DOI: https://doi.org/10.17816/RCF646052

EDN: VNHXXW

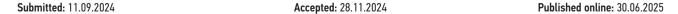
Blockade of GluA1 AMPA Receptors Reduces Impulsive Behavior in a Gambling Addiction Model by Modulating Extracellular Dopamine Levels

Andrei A. Lebedev^{1,2}, Aleksandr M. Potapkin^{1,2}, Sarng S. Pyurveev¹, Vadim V. Sizov¹, Valerii E. Gmiro¹, Eugenii R. Bychkov¹, Valery N. Mukhin¹, Mariia A. Netesa¹, Dmitrii E. Anisimov¹, Andrey V. Droblenkov¹, Petr D. Shabanov¹

ABSTRACT

BACKGROUND: The search for new agents for the pharmacological management of gambling addiction remains an urgent task in contemporary psychoneuropharmacology. A GluA1 AMPA receptor antagonist (α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist), IEM-1460, has previously been proposed as a potential therapeutic option for addiction. Glutamatergic inputs are known to modulate the activity of the mesolimbic dopamine system. It can be hypothesized that the antiaddictive effect of IEM-1460 is mediated through the interaction between glutamatergic and dopaminergic systems.

AIM: The work aimed to investigate the effect of GluA1 AMPA receptor blockade on impulsive behavior in a gambling addiction model, its role in modulating extracellular dopamine levels in the nucleus accumbens, and its effects on ion currents in isolated neurons.


METHODS: Experiments were conducted *in vivo* in Wistar rats and *in vitro* in isolated *Danio rerio* neurons. The effect of IEM-1460 (1, 3, and 10 mg/kg, intraperitoneally) on impulsive behavior in a gambling addiction model using a three-arm maze, and on dopamine release in the nucleus accumbens in response to electrical stimulation of the ventral tegmental area, was assessed using intravital fast-scan cyclic voltammetry. In isolated *Danio rerio* neurons, the effect of IEM-1460 on ion currents induced by the AMPA receptor agonist kainic acid was evaluated using the patch-clamp technique.

RESULTS: IEM-1460 at 1 mg/kg administered intraperitoneally most effectively reduced impulsive behavior in the gambling addiction model and increased dopamine release in the nucleus accumbens in response to electrical stimulation of the ventral tegmental area. *In vitro*, IEM-1460 produced a pronounced blocking effect on AMPA glutamate receptors. **CONCLUSION:** Selective blockade of GluA1-AMPA receptors with IEM-1460 reduced impulsive behavior in the gambling addiction model and increased extracellular dopamine levels in the nucleus accumbens, as measured by fast-scan cyclic voltammetry.

Keywords: IEM-1460; AMPA receptor; gambling disorder; voltammetry; extracellular dopamine; patch clamp.

To cite this article

Lebedev AA, Potapkin AM, Pyurveev SS, Sizov VV, Gmiro VE, Bychkov ER, Mukhin VN, Netesa MA, Anisimov DE, Droblenkov AV, Shabanov PD. Blockade of GluA1 AMPA Receptors Reduces Impulsive Behavior in a Gambling Addiction Model by Modulating Extracellular Dopamine Levels. *Reviews on Clinical Pharmacology and Drug Therapy.* 2025;23(2):177–189. DOI: 10.17816/RCF646052 EDN: VNHXXW

¹ Institute of Experimental Medicine, Saint Petersburg, Russia;

² St. Petersburg State Institute of Psychology and Social Work, Saint Petersburg, Russia

DOI: https://doi.org/10.17816/RCF646052 EDN: VNHXXW

Блокада GluA1-AMPA-рецепторов снижает проявление импульсивного поведения в модели игровой зависимости, влияя на внеклеточный уровень дофамина

Tom 23. № 2. 2025

А.А. Лебедев^{1,2}, А.М. Потапкин^{1,2}, С.С. Пюрвеев¹, В.В. Сизов¹, В.Е. Гмиро¹, Е.Р. Бычков¹, В.Н. Мухин¹, М.А. Нетеса¹, Д.Е. Анисимов¹, А.В. Дробленков¹, П.Д. Шабанов¹

RNJATOHHA

Обоснование. Поиск новых соединений для фармакологической коррекции игровой зависимости — актуальная задача современной психонейрофармакологии. Ранее в качестве потенциальных лечебных средств против аддикции нами был предложен глутаматный GluA1-AMPA-антагонист (рецептор α-амино-3-гидрокси-5-метил-4-изоксазолпропионовой кислоты) ИЗМ-1460. Известно, что глутаматергические входы способны модулировать активность мезолимбической дофаминовой системы мозга. Можно предположить, что в основе антиаддиктивного действия ИЗМ-1460 лежит взаимодействие глутамат- и дофаминовой систем.

