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ABSTRACT

BACKGROUND: The search for new agents for the pharmacological management of gambling addiction remains an urgent
task in contemporary psychoneuropharmacology. A GluAT AMPA receptor antagonist (a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor antagonist), IEM-1460, has previously been proposed as a potential therapeutic option
for addiction. Glutamatergic inputs are known to modulate the activity of the mesolimbic dopamine system. It can be
hypothesized that the antiaddictive effect of IEM-1460 is mediated through the interaction between glutamatergic and
dopaminergic systems.

AIM: The work aimed to investigate the effect of GluA1 AMPA receptor blockade on impulsive behavior in a gambling
addiction model, its role in modulating extracellular dopamine levels in the nucleus accumbens, and its effects on ion
currents in isolated neurons.

METHODS: Experiments were conducted in vivo in Wistar rats and in vitro in isolated Danio rerio neurons. The effect of
[EM-1460 (1, 3, and 10 mg/kg, intraperitoneally) on impulsive behavior in a gambling addiction model using a three-arm
maze, and on dopamine release in the nucleus accumbens in response to electrical stimulation of the ventral tegmental
area, was assessed using intravital fast-scan cyclic voltammetry. In isolated Danio rerio neurons, the effect of IEM-1460
on ion currents induced by the AMPA receptor agonist kainic acid was evaluated using the patch-clamp technique.
RESULTS: IEM-1460 at 1 mg/kg administered intraperitoneally most effectively reduced impulsive behavior in the gam-
bling addiction model and increased dopamine release in the nucleus accumbens in response to electrical stimulation
of the ventral tegmental area. /n vitro, IEM-1460 produced a pronounced blocking effect on AMPA glutamate receptors.
CONCLUSION: Selective blockade of GluA1-AMPA receptors with IEM-1460 reduced impulsive behavior in the gambling
addiction model and increased extracellular dopamine levels in the nucleus accumbens, as measured by fast-scan cyclic
voltammetry.
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bnokapa GluA1-AMPA-peuenTopoB CHUXKaeT NposiBNeHue
UMNYIbCUBHOIO NOBEeAEHUA B MOAEJIN UrPOBOM
3aBMCUMOCTH, BIMAA HAa BHEKJIETOYHDbIM YpoBeHb fodaMUHa

A.A. Ne6enes'?, A.M. Motankun'?, C.C. Miopsees’, B.B. Cuzos', B.E. TMupo’, E.P. Bbiukos',
B.H. Myxun', M.A. Heteca', [I.E. Auucumos', A.B. [lpobnenkos’, M.0. LLIa6aHos'

! MHCTUTYT 3KcnepuMeHTanbHon MeanumHel, Cakr-Metepbypr, Poccus;
2 CaHKT-MeTepbyprcKuit rocyaapCTBeHHbII MHCTUTYT NCUXONOTMM U CoLmanbHoii paboTbl, CakT-Metepbypr, Poccusa

AHHOTALUA

060cHoBaHue. [TouCcK HOBbIX COeMHEHUI 1S hapMaKOMOrMYeCKOM KOpPPEKLMW UrPOBOI 3aBUCMMOCTU — aKTyanbHas 3ajava
COBPEMEHHO NcUXoHelipotapMaKonoruu. PaHee B KauecTBe NOTEHLMANbHbIX e4eDHbIX CPeACTB NPOTMB afaMKLMM HaMu Dbl
npeanoxeH rnyramatHbll GluAT-AMPA-aHTaroHucT (peuenTop a-aMWHO-3-rUAPOKCU-5-MEeTU-4-U30KCa30NPONMOHOBOM
kucnotel) N3IM-1460. N3BecTHo, YTo rnytamMaTtepriyeckne BXoAbl CMOCOBHBI MOLYNMPOBaTh aKTMBHOCTb Me30/IMMbUYecKoi
A0(haMVUHOBO cUCTeMbI Mo3ra. MoHO NpeanonoXuTh, YT B OCHOBE aHTUaaAuKTUBHOMO fencteus N3IM-1460 nexur B3au-
MoZelcTBMe ryTamMaT- U J,0haM1HOBOW CUCTEM.

