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ABSTRACT

It is reported that in the final stage of many diseases the immediate cause of hiological death in humans and warm-
blooded animals is hypoxic irreversible damage to brain cells. This explains the fact that to prevent biological death in
all critical conditions without exception, inhalation with breathing gases containing oxygen has long been successfully
used. This is also why oxygenation of the blood is considered one of the main conditions for preserving human life in all
critical situations and forms the basis of emergency medical care in the intensive care unit. However, inhalation of oxy-
gen gas and increasing blood oxygen saturation should be carried out as early as possible, and more precisely — before
the onset of the stage of hypoxic irreversible damage in brain cells. The fact is that after the onset of irreversible da-
mage brain cells die even in the presence of oxygen. In this connection, the mechanisms of adaptation of the organism
to oxygen deficiency play a great role for longer preservation of brain cells viability and human life in conditions of
hypoxemia. In order to increase resistance to hypoxemia, antihypoxants are traditionally used. But they can preserve the
viability of brain cells not always, but only if they are introduced into the body before the onset of hypoxic irreversible
damage to brain cells and in the case of unused reserves of adaptation to hypoxemia in the body. Risk factors of hypoxic
irreversible damage of brain cells are indicated, among which excessively long duration of hypoxemia and hyperthermia
are emphasized. It is shown that the most important circumstance for the development of hypoxic irreversible damage
of brain cells is not so much the degree of hypoxemia as the degree of hypoxia of brain tissue and its duration, which
exceeds the period of human resistance to hypoxia. It has been shown that human resistance to hypoxia can be assessed
using the Stange test. It has been reported that fever and local cerebral hyperthermia decrease, and hibernation and
local cerebral hypothermia increase, the resistance of brain cells to hypoxia. In this regard, recommendations not only
to eliminate fever and local inflammatory processes in the head, but also recommendations to reduce brain temperature
are highly appropriate to improve resistance to hypoxia. It is pointed out that among the methods of local therapeutic
hypothermia, targeted temperature management is the most advanced. In addition, it is reported that in recent years a
new group of promising antihypoxants — alkaline solutions of hydrogen peroxide — has been created. It is shown that
hydrogen peroxide is able to decompose very quickly into water and oxygen gas under the action of catalase, which is
found in all tissues. The peculiarities of using alkaline solutions of hydrogen peroxide as antihypoxants we all have to
study in the future.
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N'Mnokcuyeckoe HEOGPHTMMOE noBpexkxaeHue KnetTok
roJIOBHOro Mo3ra, acCoLUMpoBaHHbIe C HUM aKTopbl
PUCKa U aHTUTUNOKCAHTbDI

AJ1. Ypakos ', H.A. Ypakosa ', 1.[1. LLlabaHoB 2

! MkeBckas rocynapcTeeHHas MeaMuMHCKan akanemms, Mesck, Poceus;
2 YHCTUTYT 3KCNepuUMeHTanbHoi MeauumHbl, CaHkT-TeTepbypr, Poccus