Цель — изучить влияние блокады GluA1-AMPA-рецепторов на проявление импульсивного поведения в модели игровой зависимости, на роль в модуляции внеклеточного уровня дофамина в прилежащем ядре, на ионные токи на изолированных нейронах.

Методы. Эксперименты проведены *in vivo* на крысах линии Вистар и *in vitro* — на изолированных нейронах *Danio rerio*. Исследовали действие ИЗМ-1460 (в дозах 1, 3, 10 мг/кг, внутрибрюшинно) на проявление импульсивного поведения на модели игровой зависимости в трехлучевом лабиринте и выброс дофамина в прилежащем ядре в ответ на электрическую стимуляцию вентральной области покрышки методом прижизненной циклической вольтамперометрии с быстрым сканированием. На изолированных нейронах рыб *Danio rerio* методом пэтч-кламп исследовали влияние ИЗМ-1460 на ионные токи, индуцированные аппликацией агониста АМРА-рецепторов — каиновой кислоты.

Результаты. ИЗМ-1460 в дозе 1 мг/кг внутрибрюшинно наиболее эффективно снижал проявление импульсивного поведения на модели игровой зависимости и увеличивал выброс дофамина в NAc в ответ на электрическую стимуляцию VTA. *In vitro* ИЗМ-1460 оказывал выраженное блокирующее действие на АМРА-глутаматные рецепторы.

Заключение. Селективная блокада GluA1-AMPA-рецепторов с помощью ИЭМ-1460 снижала проявление импульсивного поведения в модели игровой зависимости, увеличивала внеклеточный уровень дофамина в прилежащем ядре в методе циклической вольтамперометрии с быстрым сканированием.

Ключевые слова: ИЗМ-1460; АМРА-рецептор; игровое расстройство; вольтамперометрия; внеклеточный дофамин; пэтч-кламп.

Как цитировать

Лебедев А.А., Потапкин А.М., Пюрвеев С.С., Сизов В.В., Гмиро В.Е., Бычков Е.Р., Мухин В.Н., Нетеса М.А., Анисимов Д.Е., Дробленков А.В., Шабанов П.Д. Блокада GluA1-AMPA-рецепторов снижает проявление импульсивного поведения в модели игровой зависимости, влияя на внеклеточный уровень дофамина // Обзоры по клинической фармакологии и лекарственной терапии. 2025. Т. 23, № 2. С. 177—189. DOI: 10.17816/RCF646052 EDN: VNHXXW

¹ Институт экспериментальной медицины, Санкт-Петербург, Россия;

² Санкт-Петербургский государственный институт психологии и социальной работы, Санкт-Петербург, Россия

BACKGROUND

Given the current increase in the incidence of disorders due to addictive behaviors, research into problem gambling mechanisms is becoming increasingly relevant. According to ICD-11, disorders due to addictive behaviors are classified as follows: 6C50 Gambling disorder; 6C51 Gaming disorder. Gambling disorders are characterized by impulsivity and features typical of alcohol and drug addiction [1, 2]. The Iowa Gambling Task is used to assess impulsivity- and risk-associated behaviors in animal studies [3]. This approach is based on selecting the extent of reinforcement to increase the significance of reinforcement [4]. We previously used a modified Iowa Gambling Task in a Y-maze test in rats [5]. [D-Lys3]-GHRP-6, a ghrelin receptor antagonist, has been shown to reduce impulsivity in a maze-based problem gambling model by influencing dopamine metabolism [6]. Numerous research have addressed impulsivity [7-9].

The dopamine system of the brain plays a key role in the reward and reinforcement system in research into disorders due to addictive behaviors [6, 64]. Evidence suggests that glutamate plays the primary role in mechanisms of addiction associated with modified dopamine system activity [10-12]. Dopaminergic cells of the ventral tegmental area (VTA) and the nucleus accumbens (NAc), a terminal region of the mesolimbic system, receive substantial glutamatergic inputs primarily from the prefrontal cortex, amygdala, and hippocampus [13, 14]. These structures have a role in reward assessment in problem gambling [10, 15]. Glutamatergic inputs activate VTA cells and increase dopamine release in the NAc [16, 17]. The dopamine-releasing effect of glutamate in the NAc is primarily mediated by AMPA receptors, rather than NMDA receptors [18]. When an addiction develops, the AMPA/NMDA ratio shifts towards increased activity of AMPA receptors, facilitating plasticity of excitatory synapses of VTA dopaminergic neurons [20]. Increased activity of AMPA receptors in postsynaptic membranes of VTA dopaminergic neurons is associated with GluA2 subunit substitution in existing AMPA receptors or inclusion of new AMPA receptors with GluA1 subunits from the cytoplasmic pool. This is accompanied by increased AMPA receptor permeability to calcium ions [19]. Addictive behavior increases GluA1-AMPA receptors and decreases GluA2-AMPA receptors in the VTA and NAc [21]. Opiate withdrawal is also associated with a sharp increase in GluA1 receptors in the VTA [22].

