regulation
of gene expression and epigenetic mechanisms has
been established [43—46]. Hypoxia-inducible fac-
tors (HIFs) are heterodimeric transcription factors
consist of a and B subunits that activate the trans-
cription of genes necessary to circumvent to hy-
poxic (low oxygen level) environments [47]. Three
o subunits (HIF-1a, HIF-2a, and HIF-3a) and
one B subunit (HIF-1B) have been identified [48].
It is worth mentioning that the participation of Lf
in iron regulation is also mediated via stabilization
of iron-sensitive HIF-1a and HIF-2a, as well as
induces HIF-signaling system in neonate animals
[42, 49].

Luo et al. [43] reported that the histone de-
methylase jumonji domain containing protein 2C
(IMID2C) selectively interacts with HIF-1a and
that HIF-la mediates recruitment of JMJD2C
to the hypoxia response elements of HIF-1 target
genes in breast cancer cells. Furthermore, IMJD2C
decreases trimethylation of histone H3 at lysine 9,
and enhances HIF-1 binding to hypoxia response
elements, thereby activating transcription of
LOXL2 and L1CAM genes, which are involved in
lung metastasis, as well as BNIP3, LDHA, PDK,
and SLC2A1 genes, which encode proteins that are
required for metabolic reprogramming.

Hypoxia in tumor cells can lead to many events
related to the epigenetic status in some specific sites
of the genome (Fig. 4). An interesting study of
Zalutski et al. [41] was performed on hormone re-
ceptor-positive (MCF-7, T47D) and hormone re-
ceptor-negative (MDA-MB-231, MDA-MB-468)
human breast cancer cell lines. Upon treatment
with exogenous Lf, results showed that exogenous
Lf causes a violation of an antioxidant balance
by increasing the level of reactive oxygen species
(ROS), “free” iron, and nitric oxide (NO) gen-
eration rate, resulting in a blocking of cell cycle
at G2/M-phase and apoptosis of malignant cells.
Moreover, Lf treatment caused a decrease in the
content of reduced glutathione [41].

Under hypoxia in human colorectal can-
cer (HCT116, 379.2) cell lines, down regulation
of DNMT1 and DNMT3A was also reported,
which contributes to DNA hypomethylation [44].
In contrast, hypoxia induces promoter CpG meth-
ylation of Protein kinase C gene to decrease its
expression in rat embryonic ventricular myo-
cyte cell lines H9c2 and fetal rat hearts [45].
Furthermore, tumor hypoxia in human and mouse
cells reduces the activity of oxygen-dependent ten-
eleven translocation (TET) enzymes—enzymes
catalyze DNA demethylation through 5-me-
thylcytosine oxidation, and thus hypoxiainduced
loss of TET activity increases hypermethylation of
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Fig. 4. Effect of lactoferrin on DNA methylation in Jurkat-T leukemia cells, neuroblastoma 2a cells, and breast cancer
cell lines. Jurkat-T leukemia cells exposure to lactoferricin B leads to reducing the half-life, expression, and stability of
DNMTI1. Human lactoferrin reduces f-amyloid generation in neuroblastoma 2a cells, which in turn significantly affects
DNA methylation in certain loci. Hypoxia mediated by human lactoferrin exposure in breast cancer cell lines trig-
gers many mechanisms related to epigenetic means (depending on cell/tissue type). Hypoxia down regulates DNMT]1,
DNMT3A and TET enzymes, and which in the end will affect DNA methylation. Hypoxia-inducible factor 1o medi-
ates recruitment of jumonji domain containing protein 2C to the hypoxia response elements of HIF-1 target genes that
decreases trimethylation of histone H3 at lysine 9, and enhances HIF-1 binding to hypoxia response elements, thereby
activating transcription of these genes. DNMT — DNA methyltransferase; TET enzymes — ten-eleven translocation
enzymes (DNA demethylation enzymes); HIF-1oo — hypoxia-inducible factor la; JMJD2C — jumonji domain contain-
ing protein 2C; HRE — hypoxia response element

the promoters of tumor suppressor genes in vi- Conclusion

tro [46].

It should be noted that DNA methylation
seems to be influenced not only by the full-length
form of Lf, but also by lactoferricin B, a fragment
derived from bovine Lf by acid-pepsin hydrolysis
of bovine Lf [50]. Lfcin B consists of 25 amino
acid residues (17 to 41 proximal to the NH2 ter-
minus of bovine Lf) [51]. It has been revealed that
this peptide, leads to a reduction in stability of
DNMT-1, also decreases the half-life of DNMT-1
mRNA and down modulated the expression of
DNMT-1 protein in Jurkat T-leukemia cells
(Fig. 4) [52].

Although practically all cells in an organism
carry the same genetic information, not all genes
are expressed simultaneously by all cell types. In
a broader insight, epigenetic mechanisms medi-
ate the diverse gene expression profiles in diffe-
rent cells and tissues of multicellular organisms.
Epigenetic control of gene expression is a com-
mon process that acts throughout the differentia-
tion of somatic cells, as well as in response to
environmental stresses and cues. Furthermore,
passing on these modulations to the offspring es-
tablishes epigenetic inheritance. Although several
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