AHHOTALNA

B dmHanbHoii cTagmm MHorux 6onesHen HenocpeACTBEHHOM MPUUUHON OMONIOMMYECKOW CMEPTU NKOAEH W TEMSIOKPOBHBIX M-
BOTHbIX SIBNSAETCSA MMMNOKCUYECKOe HeobpaTMMoe NOBPEXeHUE KIETOK rOSI0BHOr0 Mo3ra. 3TUM 0bbsACHAETCA TO, YTO ANd Npe-
LO0TBpaLLEeHUs BUOOrMYEcKOi CMepTU NpK BCex De3 MUCKIYEHNUS KPUTUYECKUX COCTOSHUSAX AABHO W YCMELUHO MCMONb3YIoT
WHranaumm ObixaTeNlbHbIMU ra3ami, COLepKallMMmn KUcnopos,. o3ToMy HacblLeHWe KpOBM KUCIIOPOAOM CHATAETCS OfHUM
W3 rNaBHbIX YCIIOBUIA A1 COXPAHEHMUS XU3HW NIIOAEN BO BCEX KPUTUYECKMX CUTYaLMsIX M COCTaBASIET OCHOBY OKa3aHUs He-
OT/IOXKHOW MEeJMLMHCKON NOMOLUM B OTAENEHUM UHTEHCUBHOW Tepanuu. OfHAK0 WHranaumuv rasa KUCI0poAa U YBeNMYeHne
caTypaumm KpoBM KWUCMOPOAOM AOMKHbI ObITb OCYLLECTBEHbI KaK MOXHO paHblUe, @ TOYHee — [0 HacTYMIeHus cTagum
TUMOKCUYECKMX HEOBPaTUMBIX MOBPEXAEHUN B KIETKaX rofloBHOro Mo3ra. [leno B TOM, YTO Moc/e HacTynieHus Heobpatu-
MbIX MOBPEXEHMUI KNETKM Mo3ra norubatoT aaxe B MPUCYTCTBUM Kucnopoga. B cBs3u ¢ 3TMM orpoMHyto ponb ans bonee
LJMTENbHOMO COXpaHEHUS XM3HECNOCOBHOCTM KNETOK FOJIOBHOTO MO3ra M XU3HU Yesl0BEKa B YCI0BUAX TMMOKCEMUM UTpatoT
MexXaHu3Mbl afanTauuu opraHusMa K aeduunty kucnopopa. C uenbio NoBbILEHWS YCTOWUMBOCTM K MMMOKCEMUM TpasuLum-
OHHO WCMOMIb3YIOTCSA aHTUTMMOKCaHTbL. Ho 1 OHM MOTYT COXPaHWTb W3HECNocobHOCTb KIETOK FOI0BHOMO M03ra He BCerfa,
a TONbKO B Cly4ae BBEAEHWS B OPraHW3M [0 HACTYMIEHUs TUMOKCUYECKOro HeobpaTuMOoro NoBpeXAeHNS KIETOK FoI0BHOMO
MO3ra W B C/ly4yae Hanuuusi B OpraHu3Me HEeMCroNib30BaHHbLIX Pe3epBOB afanTaLuu K IMMOKCeMUM. YKasbiBaloTcs hakTo-
Pbl PUCKA MMMOKCUYECKOr0 HEODPATUMOro NOBPEXAEHUS KIETOK FOIOBHOr0 MO3ra, Cpein KOTOpbIX BbIAENAKTCA Ype3MepHO
Bonbluas NpoAoMKUTENBHOCTD TMMOKCEMUM U runepTepMus. B 0630pe nokasaHo, YTO BaXHEMLUMM 0BCTOATENLCTBOM pas-
BMTUS| TMMOKCUYECKMX HEOBPaTUMBIX MOBPEXEHUI KIETOK rofI0BHOMO MO3ra SIB/ISETCA He CTONbKO CTeneHb MMOKCeMUM,
CKOJIbKO CTeneHb MMOKCUM TKaHU FOJIOBHOMO MO3ra W ee MPOACIIKUTENBHOCTb, NPEBbILLAoLLAs N0 AIMTENbHOCTU NepUo
YCTOMYMBOCTM YeNIOBEKA K TUMOKCMU. YCTOMYMBOCTb YeNIOBEKA K TMMOKCMM MOXKET ObiThb OLieHeHa ¢ noMolwbio TecTa LLiTaure.
CoobuaeTcs, YTo IMXOpajKa U JIoKanbHas runepTepMus FOIOBHOMO MO3ra CHIKALOT, a rmbepHaLms 1 NoKanbHas rMnotepMus
rOI0BHOrO MO3ra MOBLILLAKT YCTOAYMBOCTb KIETOK FOSI0BHOTO MO3ra K rMnoKcum. B cBA3u ¢ 3TUM BbICOKO LieNiecoobpasHbiMum
ANS NOBLILLEHUS YCTOWYMBOCTU K MMMOKCUM SIBMIAKOTCA PEKOMEHAALMM He TOMbKO MO YCTPAHEHMIO JIMXOPAZKM U NOKabHBIX
BOCMaNUTENbHBIX NPOLECCOB B rOJI0BE, HO M PEKOMEHALMM MO YMEHBLLEHMIO TeMNepaTypsl ronoBHOro Mosra. Cpeaum MeTo-
A0B JIOKaJbHOW TepaneBTUYECKON TMNOTePMUM Hanbosiee COBEPLLEHHBIM MOXHO CYMTaTb LieNleHanpaBieHHOe perynupoBaHue
TeMneparypbl. KpoMe 3toro, B nocnegHue rofbl bbia co3aaHa HoBas rpynna nepcrnekTUBHBIX aHTUIUMOKCAHTOB — LLeoY-
Hble pacTBOpbI NepeKucK BoAopoaa. [okasaHo, YTo nepekuch BOAOPOAA CMOCOBHa 04eHb BbICTPO pasnaraTbcs Ha BoLy M ras
KUC/IOPOA MoJ, IeNCTBUEM KaTanasbl, KOTopasi HaXOAMTCA BO BCex TKaHAX. OCODEHHOCTU MCMOb30BaHUA LLENIOYHbIX PacTBo-
POB NMepeKMCU BOLOPOAA B POSIM aHTUIMMOKCAHTOB HaM BCEM MPELCTOUT eLLle U3Yy4nTb B ByayLLeM.