AMPA receptor antagonists inhibit the glutamatemediated activation of VTA and NAc neurons caused by drug addiction more effectively than NMDA receptor antagonists (memantine) [22]. There is direct evidence that AMPA receptor antagonists not only eliminate sensitization, tolerance, and withdrawal syndrome associated with cocaine, opiates, alcohol, and amphetamines, but also prevent reinstatement triggered by repeated administration of these substances [23]. AMPA receptor antagonists have a broader and more potent antiaddictive effect than NMDA and dopamine receptor antagonists [22]. AMPA receptor antagonists inhibit self-stimulation and self-administration responses in rats, whereas NMDA receptor antagonists activate them [24, 25].

Many allosteric AMPA receptor antagonists, such as talampanel* and perampanel, are non-selective to AMPA subunits, resulting in simultaneous inhibition of GluA2 and GluA1 receptors.

GluA2 inhibition impairs cognitive functions, locomotor activity, and exploratory behavior [24, 27, 28]. Topiramate, an AMPA receptor antagonist [29], and acamprosate, an NMDA receptor antagonist [30], have been proposed for the treatment of problem gambling in clinical practice; however, these drugs have low efficacy and severe side effects. The Neuropharmacology Department of the Institute of Experimental Medicine (Saint Petersburg, Russia) synthesized IEM-1460, a selective GluA1-AMPA receptor antagonist [31, 32] that is considerably superior to existing non-selective AMPA receptor antagonists. Experiments have demonstrated its potential antiaddictive effect [24].

This work assessed the effect of AMPA receptor antagonists on addictive behavior in rats using a modified lowa Gambling Task in a Y-maze test and extracellular dopamine levels in the NAc in response to VTA stimulation. There are very few published research into the effect of AMPA receptor antagonists on problem gambling and dopamine release. There are anecdotal data on the inhibitory effect of AMPA receptor antagonists on problem gambling components and elevated extracellular dopamine levels in the NAc induced by the mGlu 2/3 receptor antagonist LY341495 [33].

This study aimed to investigate the antiaddictive effect of the GluA1-AMPA receptor antagonist IEM-1460 in a problem gambling model and its role in dopamine level modulation, as well as to demonstrate the antagonistic activity of IEM-1460 against glutamate AMPA receptors.

METHODS

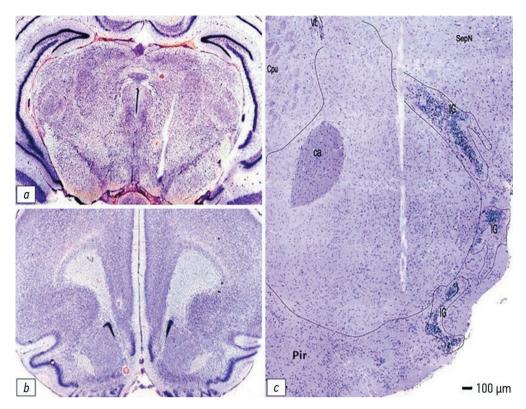
The study used 42 adult male Wistar rats weighing 250–300 g and 15 isolated neurons from eight Danio rerio species. Animals were kept in standard cages ($40\times50\times20$ cm) with free access to water and pelleted feed in the vivarium of the Institute of Experimental Medicine. A lighting schedule with lights on between 8:00 and 20:00 was used, at 22 ± 2 °C. Wild-type Danio rerio species aged 6–8 months were provided by Aqua Peter

^{*} The drug is not approved in Russia.

and reared at the Institute of Experimental Medicine. All experiments followed the ethical principles outlined in Directive 2010/63/EU of the European Parliament and of the Council of September 22, 2010, and were approved by the Bioethics Committee of the Institute of Experimental Medicine.

A modified Iowa Gambling Task was used to assess impulsivity in a problem gambling model [6, 34]. The test assesses reinforcements of different extents and likelihoods preferred by animals. The study used a modified Y-maze with a starting arena (33×50×35 cm) and three arms (50×15×35 cm each). Each arm ended with an automated feeder. Animals received food reinforcement (sunflower seeds) when they reached the feeder. When an animal exited the arm and entered the starting arena, the feeder was refilled. The number of visits to the feeder and returns to the starting arena were recorded for 10 min. Animals were trained once daily for 21 days. Animals were fed four times daily, with free access to water.