Lenb — n3yuntb BansiHue bnokansl GluAT-AMPA-peLenTopoB Ha NposiBNieHMe UMNYLCUBHOIO NOBEAEHUSA B MOLENN Urpo-
BOJ 3aBMUCUMOCTH, Ha POSib B MOAYNALMM BHEKIIETOUHOTO YPOBHA A0(aMUHa B MPUNEXaLLeM spe, Ha MOHHbIE TOKU Ha M30-
JIPOBaHHbIX HEMPOHAX.

MeToppl. IKCNepUMeHTbI NPOBEAEHDI in Vivo Ha Kpbicax IMHUM Buctap v in vitro — Ha n3onupoBaHHbIX HeiipoHax Danio rerio.
WUccneposanm peiicteue M3M-1460 (B gosax 1, 3, 10 Mr/Kkr, BHYTpUOPIOLUIMHHO) Ha NPOSIBNIEHUE UMMY/IbCUBHOTO MOBEAEHMS
Ha MOJleNM UrpoBoM 3aBUCMMOCTU B TPEX/Ty4eBOM NabupuHTe U Bbibpoc AodaMuHa B NpunexalleM sape B OTBET HA 3MeK-
TPUYECKYID CTUMYNALMIO BEHTPaNbHOW 00N1acTX MOKPBIWKM METOLOM MPUMKWU3HEHHON LMKIMYECKOW BONbTaMMepoMeTpum
C DbICTPBIM CKaHMpOBaHWeM. Ha 130nMpoBaHHbIX HEMpOHax pbib Danio rerio METOLOM N3TY-KaMn UCCNEAO0BaNM BIUSHUE
N3M-1460 Ha MOHHbIE TOKM, MHAYLMPOBaHHbIE anmnauKaLwmen aroHucta AMPA-peLenTopoB — KaWHOBOW KUCNOTHI.
Pesynbtatbl. N3M-1460 B fo3e 1 Mr/Kr BHYTPUBPIOLLIMHHO Haubonee 3 heKTUBHO CHUKAN NPOABIIEHUE UMMYNIBCUBHOTO NoBE-
AEHWS Ha MOLLeNN UrPOBOIA 3aBUCHMOCTU M yBeNMuMBan Bbibpoc AodamuHa B NAc B 0TBET Ha aneKTpuyecKyto ctumynsumio VTA.
In vitro U3M-1460 oka3biBan BbipaxeHHoe bnokupyloLLee aelictene Ha AMPA-rnyTaMaTHble peLenTopsbl.

3aknouenue. CenektuBHan bnokaga GluA1-AMPA-peuenTopoB ¢ nomollbio M3M-1460 cHuxkana nposiBneHne UMNyAbCUB-
HOro MoBefleHUs B MOJENU UrPOBOIA 3aBUCMMOCTY, YBENMYMBANA BHEKIETOUHBIA YPOBEHb LO0(aMUHA B NpUeXalleM anpe
B MET0/ie LIMKJINYECKON BOJIbTAMNEPOMETPUM C BLICTPLIM CKaHMPOBAHWEM.

KnioueBble cnosa: MI3M-1460; AMPA-peuenTop; MrpoBoe pacCTpoiCTBO; BOSIbTaMMEPOMETPHUS; BHEKETOUHbIN LohaMuH;
N3T4-Knamn.
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ORIGINAL STUDY ARTICLE

BACKGROUND

Given the current increase in the incidence of disor-
ders due to addictive behaviors, research into problem
gambling mechanisms is becoming increasingly relevant.
According to ICD-11, disorders due to addictive behav-
iors are classified as follows: 6C50 Gambling disorder;
6C51 Gaming disorder. Gambling disorders are charac-
terized by impulsivity and features typical of alcohol and
drug addiction [1, 2]. The lowa Gambling Task is used
to assess impulsivity- and risk-associated behaviors in
animal studies [3]. This approach is based on select-
ing the extent of reinforcement to increase the signifi-
cance of reinforcement [4]. We previously used a modi-
fied lowa Gambling Task in a Y-maze test in rats [5].
[D-Lys3]-GHRP-6, a ghrelin receptor antagonist, has
been shown to reduce impulsivity in a maze-based prob-
lem gambling model by influencing dopamine metabo-
lism [6]. Numerous research have addressed impulsivity
[7-91.