KnioueBble cfioBa: rMMNoKCUs; UHTEHCUBHOCTb aapo6Hor0 mMeTabonmaMa; BpeMmsA; TeMneparypa; KMCiopon; aHTUrMNoKCaHTbl;
Bronoruyeckan CMepTb; afanTauna.
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BACKGROUND

Researchers seeking solutions to the biomedical prob-
lems associated with oxygen deprivation make extensive
use of the terms “hypoxia” and “hypoxemia”, attempting to
define by these terms the body conditions under discussion,
implying but not specifying the likely hypoxic cellular damage
to organs and tissues, including the brain [1-3]. Moreover,
these terms are sometimes applied without emphasis on the
differences underlying the concepts they define. Analysis of
reports shows that the term “hypoxia” is more common and
is usually used to refer to a condition of the body with de-
creased oxygen in the blood and a high likelihood of tissue
hypoxia, including decreased oxygen in the brain and even
impaired brain function, but without brain cell death [4-6].
Less commonly, the term “hypoxemia” is used, which usu-
ally refers to a condition of the body with reduced oxygen
in the blood, but without tissue hypoxia or hypoxic irrevers-
ible damage to brain cells [7-10]. The depth of hypoxemia
is usually taken into account in all cases (as a rule, in the
form of specific values of blood oxygen saturation), which is
sometimes accidentally (due to ignorance) substituted by the
concept of “hypoxia depth”, and, as a rule, is not associated
with the dynamics of hypoxic damage of brain cells.

In other words, the current practice in the field of bio-
medical research shows that researchers record blood ox-
ygen saturation and control its dynamics, using the terms
“hypoxia” and “hypoxemia” to characterize the lack of oxy-
gen in the body, but ignore the dynamics of hypoxic damage
to brain cells. In our opinion, the latter is explained by the
absence of a diagnostic tool that provides control of brain
resistance to hypoxia. The lack of clarity about risk factors of
hypoxic irreversible brain cells damage may also contribute
to this.

HYPOXEMIA, BRAIN TISSUE HYPOXIA,
HYPOXIC IRREVERSIBLE BRAIN
CELLS DAMAGE AND OXYGEN AS

AN ANTIHYPOXANT No. 1

It has been reported that in the final stages of many dis-
eases, hypoxic irreversible brain cell damage is the immedi-
ate cause of biological death in humans and warm-blooded
animals [11-14]. That is why doctors all over the world have
long and successfully used oxygen gas and/or breathing gas-
es containing oxygen to prevent biological death in all critical
conditions without exception. Oxygen is the No. 1 for keeping
patients alive before, during clinical reset and even for some
time afterwards. Therefore, oxygenation of the blood is con-
sidered one of the main conditions for keeping people alive
in all critical situations and forms the basis of emergency
medical care in the ICU [15, 16].