Experiments in the Y-maze included two stages. During the first stage, a training (simplified) food reinforcement mode was used to form a conditioned connection (arm-feeder). When choosing Arm-1, the animal received one sunflower seed every time. When choosing Arm-2 and Arm-3, the animal received two and three sunflower seeds, respectively. The training food reinforcement mode was used for five days. No tests were performed in the following two days. The second stage started on day 8 and used a food reinforcement mode with different extents and likelihoods of reinforcement. During each arm entry, a 100 lux light automatically turned on for 2 s. In Arm-1, animals received two sunflower seeds (reinforcement mode FR1-2). Animals received food reinforcement every time when they reached the feeder. In Arm-2, animals received three sunflower seeds in the FR2-3 mode; every second visit to the feeder was rewarded. In Arm-3, animals received four sunflower seeds in the FR3-4 mode; every third visit to the feeder was rewarded. Thus, one of two Arm-2 entries and two of three Arm-3 entries were not rewarded. Animals were trained in this mode for 2 weeks. During the first and second stages of training, different extents and likelihoods of reinforcement were used to model gambling-like behavior by the end of training [35]. Rats that did not enter the maze arms (no more than 15%) were excluded from the experiment.


Electrodes were implanted in animals that preferred Arm-3 of the Y-maze (n=9). Electrodes were not implanted in animals that did not prefer Arm-3 of the maze and thus did not exhibit clear addictive behavior. Tiletamine + zolazepam 50 mg/kg was used for anesthesia. A stimulating electrode (0.2 mm insulated stainless steel bipolar electrode) was implanted into the VTA. The coordinates relative to bregma were: AP = -5.3 mm,

L=0.8 mm, H=8.2 mm [36]. To record increased dopamine levels in the NAc, a glassy carbon electrode was implanted ipsilaterally (exposed fiber tip: $100~\mu m$ in length, 7 μm in diameter). A recording electrode was implanted as follows: AP=+2.0~mm (from bregma), L=1.2~mm, H=7.3~mm from the skull surface [36]. Moreover, a 3 mm high-pressure Ag/AgCl reference electrode was implanted: AP=+5.5~mm (from bregma), L=0. The electrodes were secured to the skull surface with UV-acrylic adhesive. During the following week, animals were kept in individual cages to recover from surgery [37].

The experiment was carried out using the Cyclone telemetry-based hardware-software system, which includes several modules: a fast-scan cyclic voltammetry (FSCV) unit (potentiostat), an electrical stimulator (neural tissue stimulator), visual and auditory stimulators, an accelerometer to determine head position, and a video tracking module for monitoring the animal's position [38]. Dopamine release in response to electrical stimulation of the VTA was recorded [39]. Dopamine release was assessed by changes in its extracellular levels in the nucleus accumbens in vivo by FSCV in anesthetized animals following electrode implantation, in response to electrical stimulation of the VTA with a single pulse packet (240 μA, 100 Hz, 1 s) [66, 67]. The VTA is a source of dopaminergic (but not serotoninergic or noradrenergic) fibers entering the nucleus accumbens. Therefore, we assume that increased voltammetric signal intensity in the nucleus accumbens during VTA stimulation is associated with increased dopamine release [16, 17].

These values were considered as the baseline (control) dopamine release. Following that, 0.9% sodium chloride solution or the study substance (IEM-1460 1 mg/kg) was administered intraperitoneally. Dopamine release was assessed again after 20 minutes. To record increases in dopamine levels in response to VTA stimulation, a holding potential of -0.4 V and a scan duration of 9 ms were used. Scanning pulses were applied every 100 ms. The anodic limit was +1.3 V. For data analysis, the open-source web application Analysis Kid was used. Analysis Kid developed by Hashemi Lab (USA) enables visualization, calibration, and filtering of neurochemical signals [40].

Following the experiments, electrode positioning was morphologically verified. The rats were sacrificed by ethaminal sodium overdose, perfused with 0.9% sodium chloride solution, and fixed in formalin. The brain was then extracted, embedded in celloidin, sectioned coronally, and stained with cresyl violet using the Nissl method (Fig. 1). Electrode positioning was verified after the end of the experiments using histological brain sections and a stereotaxic atlas [36]. To confirm the position of the stimulating electrode in the VTA, a coronal section was made at the "Bregma –5.3 mm" level according to the

Fig. 1. Morphological verification of electrode tracts in the brain of rats: a, electrode tract for VTA stimulation at the "Bregma –5.3 mm" level: eyepiece lens ×4, objective lens ×10; b, search initiation area for a thin recording electrode tract at the "Bregma +2.7 mm" level: eyepiece lens ×4, objective lens ×10; c, anterior part of the nucleus accumbens with a defect in the thin recording electrode implantation area at the "Bregma +2.0 mm" level: eyepiece lens ×10, objective lens ×10. IG, olfactory nuclei; Cpu, striatopallidal complex; Pir, piriform cortex; SepN, septal nuclei; VL, lateral ventricle; ca, anterior commissure. Nissl staining.

stereotaxic atlas. In this brain region, the VTA tissue is at its most extensive and corresponds to the dopaminergic paranigral nucleus. To confirm the position of the electrode in the nucleus accumbens, a coronal section was made at the "Bregma +2.7 mm" level according to the atlas. Sectioning continued for 0.7–1 mm to the region of the forebrain where the nucleus accumbens occupies the largest area (Fig. 1). In this region of the brain, the anterior commissure was displaced toward the dorsomedial portion of the nucleus, whereas the recording electrode tract was located in its largest, central region (Fig. 1).