The dopamine system of the brain plays a key role
in the reward and reinforcement system in research into
disorders due to addictive behaviors [6, 64]. Evidence
suggests that glutamate plays the primary role in mech-
anisms of addiction associated with modified dopamine
system activity [10-12]. Dopaminergic cells of the ventral
tegmental area (VTA) and the nucleus accumbens (NAc),
a terminal region of the mesolimbic system, receive sub-
stantial glutamatergic inputs primarily from the prefron-
tal cortex, amygdala, and hippocampus [13, 14]. These
structures have a role in reward assessment in prob-
lem gambling [10, 15]. Glutamatergic inputs activate VTA
cells and increase dopamine release in the NAc [16, 171.
The dopamine-releasing effect of glutamate in the NAc
is primarily mediated by AMPA receptors, rather than
NMDA receptors [18]. When an addiction develops, the
AMPA/NMDA ratio shifts towards increased activity of
AMPA receptors, facilitating plasticity of excitatory syn-
apses of VTA dopaminergic neurons [20]. Increased acti-
vity of AMPA receptors in postsynaptic membranes of VTA
dopaminergic neurons is associated with GluA2 subunit
substitution in existing AMPA receptors or inclusion of
new AMPA receptors with GluA1 subunits from the cy-
toplasmic pool. This is accompanied by increased AMPA
receptor permeability to calcium ions [19]. Addictive be-
havior increases GluA1-AMPA receptors and decreases
GluA2-AMPA receptors in the VTA and NAc [21]. Opiate
withdrawal is also associated with a sharp increase in
GluA1 receptors in the VTA [22].

AMPA receptor antagonists inhibit the glutamate-
mediated activation of VTA and NAc neurons caused by
drug addiction more effectively than NMDA receptor an-
tagonists (memantine) [22]. There is direct evidence that
AMPA receptor antagonists not only eliminate sensitiza-
tion, tolerance, and withdrawal syndrome associated with
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cocaine, opiates, alcohol, and amphetamines, but also
prevent reinstatement triggered by repeated administra-
tion of these substances [23]. AMPA receptor antagonists
have a broader and more potent antiaddictive effect than
NMDA and dopamine receptor antagonists [22]. AMPA
receptor antagonists inhibit self-stimulation and self-
administration responses in rats, whereas NMDA recep-
tor antagonists activate them [24, 25].

Many allosteric AMPA receptor antagonists, such as
talampanel* and perampanel, are non-selective to AMPA
subunits, resulting in simultaneous inhibition of GluA2
and GluA1 receptors.

GluA2 inhibition impairs cognitive functions, loco-
motor activity, and exploratory behavior [24, 27, 28].
Topiramate, an AMPA receptor antagonist [29], and
acamprosate, an NMDA receptor antagonist [30], have
been proposed for the treatment of problem gambling in
clinical practice; however, these drugs have low efficacy
and severe side effects. The Neuropharmacology De-
partment of the Institute of Experimental Medicine (Saint
Petersburg, Russia) synthesized IEM-1460, a selective
GluAT-AMPA receptor antagonist [31, 32] that is consid-
erably superior to existing non-selective AMPA receptor
antagonists. Experiments have demonstrated its potential
antiaddictive effect [24].

This work assessed the effect of AMPA receptor an-
tagonists on addictive behavior in rats using a modified
lowa Gambling Task in a Y-maze test and extracellular
dopamine levels in the NAc in response to VTA stimu-
lation. There are very few published research into the
effect of AMPA receptor antagonists on problem gam-
bling and dopamine release. There are anecdotal data
on the inhibitory effect of AMPA receptor antagonists
on problem gambling components and elevated ex-
tracellular dopamine levels in the NAc induced by the
mGlu 2/3 receptor antagonist LY341495 [33].

This study aimed to investigate the antiaddictive ef-
fect of the GluA1-AMPA receptor antagonist IEM-1460 in
a problem gambling model and its role in dopamine level
modulation, as well as to demonstrate the antagonistic
activity of IEM-1460 against glutamate AMPA receptors.

METHODS

The study used 42 adult male Wistar rats weigh-
ing 250-300 g and 15 isolated neurons from eight
Danio rerio species. Animals were kept in standard cages
(40x50x20 cm) with free access to water and pelleted
feed in the vivarium of the Institute of Experimental Me-
dicine. A lighting schedule with lights on between 8:00
and 20:00 was used, at 22 + 2 °C. Wild-type Danio rerio
species aged 6—-8 months were provided by Aqua Peter

* The drug is not approved in Russia.
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and reared at the Institute of Experimental Medicine.
All experiments followed the ethical principles outlined in
Directive 2010/63/EU of the European Parliament and of
the Council of September 22, 2010, and were approved by
the Bioethics Committee of the Institute of Experimental
Medicine.