In emergency medical care, gaseous oxygen is ad-
ministered to patients primarily by natural means, namely
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inhalation [17, 18]. Most often, inhalation of breathing gases
is quite sufficient to fully supply the brain with oxygen. It has
been found that inhalation of gaseous oxygen can provide
rapid delivery of oxygen to brain cells in cases where the
injected oxygen quickly reaches the alveoli, from where it
immediately penetrates into the blood, which immediately
penetrates into the erythrocytes, immediately interacts within
them with the protein hemoglobin, exchanges in it for carbon
dioxide, converts carbohemoglobin into oxyhemoglobin, as a
result of which red blood cells with oxyhemoglobin success-
fully convert venous blood into arterial blood, which quickly
flows from the lungs towards the head and in a few seconds
reaches the brain [19].

In other words, in norm, continuous inhalation of oxygen
into the respiratory system preserves the viability of brain
cells if the blood continuously supplied to the human brain
is not simply called arterial blood, but is actually enriched
(saturated) with oxygen.

It is shown that in normal blood oxygen saturation in
adults is 94-99%. In cases when the value of arterial blood
saturation in people is less than 90%, a diagnosis of hypoxia,
or more precisely, hypoxemia is made [20-22]. At the same
time, it has been reported that the value of partial pressure
of oxygen in blood does not always correlate with the oxygen
content in tissues of different parts of the body [23]. The point
is that different organs and tissues are differently supplied
with arterial blood and use oxygen differently both in norm
and pathology. In particular, in norm at normal body tem-
perature the brain tissue of warm-blooded animals and hu-
mans is the leader in the intensity of blood supply and oxygen
utilization in aerobic metabolism compared to other tissues
of the body [24]. Therefore, with a sudden decrease in oxygen
supply to the blood through the lungs, oxygen reserves in
different organs and tissues are consumed at different rates
and in different time intervals. In particular, at cessation of
oxygen supply to the blood, oxygen reserves are consumed
at the highest rate and for the shortest period of time in the
brain tissue [25].

It has been shown that blood oxygen content in adults
begins to decrease after a few seconds during apnea, an at-
tack of laryngospasm, bronchospasm, and asphyxia by wa-
ter, blood, sputum, mucus, and/or purulent masses, or by
inhalation of a gas mixture devoid of oxygen gas [26, 27].
Moreover, in all cases after sudden cessation of oxy-
gen supply to the blood of healthy people at normal body
temperature, people remain alive and healthy not only for
several seconds, but even for several minutes of hypox-
emia. This indicates that the organism of a healthy person
is ready for successful survival in conditions of short-term
cessation of oxygen supply to his organism (in particu-
lar, through the lungs into the blood), first of all, precisely
due to the resistance of brain cells to its hypoxia. On the
other hand, timely oxygen supply to the blood eliminates
hypoxemia and the danger of hypoxic irreversible damage
to brain cells.
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RESISTANCE OF BRAIN
CELLS TO HYPOXIA AS

A RISK FACTOR FOR HYPOXIC
IRREVERSIBLE BRAIN CELLS
DAMAGE

Preservation of life and health of people for sev-
eral minutes after complete cessation of oxygen supply
to the blood of their organism would be impossible if the
organism did not have a reserve of some amount of oxy-
gen and a mechanism of adaptive redistribution of arte-
rial blood with oxygen between parts of the body in favor
of the brain. In sum, these factors of preservation of brain
life in conditions of sudden cessation of respiration can be
named as reserves of adaptation to hypoxia or resistance
to hypoxia [27].

The duration of voluntary apnea can serve as an inte-
gral indicator of the value of human resistance to sudden
acute hypoxia. This was first reported in 1914 by Vladimir
A. Stange, a Russian physician from Petrograd, a graduate of
the Imperial Medical and Surgical Academy [28]. He showed
that only those people who have a higher tolerance to hy-
poxia endure longer periods of apnea. Since that time, the
method of assessing a person’s resistance to hypoxia, con-
ducted by recording the duration of breath-holding against
a background of deep inhalation, is known as the Stange
test [29].