The effect of the AMPA receptor antagonist IEM-1460 was assessed using the patch clamp technique (SyncroPatch 384/768PE) in isolated Danio rerio brain neurons [41]. The test procedure is described elsewhere [65]. Transmembrane currents were recorded using the patch clamp technique. Whole-cell patch clamp technique (–80 mV) was used. AMPA responses were elicited using solution No. 1 [65] + kainic acid 100 μ M (Sigma-Aldrich, USA) at 20 °C, pH 7.4 [42]. The study substance IEM-1460 at respective concentrations was dissolved in solution No. 1 [65] at 20 °C, pH 7.4.

Drug products. The study assessed the pharmacological activity of the AMPA receptor antagonist IEM-1460

[5-(1-adamentylmethylamino)pentyl trimetazolin bromide] (Fig. 2). IEM-1460 was dissolved in distilled water, and the pH was adjusted to 7.2 with 0.1 M NaOH. The substance was administered intraperitoneally 30 min before addictive behavior testing in the Y-maze. Following that, the substance was administered intraperitoneally during surgery after electrode implantation, and dopamine levels were measured every 5 min. The control was 0.9% sodium chloride solution (0.5 mL).

Statistical analysis. When processing the patch clamp analysis findings, concentration-response curves were built using a non-linear approximation of a regression curve, representing the relationship between logarithm of AMPA receptor antagonist concentration and steadystate current attenuation (%). The curve was used to determine the IC50 of the AMPA receptor antagonist. Graph Pad Prism 9 for Windows, version 9.5.1 (GraphPad Software, USA), was used for statistical analysis and graph plotting. When processing data on behavior and dopamine levels, the D'Agostino-Pearson test was used for normality testing of random variables. Data were analyzed using nonparametric statistics with the Mann-Whitney U test for small samples. The data in figures are presented as medians and quartiles $[Q_1, Me, Q_3]$. Differences were considered significant at p < 0.05.

Fig. 2. Structural formula of IEM-1460.

RESULTS

When assessing addictive behavior, the extents and likelihoods of reinforcement (modified lowa Gambling Task) determined the number of entries for each arm of the Y-maze. Seven rats did not enter the maze arms during the first stage of training and were excluded from the experiment. Thirty-five rats were trained for 21 days and tested on days 22 and 23. Intraperitoneal (IP) IEM1460 1 mg/kg reduced the proportion of Arm-3 entries relative to 0.9% sodium chloride solution (from $46.55\% \pm 1.86\%$ to $39.63\% \pm 2.80\%$, p < 0.01) and increased the proportion of Arm-1 entries relative to 0.9% sodium chloride solution (from $31.5\% \pm 3.1\%$ to $38.5\% \pm 4.1\%$, p < 0.05), indicating an antiaddictive effect of the substance (Table 1).

IEM-1460 3 mg/kg reduced the proportion of Arm-3 entries relative to 0.9% sodium chloride solution (from $46.55\% \pm 1.86\%$ to $41.98\% \pm 3.70\%$, p < 0.05), which also indicates an antiaddictive effect of the substance (Fig. 3). There were no significant changes with IEM-1460 10 mg/kg, with a lower proportion of Arm-3 entries relative to 0.9% sodium chloride solution. There were no significant changes in the total number of arm entries.

Therefore, the AMPA receptor antagonist IEM-1460 reduces impulsivity in a problem gambling model by decreasing the number of arm entries with a more significant but less likely food reinforcement.

IEM-1460 at an active dose of 1 mg/kg IP, determined during addictive behavior testing in the Y-maze, increased stimulation-induced dopamine responses. The induced phasic response 5 min after IEM-1460 did not differ significantly from dopamine release in the control group that received 0.9% sodium chloride solution. However, phasic dopamine release 30 min after IEM-1460 injection was significantly higher than in the control group, where the

phasic release was measured 30 min after injection of 0.9% sodium chloride solution ($p \le 0.01$) (Fig. 4).

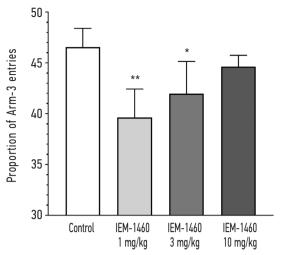
Therefore, VTA stimulation increases phasic dopamine release with IEM-1460 (Fig. 5).

We assessed the inhibition of AMPA receptors by IEM-1460 3 $\mu\text{M}.$ Fig. 6 shows the patch clamp analysis protocol.

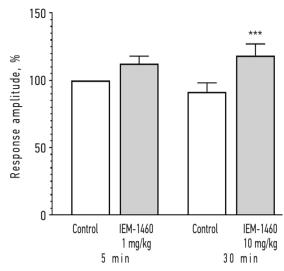
Therefore, our study confirmed that IEM-1460 inhibits AMPA receptors. The degree of AMPA receptor inhibition by IEM-1460 at a single dose of 3 μM was 86.7% \pm 8%, which is consistent with previous research [32].