A modified lowa Gambling Task was used to assess
impulsivity in a problem gambling model [6, 34]. The test
assesses reinforcements of different extents and likeli-
hoods preferred by animals. The study used a modified
Y-maze with a starting arena (33x50x35 cm) and three
arms (50x15x35 c¢m each). Each arm ended with an au-
tomated feeder. Animals received food reinforcement
(sunflower seeds) when they reached the feeder. When
an animal exited the arm and entered the starting arena,
the feeder was refilled. The number of visits to the fee-
der and returns to the starting arena were recorded for
10 min. Animals were trained once daily for 21 days.
Animals were fed four times daily, with free access
to water.

Experiments in the Y-maze included two stages.
During the first stage, a training (simplified) food reinforce-
ment mode was used to form a conditioned connection
(arm—feeder). When choosing Arm-1, the animal received
one sunflower seed every time. When choosing Arm-2
and Arm-3, the animal received two and three sunflow-
er seeds, respectively. The training food reinforcement
mode was used for five days. No tests were performed
in the following two days. The second stage started on
day 8 and used a food reinforcement mode with differ-
ent extents and likelihoods of reinforcement. During each
arm entry, a 100 lux light automatically turned on for 2 s.
In Arm-1, animals received two sunflower seeds (re-
inforcement mode FR1-2). Animals received food re-
inforcement every time when they reached the feeder.
In Arm-2, animals received three sunflower seeds in the
FR2-3 mode; every second visit to the feeder was re-
warded. In Arm-3, animals received four sunflower seeds
in the FR3-4 mode; every third visit to the feeder was re-
warded. Thus, one of two Arm-2 entries and two of three
Arm-3 entries were not rewarded. Animals were trained
in this mode for 2 weeks. During the first and second
stages of training, different extents and likelihoods of
reinforcement were used to model gambling-like beha-
vior by the end of training [35]. Rats that did not enter the
maze arms (no more than 15%) were excluded from the
experiment.

Electrodes were implanted in animals that preferred
Arm-3 of the Y-maze (n=9). Electrodes were not im-
planted in animals that did not prefer Arm-3 of the
maze and thus did not exhibit clear addictive behavior.
Tiletamine + zolazepam 50 mg/kg was used for anes-
thesia. A stimulating electrode (0.2 mm insulated stain-
less steel bipolar electrode) was implanted into the VTA.
The coordinates relative to bregma were: AP = -5.3 mm,
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L =0.8 mm, H=8.2mm [36]. To record increased dopa-
mine levels in the NAc, a glassy carbon electrode was im-
planted ipsilaterally (exposed fiber tip: 100 um in length,
7 um in diameter). A recording electrode was implanted
as follows: AP =+2.0 mm (from bregma), L = 1.2 mm,
H=7.3 mm from the skull surface [36]. Moreover,
a 3 mm high-pressure Ag/AgCl reference electrode was
implanted: AP = +5.5 mm (from bregma), L = 0. The elec-
trodes were secured to the skull surface with UV-acrylic
adhesive. During the following week, animals were kept
in individual cages to recover from surgery [37].

The experiment was carried out using the Cyclone
telemetry-based hardware-software system, which in-
cludes several modules: a fast-scan cyclic voltammetry
(FSCV) unit (potentiostat), an electrical stimulator (neu-
ral tissue stimulator), visual and auditory stimulators,
an accelerometer to determine head position, and a
video tracking module for monitoring the animal’s po-
sition [38]. Dopamine release in response to electrical
stimulation of the VTA was recorded [39]. Dopamine re-
lease was assessed by changes in its extracellular levels
in the nucleus accumbens in vivo by FSCV in anesthe-
tized animals following electrode implantation, in re-
sponse to electrical stimulation of the VTA with a single
pulse packet (240 pA, 100 Hz, 1 s) [66, 67]. The VTA
is a source of dopaminergic (but not serotoninergic or
noradrenergic) fibers entering the nucleus accumbens.
Therefore, we assume that increased voltammetric signal
intensity in the nucleus accumbens during VTA stimu-
lation is associated with increased dopamine release
[16, 17].