Consequently, a sudden cessation of oxygen supply to
the blood is quickly manifested by a decrease in the val-
ues of its oxygen saturation, i.e. hypoxemia. Indeed, after
the cessation of oxygen supply to the blood, it gradually be-
gins to lose its oxygen, but not because it consumes it itself,
but because its oxygen is continuously taken by all organs
and tissues of the body to ensure its aerobic metabolism.
The brain uses oxygen particularly intensively. In cases where
the oxygen content in the blood drops below 90%, it is as-
sumed that hypoxemia has occurred. Moreover, a lower value
of oxygen content in the blood indicates a deeper hypoxemia
[9-12].

Deepening hypoxemia reduces oxygen delivery to all
organs and tissues, but almost all of them have a much
larger reserve of adaptation to oxygen deficiency than brain
tissue. Moreover, it is not the significance of low oxygen
content in blood and/or brain tissue, but the short duration
of apnea that indicates a person’s low resistance to sud-
den hypoxemia, or more precisely, to acute hypoxia of his
brain tissue. Therefore, not so much hypoxemia (decreased
blood oxygen saturation) and even not so much brain hy-
poxia as such, i. e. decrease of oxygen content in brain tis-
sue, but rather the duration of hypoxia of brain tissue ex-
ceeding the period of human resistance to hypoxia are the
most important risk factors of hypoxic irreversible dam-
age of brain cells and biological death of a person [11, 12,
26, 291.
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DURATION OF TISSUE
HYPOXIA AS A RISK

FACTOR FOR HYPOXIC
IRREVERSIBLE BRAIN CELLS
DAMAGE

Low blood oxygen levels, indicative of hypoxemia, are not
the only risk factor for hypoxic irreversible brain cell damage
[30]. The point is that different people with different states
of their organism may have different adaptation reserves to
hypoxemia and possibilities of survival in critical states [28].
It has been shown that different people can tolerate differ-
ent durations of hypoxemia or periods of apnea. This has
been easily detected for 110 years by the Stange test with
breath-holding at maximum inspiration. It has been found
that people’s higher tolerance to hypoxemia provides them
with longer apneas and vice versa.

Consequently, the most important risk factor for hypoxic
brain cell damage is the time factor, namely, the duration of
hypoxemia and/or intrathecal cerebral hypoxia and whether
this time period corresponds to the maximum allowable du-
ration of the safe period of cerebral hypoxia.

It has been reported that the significance of the temporal
risk factor for the development of hypoxic brain cell damage
and human biological death is shown by the following data.
It has been shown that local hypothermia (local cooling of
the brain) can reduce the intensity of oxygen consumption
by its cells due to inhibition of the intensity of aerobic me-
tabolism [31-33]. Therefore, local cooling of the brain during
its hypoxia (or ischemia) can reduce the intensity of oxygen
consumption in the brain, which, in turn, in some cases may
even increase the oxygen content of brain tissue due to the
delivery of oxygen with the blood flowing to it [34-36].

On this basis, it might seem that the high oxygen con-
tent of cooled brain tissue indicates that the threat of hy-
poxic damage to brain cells has been eliminated in the brain.
However, this is not entirely true. The matter is that accurate
prognosis is impossible without taking into account such a
risk factor of hypoxic brain damage as duration of its tissue
hypoxia before the beginning of cooling and correspondence
of the period of brain hypoxia to the duration of the maxi-
mum permissible period of preservation of brain cells vi-
ability under hypoxia conditions at normothermia. The point
is that without taking this factor into account, the brain can
be cooled both before the onset of tissue hypoxia and at the
very beginning of hypoxia, and after the development of ir-
reversible hypoxic damage of brain cells. In other words,
without taking into account the time factor, the brain can be
cooled both in time, i. e. in the absence of hypoxic irreversible
damage of brain cells, and with a delay, i. e. after the brain
cells permanently lose their viability due to the moment of
irreversible hypoxic damage development in them. Therefore,
increasing the oxygen content in the cooled brain tissue in
the first case will increase brain resistance to hypoxia and
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prolong the period of preservation of viability under subse-
quent hypoxia, while in the second case it will not, since hy-
poxic damage to the cells irreversibly killed them before the
onset of cooling. Moreover, it is possible that in the second
case the increase of oxygen content in the brain may intensify
destructive processes in brain cells with the participation of
additionally supplied oxygen, since oxygen can be used by
metabolism of dying cells in the process of their self-damage
[11, 25].