DISCUSSION

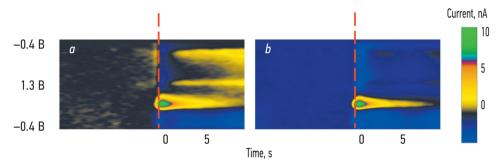
Tom 23, № 2, 2025


This study found that the selective GluA1-AMPA receptor antagonist IEM-1460 reduces impulsivity in a problem gambling model by decreasing the number of Y-maze arm entries, which is associated with a more significant but less likely food reinforcement. This is consistent with existing data that AMPA receptor inhibition reduces chemical addiction [22]. AMPA receptor antagonists are known to reduce alcohol, psychostimulant, and opiate addiction. Moreover, they prevent reinstatement triggered by these substances [22]. Our previous studies showed that the GluA1-AMPA receptor antagonist IEM-1460 inhibits the rewarding effect of electrical stimulation of the hypothalamus [24]. There is evidence that the AMPA receptor antagonist topiramate inhibits problem gambling components [29].

Therefore, it is reasonable to use selective GluA1-AMPA receptor antagonists to assess and treat such problem gambling components as impulsivity. Our study confirmed that IEM-1460 inhibits AMPA receptors, which is consistent with the effect on GluA1R. The degree of AMPA receptor inhibition by IEM-1460 3 μ M was 86.7% \pm 8%, which is consistent with previous research [32]. Spermine could also be used for this purpose. Spermine, a natural polyamine NMDA receptor antagonist with AMPA receptor antagonist properties, inhibits interneuronal GluA1 receptors. Spermine enhances memory, learning, locomotor activity, and exploratory behavior; however, it does not completely reduce the toxic effects of kainate and promotes the toxic effects of glutamate on NMDA receptors


Table 1. Proportions of Y-maze arm entries for the control and the GluA1-AMPA receptor antagonist IEM-1460

Parameter	Proportion of arm entries			Total number
	Arm-1	Arm-2	Arm-3	of arm entries
0.9% sodium chloride solution	31.5 ± 3.12	21.4 ± 3.4	46.55 ± 1.86	39.3 ± 1.9
IEM 1460 1 mg/kg IP	38.5 ± 4.1*	23.1 ± 5.5	39.63 ± 2.8**	42.8 ± 4.5
IEM 1460 3 mg/kg IP	34.7 ± 4.1	24.6 ± 3.7	41.98 ± 3.7*	36.8 ± 4.5
IEM 1460 10 mg/kg IP	34.6 ± 3.8	22.4 ± 3.3	43.5 ± 1.3	31.4 ± 6.5


Note. * $p \le 0.05$; ** $p \le 0.01$ vs control (0.9% sodium chloride solution). IP, intraperitoneally.

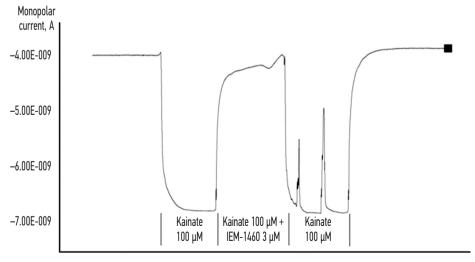

Fig. 3. Proportion (%) of Y-maze Arm-3 entries in rats that received intraperitoneal IEM-1460 at various doses versus control (0.9% sodium chloride solution). $*p \le 0.05$; $**p \le 0.01$ vs control.

Fig. 4. Changes in phasic dopamine release in the nucleus accumbens in response to electrical stimulation of the ventral tegmental area following intraperitoneal administration of IEM-1460 1 mg/kg. *** $p \le 0.01$.

Fig. 5. Kinetics of changes in extracellular dopamine levels in the nucleus accumbens in response to electrical stimulation of the ventral tegmental area. Voltammogram following stimulation of the ventral tegmental area in animals receiving 0.9% sodium chloride solution (a) and IEM-1460 (b). The color scale represents electric current variations relative to its baseline level at time point 0.

Kainate 100 μ M - Kainate + IEM-1460 3 μ M - Kainate

Fig. 6. Testing of IEM-1460 antagonist at a dose of 3 μ M. Ala VC3/4 perfusion system is used for sequential administration of agonist (kainate 100 μ M), agonist (kainate 100 μ M) + antagonist (IEM-1460 3 μ M), and agonist (kainate 100 μ M)

in the cortex, VTA and NAc [26]. IEM-1460 activity is twice as high as that of spermine [44]. Unlike spermine, IEM-1460 completely inhibited GluA1-AMPA receptors and showed high neuroprotective activity [45, 46].