These values were considered as the baseline (con-
trol) dopamine release. Following that, 0.9% sodium
chloride solution or the study substance (IEM-1460
1 mg/kg) was administered intraperitoneally. Dopamine
release was assessed again after 20 minutes. To record
increases in dopamine levels in response to VTA stimu-
lation, a holding potential of 0.4 V and a scan duration
of 9 ms were used. Scanning pulses were applied every
100 ms. The anodic limit was +1.3 V. For data analysis,
the open-source web application Analysis Kid was used.
Analysis Kid developed by Hashemi Lab (USA) enables
visualization, calibration, and filtering of neurochemical
signals [40].

Following the experiments, electrode positioning was
morphologically verified. The rats were sacrificed by
ethaminal sodium overdose, perfused with 0.9% sodium
chloride solution, and fixed in formalin. The brain was
then extracted, embedded in celloidin, sectioned coro-
nally, and stained with cresyl violet using the Nissl me-
thod (Fig. 1). Electrode positioning was verified after the
end of the experiments using histological brain sections
and a stereotaxic atlas [36]. To confirm the position of the
stimulating electrode in the VTA, a coronal section was
made at the “Bregma -5.3 mm” level according to the
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Fig. 1. Morphological verification of electrode tracts in the brain of rats: g, electrode tract for VTA stimulation at the “Bregma 5.3 mm”
level: eyepiece lens x4, objective lens x10; b, search initiation area for a thin recording electrode tract at the “Bregma +2.7 mm” level:
eyepiece lens x4, objective lens x10; ¢, anterior part of the nucleus accumbens with a defect in the thin recording electrode implan-
tation area at the “Bregma +2.0 mm” level: eyepiece lens x10, objective lens x10. IG, olfactory nuclei; Cpu, striatopallidal complex;
Pir, piriform cortex; SepN, septal nuclei; VL, lateral ventricle; ca, anterior commissure. Nissl staining.

stereotaxic atlas. In this brain region, the VTA tissue is at
its most extensive and corresponds to the dopaminergic
paranigral nucleus. To confirm the position of the elec-
trode in the nucleus accumbens, a coronal section was
made at the “Bregma +2.7 mm” level according to the
atlas. Sectioning continued for 0.7-1 mm to the region
of the forebrain where the nucleus accumbens occupies
the largest area (Fig. 1). In this region of the brain, the
anterior commissure was displaced toward the dorso-
medial portion of the nucleus, whereas the recording
electrode tract was located in its largest, central region
(Fig. 1).

The effect of the AMPA receptor antagonist IEM-1460
was assessed using the patch clamp technique
(SyncroPatch 384/768PE) in isolated Danio rerio brain
neurons [41]. The test procedure is described elsewhere
[65]. Transmembrane currents were recorded using the
patch clamp technique. Whole-cell patch clamp technique
(—80 mV) was used. AMPA responses were elicited using
solution No. 1 [65] + kainic acid 100 uM (Sigma-Aldrich,
USA) at 20 °C, pH 7.4 [42]. The study substance IEM-1460
at respective concentrations was dissolved in solu-
tion No. 1 [65] at 20 °C, pH 7.4.

Drug products. The study assessed the pharmacologi-
cal activity of the AMPA receptor antagonist IEM-1460

DOl https://doi.org/10.17816/RCF646052

[5-(1-adamentylmethylamino)pentyl trimetazolin bro-
mide] (Fig. 2). IEM-1460 was dissolved in distilled wa-
ter, and the pH was adjusted to 7.2 with 0.1 M NaOH.
The substance was administered intraperitoneally 30 min
before addictive behavior testing in the Y-maze. Following
that, the substance was administered intraperitoneally
during surgery after electrode implantation, and dopa-
mine levels were measured every 5 min. The control was
0.9% sodium chloride solution (0.5 mL).

Statistical analysis. When processing the patch clamp
analysis findings, concentration-response curves were
built using a non-linear approximation of a regression
curve, representing the relationship between logarithm
of AMPA receptor antagonist concentration and steady-
state current attenuation (%). The curve was used to
determine the IC50 of the AMPA receptor antagonist.
Graph Pad Prism 9 for Windows, version 9.5.1 (GraphPad
Software, USA), was used for statistical analysis and
graph plotting. When processing data on behavior and do-
pamine levels, the D'Agostino—Pearson test was used for
normality testing of random variables. Data were analyzed
using nonparametric statistics with the Mann-Whitney
U test for small samples. The data in figures are pre-
sented as medians and quartiles [@,, Me, @,]. Differences
were considered significant at p < 0.05.
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+
{ CH,-NH-(CH,)5-NMe;
HBr Br

Fig. 2. Structural formula of IEM-1460.