Consequently, low values of oxygen concentration in ar-
terial blood and in brain tissue at any given time interval do
not unequivocally indicate the viability and/or nature of hy-
poxic damage to brain cells.

It has been shown that hypoxia is most often associated
with relatively low (usually <2%) oxygen content compared to
normal oxygen content in an organ, tissue, or cell type [25].
However, it has also been reported that this is not sufficient
to issue a specific conclusion about the danger of hypoxia for
cell viability. The fact is that the brain and its cells have vari-
able oxygen reserves (reserves) and other mechanisms of
adaptation to oxygen deficiency, the importance of which for
cell viability under hypoxia varies depending on the changing
role of a number of risk factors for hypoxic damage of brain
cells [25, 37]. Therefore, because of the body's different re-
sistance to hypoxia and the different role of risk factors, an
equal degree of cerebral hypoxia may have different signifi-
cance for brain cell viability not only in different individuals,
but also in the same individual at different time intervals, un-
der different health conditions, and in different environments.

It has been shown that hypoxia of brain tissue can induce
a number of adaptive mechanisms in the body aimed at in-
creasing the resistance of brain cells to oxygen deficiency
[38]. It has been reported that the complex of adaptation
changes includes mechanisms of blood circulation redistri-
bution in favor of the brain and mechanisms of energy saving
of the whole organism by minimizing the functional activ-
ity of its skeletal muscles [39]. It was found that in cases
when brain resistance to hypoxia allows preserving the vi-
ability of brain cells until the end of the hypoxia episode, the
mentioned adaptive changes in the organism cease to occur
[40]. In this case, brain cells remain fully viable. On the other
hand, in cases when the reserves of adaptation to hypoxia
are exhausted before the period of brain hypoxia ends, hy-
poxic damage may develop in brain cells [41].

The temporal risk factor has been reported to be impor-
tant not only for adults but also for fetuses within the womb.
It has been shown that fetal resistance to intrauterine hy-
poxia is also manifested by the duration of the period of its
adaptation to hypoxia. It has been found that this period can
be determined by recording the duration of fetal immobility
during apnea in pregnant women. This method of assess-
ing fetal reserves to intrauterine hypoxia was developed by
studying the dynamics of motor activity of fetuses inside the
uterus during arbitrary apnea in pregnant women and com-
paring it with the dynamics of motor activity of aquarium
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fish in a small volume of water after hermetic closure of
the container with them and cessation of air intake [42-44].
It was found that under conditions of sudden cessation of air
supply to the pregnant woman’s body and to the water with
fish, healthy fetuses and fish behave almost identically: at
the beginning of the period of beginning oxygen deficiency,
they adopt a motionless state, the duration of which is the
longer, the greater their reserves of adaptation to hypoxia.
Then, having exhausted their adaptation reserves to hypoxia,
fish and fetuses suddenly activate their motor activity and
respiratory movements of the rib and/or gill arches occur.
It has been reported that the duration of fetal immobility dur-
ing apnea in pregnant women correlates with the magnitude
of fetal reserves to intrauterine hypoxia, i. e., fetal resistance
to hypoxia [29, 37, 39, 42, 43, 45].

TEMPERATURE AS A RISK FACTOR
FOR HYPOXIC IRREVERSIBLE BRAIN
CELLS DAMAGE

It is not a secret that body temperature is an important
factor in human life activity, as the change in temperature
of organs and tissues changes the intensity of all chemi-
cal, biochemical and biophysical processes occurring in
them without exception [46]. The general orientation and
expression of temperature dependence of metabolic bases
of vital activity can be illustrated by the law of Arrhenius,
which states that increasing the temperature of the interac-
tion medium by 10°C increases the rate of chemical reac-
tions on average by 2 times, i.e. by 100% [47]. This means
that changing the temperature of a part of the human body
by 1°C changes the rate of metabolic processes in it by an
average of 10%.