IEM-1460 is a selective GluA1-AMPA receptor antagonist that also inhibits alpha-3 beta-4 nicotinic receptors and acts as a direct GluA2-AMPA receptor agonist [26]. Alpha-3 beta-4 nicotinic receptor antagonists inhibit selfstimulation and self-administration of cocaine, amphetamine, morphine, nicotine, and other addictive substances, reduce behavioral sensitization and tolerance to these substances, and eliminate withdrawal syndrome [47]. Alpha-3 beta-4 nicotinic receptors are located in interneuronal presynapses, and their activation promotes a massive release of endogenous glutamate, resulting in seizures caused by GluA1-AMPA receptor activation in the cortex. Alpha-3 beta-4 nicotinic receptors are primarily found in interneuronal presynapses of pyramidal cells of the brain [48]. This likely explains glutamate release caused by this type of stimulation [49]. IEM-1460 is a selective blocker of parasympathetic ganglia [50], including alpha-3 beta-4 nicotinic receptors [51], IEM-1460 eliminates nicotine-induced seizures and analgesia [52]. Therefore, the inhibitory effect of IEM-1460 on parasympathetic alpha-3 beta-4 nicotinic receptors in glutamatergic nerve terminals in the NAc is a significant component of its potential antiaddictive effect. Furthermore, unlike memantine, IEM-1460 lacks phencyclidine-like activity and can eliminate this activity of memantine and MK-801 [23], indicating its high antiaddictive potential [24]. IEM-1460 is a direct agonist of GluA2-AMPA receptors on pyramidal cells of the cortex [53].

IEM-1460 has a unique combination of three antiaddictive effects (GluA1-AMPA receptor inhibition, nicotinic acetylcholine receptor inhibition, and GluA2 activation), indicating a significant antiaddictive potential. No other products for the treatment of problem gambling have the same set of properties. This combination of properties in a single drug must ensure its high efficacy in other tests, as confirmed in our experiments using a modified lowa Gambling Task to assess impulsivity in a Y-maze-based problem gambling model in rats.

The key indicator of antiaddictive properties is the drug's efficacy in modulating extracellular dopamine levels in the NAc, a brain structure that determines the resultant component of a motive state and transforms it into approach or avoidance behavior [54]. Changes in phasic dopamine release in the NAc in response to electrical stimulation of the VTA indicated an increase in phasic dopamine release following IEM-1460 injection at an active dose of 1 mg/kg IP. This dose was most effective when assessing impulsivity in a Y-maze-based problem gambling model using a modified Iowa Gambling Task. These findings are consistent with published research. The mGlu 2/3 receptor antagonist LY341495 increases

extracellular dopamine levels in the NAc [33]. Antiaddictive properties have been reported for drugs that effectively modulate extracellular dopamine levels, increasing or reducing its release in the NAc [55]. Dopamine receptor antagonists have also been shown to increase dopamine release in the NAc. According to in vivo microdialysis, levo-tetrahydropalmatine (L-THP), a dopamine D₁ and D₂ receptor antagonist, increases extracellular dopamine levels in the NAc, with a dose-dependent increase in cocaine-induced dopamine release. L-THP inhibits cocaine-induced conditioned place preference and prevents cocaine- or methamphetamine-triggered reinstatement [56]. Moreover, L-THP attenuates cocaineenhanced brain stimulation reward and provides a dosedependent decrease in cocaine self-administration under progressive-ratio reinforcement [57]. This self-administration mode is similar to problem gambling patterns that we attempted to model in this work, where impulsivity was assessed in a Y-maze-based problem gambling model.

The question is how increased extracellular dopamine levels can produce a potential therapeutic effect of AMPA receptor antagonists in addictive behavior. Reinforcement-induced phasic dopamine release in the NAc (triggered by gambling or addictive substances) can also activate neural adaptation processes. Signals from the NAc activate striatopallidal and pallidal-thalamocortical circuits, including the dorsal striatum, resulting in adaptive changes and stereotyped behavior, which underlies impulsive and compulsive reward-seeking behaviors [58]. The key synaptic changes in this case are associated with NMDA and AMPA receptor-mediated glutamatergic transmission from the prefrontal cortex and amygdala to the VTA and NAc [59]. Long-term use of addictive substances is likely associated with impaired dopamine function, as indicated by reduced dopamine release and the number of D2 receptors. Furthermore, reduced striatal D2 receptors are associated with decreased activity of the orbitofrontal cortex (implicated in salience attribution, motivation, and compulsive behavior) and the anterior cingulate cortex (implicated in inhibitory control regulation and impulsivity). This results in impaired prefrontal self-regulation, loss of control, and compulsive drug taking, indicating addiction [60]. Reinforcing effects of addictive substances and stimuli are primarily determined by the extent and rate of dopamine release in the NAc, and chronic exposure activates glutamate-mediated neural adaptation in dopamine terminals of the mesolimbic system, reducing dopamine release and the number of D_2 receptors [61]. Increased risk of relapse in the treatment of disorders due to addictive behaviors, depression, and dysphoria are frequently associated with impaired dopamine function [61, 62]. Therefore, antiaddictive therapies that increase extracellular dopamine levels are superior to substitution therapy [63].