RESULTS

When assessing addictive behavior, the extents and
likelihoods of reinforcement (modified lowa Gambling
Task) determined the number of entries for each arm of
the Y-maze. Seven rats did not enter the maze arms dur-
ing the first stage of training and were excluded from the
experiment. Thirty-five rats were trained for 21 days and
tested on days 22 and 23. Intraperitoneal (IP) [EM1460
1 mg/kg reduced the proportion of Arm-3 entries relative
to 0.9% sodium chloride solution (from 46.55% + 1.86%
to 39.63% + 2.80%, p < 0.01) and increased the propor-
tion of Arm-1 entries relative to 0.9% sodium chloride
solution (from 31.5% + 3.1% to 38.5% + 4.1%, p < 0.05),
indicating an antiaddictive effect of the substance
(Table 1).

IEM-1460 3 mg/kg reduced the proportion of Arm-3
entries relative to 0.9% sodium chloride solution (from
46.55% + 1.86% to 41.98% = 3.70%, p < 0.05), which also
indicates an antiaddictive effect of the substance (Fig. 3).
There were no significant changes with IEM-1460 10 mg/kg,
with a lower proportion of Arm-3 entries relative to
0.9% sodium chloride solution. There were no significant
changes in the total number of arm entries.

Therefore, the AMPA receptor antagonist IEM-1460
reduces impulsivity in a problem gambling model by de-
creasing the number of arm entries with a more signifi-
cant but less likely food reinforcement.

IEM-1460 at an active dose of 1 mg/kg IP, determined
during addictive behavior testing in the Y-maze, increased
stimulation-induced dopamine responses. The induced
phasic response 5 min after IEM-1460 did not differ sig-
nificantly from dopamine release in the control group that
received 0.9% sodium chloride solution. However, phasic
dopamine release 30 min after IEM-1460 injection was
significantly higher than in the control group, where the
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phasic release was measured 30 min after injection of
0.9% sodium chloride solution (p < 0.01) (Fig. 4).

Therefore, VTA stimulation increases phasic dopamine
release with IEM-1460 (Fig. 5).

We assessed the inhibition of AMPA receptors by
IEM-1460 3 uM. Fig. 6 shows the patch clamp analysis
protocol.

Therefore, our study confirmed that IEM-1460 inhibits
AMPA receptors. The degree of AMPA receptor inhibition
by IEM-1460 at a single dose of 3 uM was 86.7% + 8%,
which is consistent with previous research [32].

DISCUSSION

This study found that the selective GluAT-AMPA re-
ceptor antagonist IEM-1460 reduces impulsivity in a
problem gambling model by decreasing the number of
Y-maze arm entries, which is associated with a more
significant but less likely food reinforcement. This is
consistent with existing data that AMPA receptor inhibi-
tion reduces chemical addiction [22]. AMPA receptor an-
tagonists are known to reduce alcohol, psychostimulant,
and opiate addiction. Moreover, they prevent reinstate-
ment triggered by these substances [22]. Our previous
studies showed that the GluAT-AMPA receptor antago-
nist IEM-1460 inhibits the rewarding effect of electrical
stimulation of the hypothalamus [24]. There is evidence
that the AMPA receptor antagonist topiramate inhibits
problem gambling components [29].

Therefore, it is reasonable to use selective GluA1-AMPA
receptor antagonists to assess and treat such problem
gambling components as impulsivity. Our study con-
firmed that IEM-1460 inhibits AMPA receptors, which is
consistent with the effect on GluA1R. The degree of AMPA
receptor inhibition by IEM-1460 3 uM was 86.7% + 8%,
which is consistent with previous research [32]. Spermine
could also be used for this purpose. Spermine, a natural
polyamine NMDA receptor antagonist with AMPA receptor
antagonist properties, inhibits interneuronal GluAT recep-
tors. Spermine enhances memory, learning, locomotor
activity, and exploratory behavior; however, it does not
completely reduce the toxic effects of kainate and pro-
motes the toxic effects of glutamate on NMDA receptors