It is believed that normal human body temperature is
usually between 36.5 and 37.5°C (97.7-99.5°F) [48]. How-
ever, the actual value of body temperature varies cyclically
throughout the day up to an average of 1.0°C, and this cyclical
change in temperature is called a circadian rhythm [49, 50].
It has been shown that the body temperature of people
around 40 years of age drops to its lowest values usually
at 4 a.m. and rises to its highest values in the afternoon,
namely between 4 p.m. and 6 p.m. (assuming the person is
awake during the day and sleeping at night) [51]. In addition,
regardless of the cyclical daily changes in total body tem-
perature, local temperature in different parts of the body in
humans can be influenced by several factors. In particular, it
is influenced by external temperature influences, inflamma-
tory processes and changes in blood supply to body parts.
Thus, inflammation is accompanied by hyperthermia, and
ischemia — local hypothermia. In addition, the total body
temperature in the elderly decreases with increasing age
[52, 53].

Taking into account the above information, it can be con-
cluded that, all other things being equal, the intensity of vital
activity and metabolism in the human body in the evening is
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on average 10% higher than in the early morning. Therefore,
the outcome of commensurate episodes of acute cerebral
hypoxia, which occurred in a person in the early morning
and in the evening, may be sadder in the evening than in the
early morning.

At the same time, the physical cooling of the entire hu-
man body is hindered by the body’s system for maintaining
temperature homeostasis. Thanks to this system, the hu-
man body begins to produce heat more intensively to pre-
vent cooling and maintain a normal body temperature [54].
However, the body stimulates its metabolism for increased
heat production. It is shown that cold is a stress factor for
humans, which activates oxidative processes in mitochon-
dria [55]. Therefore, attempts to trivialize cooling of the
whole person may increase the rate of oxygen consump-
tion in the body to combat hypothermia, thereby reduc-
ing the person’s oxygen reserves and resistance to acute
hypoxia.

Therefore, localized cooling of the head is more appropri-
ate than whole body cooling to increase brain resistance to
hypoxia [56, 57]. To date, several methods have been devel-
oped for the treatment of cerebral hypoxia using localized
therapeutic hypothermia, of which the most advanced is tar-
geted temperature management [58, 59]. In particular, brain
cooling through nasal cavity lavage with cold breathing gas
has been shown to be possible [60-62].

It has been reported that the protective effect of local
therapeutic hypothermia on the brain is analogous to hi-
bernation, a physiological phenomenon observed in warm-
blooded animals going into winter hibernation [63]. In par-
ticular, using the Arctic gopher as an example, it was shown
that during winter hibernation this animal develops natural
general hypothermia (hibernation), which increases its resis-
tance to ischemic/hypoxic damage. It has also been reported
that hibernation plays a universal protector role to protect the
organism of warm-blooded animals not only from hypoxia
but also from many other damaging factors [64—66]. Local-
ized head hypothermia has been reported to have a good pro-
tective effect. In particular, local therapeutic hypothermia of
the brain has been shown to be an effective way to increase
the resistance of brain cells to hypoxic damage [67-70].
In addition, localized cooling of the brain is a universal way to
preserve brain viability in damaging factors such as mechani-
cal head trauma, cerebral hemorrhage in stroke, and sudden
cardiac arrest [31, 71-73].

At the same time, it has been shown that hyperthermia
may accompany inflammation of the brain, cerebral mem-
branes, and skull bones in brain injury and therefore may re-
duce the brain’s resistance to hypoxia. Because hyperthermia
reduces the brain’s resistance to hypoxia, fever prophylaxis
has been proposed as a therapeutic tool to limit neuronal
damage [71, 74].

Thus, local cerebral hyperthermia decreases and local
cerebral hypothermia increases the resistance of brain cells
to hypoxic irreversible damage.
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ANTIHYPOXANTS

Our review of the literature has shown that the cause of
hypoxic irreversible damage to brain cells is the high inten-
sity of brain tissue metabolism, which is not provided with
the “necessary” amount of oxygen. It is the ongoing metabo-
lism in the cells, deprived of the normal amount of oxygen,
that damages these cells [29, 37, 43, 44]. Analysis of this
information allows us to conclude that under conditions of
brain isolation from the body, brain cell death under oxygen
deficiency can be prevented by timely increase of oxygen de-
livery to cells and/or inhibition of metabolism in cells to a
level that will come in line with the existing reduced oxygen
content. The former task can be successfully accomplished
by oxygenation of brain tissue, and the latter task can be suc-
cessfully accomplished by localized hypothermia of the brain.