Table 1. Proportions of Y-maze arm entries for the control and the GluA1-AMPA receptor antagonist IEM-1460

Proportion of arm entries

Total number

Parameter

Arm-1 Arm-2 Arm-3 of arm entries
0.9% sodium chloride solution 315+3.12 214+34 46.55 + 1.86 393+19
IEM 1460 1 mg/kg IP 385+ 41" 23155 39.63 + 2.8** 428+ 45
IEM 1460 3 mg/kg IP 347 £ 4.1 246 £37 4198 £3.7* 368 + 45
IEM 1460 10 mg/kg IP 346+38 224 £33 435+13 314+65

Note. *p < 0.05; **p < 0.01 vs control (0.9% sodium chloride solution). IP, intraperitoneally.
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solution (a) and IEM-1460 (b). The color scale represents electric current variations relative to its baseline level at time point 0.
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in the cortex, VTA and NAc [26]. IEM-1460 activity is
twice as high as that of spermine [44]. Unlike spermine,
[EM-1460 completely inhibited GluA1-AMPA receptors
and showed high neuroprotective activity [45, 46].

I[EM-1460 is a selective GluAT-AMPA receptor antago-
nist that also inhibits alpha-3 beta-4 nicotinic receptors
and acts as a direct GluA2-AMPA receptor agonist [26].
Alpha-3 beta-4 nicotinic receptor antagonists inhibit self-
stimulation and self-administration of cocaine, amphet-
amine, morphine, nicotine, and other addictive substanc-
es, reduce behavioral sensitization and tolerance to these
substances, and eliminate withdrawal syndrome [47].
Alpha-3 beta-4 nicotinic receptors are located in inter-
neuronal presynapses, and their activation promotes
a massive release of endogenous glutamate, resulting
in seizures caused by GluA1-AMPA receptor activation
in the cortex. Alpha-3 beta-4 nicotinic receptors are pri-
marily found in interneuronal presynapses of pyramidal
cells of the brain [48]. This likely explains glutamate re-
lease caused by this type of stimulation [49]. IEM-1460
is a selective blocker of parasympathetic ganglia [50], in-
cluding alpha-3 beta-4 nicotinic receptors [51]. IEM-1460
eliminates nicotine-induced seizures and analgesia [52].
Therefore, the inhibitory effect of IEM-1460 on parasympa-
thetic alpha-3 beta-4 nicotinic receptors in glutamatergic
nerve terminals in the NAc is a significant component of
its potential antiaddictive effect. Furthermore, unlike me-
mantine, IEM-1460 lacks phencyclidine-like activity and
can eliminate this activity of memantine and MK-801 [23],
indicating its high antiaddictive potential [24]. IEM-1460
is a direct agonist of GluA2-AMPA receptors on pyramidal
cells of the cortex [53].

IEM-1460 has a unique combination of three antiad-
dictive effects (GluA1-AMPA receptor inhibition, nicotinic
acetylcholine receptor inhibition, and GluA2 activation),
indicating a significant antiaddictive potential. No other
products for the treatment of problem gambling have the
same set of properties. This combination of properties in
a single drug must ensure its high efficacy in other tests,
as confirmed in our experiments using a modified lowa
Gambling Task to assess impulsivity in a Y-maze-based
problem gambling model in rats.

The key indicator of antiaddictive properties is the
drug’s efficacy in modulating extracellular dopamine
levels in the NAc, a brain structure that determines the
resultant component of a motive state and transforms
it into approach or avoidance behavior [54]. Changes in
phasic dopamine release in the NAc in response to elec-
trical stimulation of the VTA indicated an increase in pha-
sic dopamine release following IEM-1460 injection at an
active dose of 1 mg/kg IP. This dose was most effective
when assessing impulsivity in a Y-maze-based problem
gambling model using a modified lowa Gambling Task.
These findings are consistent with published research.
The mGlu 2/3 receptor antagonist LY341495 increases
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extracellular dopamine levels in the NAc [33]. Antiaddic-
tive properties have been reported for drugs that effec-
tively modulate extracellular dopamine levels, increas-
ing or reducing its release in the NAc [55]. Dopamine
receptor antagonists have also been shown to increase
dopamine release in the NAc. According to in vivo micro-
dialysis, levo-tetrahydropalmatine (L-THP), a dopamine
D, and D, receptor antagonist, increases extracellular
dopamine levels in the NAc, with a dose-dependent in-
crease in cocaine-induced dopamine release. L-THP in-
hibits cocaine-induced conditioned place preference and
prevents cocaine- or methamphetamine-triggered re-
instatement [56]. Moreover, L-THP attenuates cocaine-
enhanced brain stimulation reward and provides a dose-
dependent decrease in cocaine self-administration under
progressive-ratio reinforcement [57]. This self-admin-
istration mode is similar to problem gambling patterns
that we attempted to model in this work, where impulsi-
vity was assessed in a Y-maze-based problem gambling
model.

The question is how increased extracellular dopa-
mine levels can produce a potential therapeutic effect of
AMPA receptor antagonists in addictive behavior. Rein-
forcement-induced phasic dopamine release in the NAc
(triggered by gambling or addictive substances) can also
activate neural adaptation processes. Signals from the
NAc activate striatopallidal and pallidal-thalamocortical
circuits, including the dorsal striatum, resulting in adap-
tive changes and stereotyped behavior, which underlies
impulsive and compulsive reward-seeking behaviors [58].
The key synaptic changes in this case are associated with
NMDA and AMPA receptor-mediated glutamatergic trans-
mission from the prefrontal cortex and amygdala to the
VTA and NAc [59]. Long-term use of addictive substances
is likely associated with impaired dopamine function, as
indicated by reduced dopamine release and the number of
D, receptors. Furthermore, reduced striatal D, receptors
are associated with decreased activity of the orbitofrontal
cortex (implicated in salience attribution, motivation, and
compulsive behavior) and the anterior cingulate cortex
(implicated in inhibitory control regulation and impulsivity).
This results in impaired prefrontal self-regulation, loss
of control, and compulsive drug taking, indicating addic-
tion [60]. Reinforcing effects of addictive substances and
stimuli are primarily determined by the extent and rate
of dopamine release in the NAc, and chronic exposure
activates glutamate-mediated neural adaptation in do-
pamine terminals of the mesolimbic system, reducing
dopamine release and the number of D, receptors [61].
Increased risk of relapse in the treatment of disorders
due to addictive behaviors, depression, and dysphoria are
frequently associated with impaired dopamine function
[61, 62]. Therefore, antiaddictive therapies that increase
extracellular dopamine levels are superior to substitution
therapy [63].
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CONCLUSION

Inhibition of GluA1-AMPA receptors with IEM-1460 re-
duces impulsivity in a problem gambling model by modu-
lating extracellular dopamine levels. IEM-1460 reduces
the number of visits to the Y-maze arm with a more
significant but less likely food reinforcement, decreasing
impulsivity in a problem gambling model using a modified
lowa Gambling Task. Changes in phasic dopamine release
in the NAc in response to electrical stimulation of the VTA
indicated an increase in phasic dopamine release following
I[EM-1460 injection at an active dose of 1 mg/kg IP.
This dose was most effective when assessing impulsi-
vity in a Y-maze-based model. Our work confirmed that
IEM-1460 is a potent AMPA receptor antagonist, which is
consistent with published research.
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JTnyecKas 3KcnepTu3a. ViccnefoBaHue 0f0bpeHO NOKaNbHbIM 3TH-
yeckmM KommutetoM OTBHY «MHCTUTYT 3KCNepUMeHTanbHOW MefMLMHbI»,
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PackpbiTe uHTepecoB. ABTOPLI 3a8BNISOT 06 OTCYTCTBUM OTHOLLIEHUIA,
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JmLaMy (KOMMEpYECKUMI 1 HEKOMMEPYECKVMM), UHTEPECH! KOTOPbIX MOTYT
BbITb 3aTPOHYTHI COLlEPXKAHUEM CTaTbU.
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1CNonb30Bany paHee 0MybiMKOBaHHbIE CBELIEHWA (TEKCT, MAMIOCTpaLmK,
AaHHbIe).
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BaHWM, [OCTYMHbI B CTaTbe.

[eHepaTUBHBIA MCKYCCTBEHHBIA MHTENNeKT. [py co34aHuM HacTo-
ALLEN CTaTbk TEXHONMOTMM FeHePaTUBHOTO UCKYCCTBEHHOTO MHTENNEKTa He
1CMONb30Banu.
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