However, the brain is not normally isolated from the
human body. Therefore, in the human body it is possible to
prevent hypoxic irreversible damage to brain cells not only
by inhalation of oxygen and cooling of the head, but also by
increasing the resistance of the whole organism to hypoxia.
This can be achieved by redistributing blood supply in favor
of the brain, saving energy costs by relaxing skeletal muscles
and making the body immobile, as well as by timely introduc-
tion of antihypoxants into the body [75, 76]. Such antihypo-
xants include dibunol, sodium oxybutyrate, oliphene, epofen,
emoxipin, mexidol, mafusol, reamberine and some others.
It is believed that the mechanism of action of these drugs
lies in their ability to effectively protect the entire body from
hypoxic damage. It is true that known antihypoxants are only
effective if the body has a good resistance to hypoxia [75].
In addition, these antihypoxants are not used to preserve the
viability of isolated organs and tissues during their preser-
vation, despite the fact that the preservation of organs and
tissues is carried out under conditions of oxygen deficiency,
i. e. hypoxia. Doubt in the ability of the listed antihypoxants
to preserve the life of biological objects under hypoxia condi-
tions is strengthened also because, on the one hand, hypoxia
is a lack of oxygen, and on the other hand, modern anti-
hypoxants are neither oxygen nor its substitutes, but salts
deprived of oxygen.

New hopes for effective drug-induced prevention of hy-
poxic irreversible brain cell damage are provided by reports
that an alkaline hydrogen peroxide solution can be used as
an antihypoxant [77-79]. The fact is that the main ingredient
of this antihypoxant is hydrogen peroxide, which is able to
decompose very quickly into water and oxygen gas under
the action of the enzyme catalase located in all tissues. It has
been shown that a large arsenal of alkaline hydrogen perox-
ide solutions has been created [80, 81]. These include drugs
for inhalation and intrapulmonary injection, for administration
into the stomach, for injection into the blood, and for injection
directly into tissues requiring oxygen.

The prospects for the use of alkaline solutions of hydro-
gen peroxide are still to be explored by all of us in the future.




SCIENTIFIC REVIEWS

CONCLUSIONS

Thus, the immediate cause of biological death of humans
and warm-blooded animals in the final stage of many diseases
is hypoxic irreversible damage to brain cells. Therefore, in-
halation of breathing gases containing oxygen to saturate the
blood with oxygen is considered one of the main conditions
for preserving human life in all critical situations and forms
the basis of emergency medical care in the intensive care unit.
However, increasing blood oxygen saturation through the lungs
is not always possible. In addition, normalization of blood oxy-
gen saturation must be achieved before the onset of the stage
of hypoxic irreversible damage in brain cells. In this connection,
the mechanisms of adaptation of the organism to oxygen de-
ficiency play a great role for longer preservation of brain cells
viability and human life in conditions of hypoxemia. In order to
increase resistance to hypoxemia, antihypoxants are tradition-
ally used, which should be introduced into the body before the
onset of hypoxic irreversible damage to brain cells, and their
effectiveness is largely ensured by the presence in the body
of unused reserves of adaptation to hypoxemia. Under these
conditions, risk factors of hypoxic irreversible damage of brain
cells, among which excessively long duration of hypoxemia
exceeding the period of human resistance to hypoxia and hy-
perthermia are of great importance for exclusion of premature
death of people. It has been shown that human tolerance to
hypoxia can be assessed using the Stange test. It is report-
ed that fever and localized cerebral hyperthermia decrease,
and hibernation and localized cerebral hypothermia increase,
the resistance of brain cells to hypoxia. It is pointed out that
among the methods of local therapeutic hypothermia, targeted
temperature management is the most advanced. In addition,
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