CONCLUSION

Inhibition of GluA1-AMPA receptors with IEM-1460 reduces impulsivity in a problem gambling model by modulating extracellular dopamine levels. IEM-1460 reduces the number of visits to the Y-maze arm with a more significant but less likely food reinforcement, decreasing impulsivity in a problem gambling model using a modified lowa Gambling Task. Changes in phasic dopamine release in the NAc in response to electrical stimulation of the VTA indicated an increase in phasic dopamine release following IEM-1460 injection at an active dose of 1 mg/kg IP. This dose was most effective when assessing impulsivity in a Y-maze-based model. Our work confirmed that IEM-1460 is a potent AMPA receptor antagonist, which is consistent with published research.

ADDITIONAL INFO

Author contributions: A.A. Lebedev: project administration, data curation, writing—original draft; A.M. Potapkin: conceptualization, formal analysis, investigation, writing—review & editing; S.S. Pyurveev, V.V. Sizov, V.N. Mukhin, M.A. Netesa: investigation; V.E. Gmiro: resources, writing—review & editing; P.D. Shabanov— conceptualization, supervision. All the authors approved the version of the draft to be published and agreed to be accountable for all aspects of the work, ensuring that issues related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Ethics approval: The study was approved by the local ethical committee of Institute of Experimental Medicine (protocol No. 2/23 dated 2023 Jun 15).

Funding sources: This study was part of the state assignment of the Federal State Budgetary Scientific Institution Institute of Experimental Medicine (FGWG-2025-0020), "Search for Molecular Targets for Pharmacological Intervention in Addictive and Neuroendocrine Disorders to Develop New Pharmacologically Active Compounds Acting on CNS Receptors."

Disclosure of interests: The authors have no relationships, activities or interests for the last three years related with for-profit or not-for-profit third parties whose interests may be affected by the content of the article.

Statement of originality: No previously obtained or published material (text, images, or data) was used in this study or article.

Data availability statement: data generated in this study are available in the article.

Generative AI: Generative AI technologies were not used for this article

Provenance and peer-review: This work was submitted to the journal on its own initiative and reviewed according to the standard procedure. Two external reviewers, and a member of the editorial board participated in the review.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Вклад авторов. А.А. Лебедев — организация проведения экспериментов, обзор литературы, сбор и анализ литературных источников, написание текста; А.М. Потапкин — продвижение идеи, биоинформатический анализ данных, экспериментальные процедуры, редактирование статьи; С.С. Пюрвеев, В.В. Сизов, В.Н. Мухин, М.А. Нетеса — экспериментальные процедуры; В.Е. Гмиро — синтез соединения, редактирование статьи; П.Д. Шабанов — общая идея и руководство работой. Все авторы одобрили рукопись (версию для публикации), а также согласились нести ответственность за все аспекты работы, гарантируя надлежащее рассмотрение и решение вопросов, связанных с точностью и добросовестностью любой ее части.

Этическая экспертиза. Исследование одобрено локальным этическим комитетом ФГБНУ «Институт экспериментальной медицины», протокол № 2/23 от 15.06.2023.

Источники финансирования. Исследование выполнено в рамках государственного задания ФГБНУ «Институт экспериментальной медицины» FGWG-2025-0020 «Поиск молекулярных мишеней для фармакологического воздействия при аддиктивных и нейроэндокринных нарушениях с целью создания новых фармакологически активных веществ, действующих на рецепторы ЦНС».

Раскрытие интересов. Авторы заявляют об отсутствии отношений, деятельности и интересов за последние три года, связанных с третьими лицами (коммерческими и некоммерческими), интересы которых могут быть затронуты содержанием статьи.

Оригинальность. При создании настоящей работы авторы не использовали ранее опубликованные сведения (текст, иллюстрации, данные).

Доступ к данным. Все данные, полученные в настоящем исследовании, доступны в статье.

Генеративный искусственный интеллект. При создании настоящей статьи технологии генеративного искусственного интеллекта не использовали.

Рассмотрение и рецензирование. Настоящая работа подана в журнал в инициативном порядке и рассмотрена по обычной процедуре. В рецензировании участвовали два внешних рецензента и член редакционной коллегии.

REFERENCES

- 1. Shabanov PD, Yakushina ND, Lebedev AA. Pharmacology of peptide mechanisms of gambling behavior in rats. *Journal of addiction problems*. 2020;(4):24–44. doi: 10.47877/0234-0623_2020_4_24 EDN: JBUQJN
- **2.** Ioannidis K, Hook R, Wickham K, et al. Impulsivity in gambling disorder and problem gambling: a metanalysis. *Neuropsychopharmacology*. 2019;44:1354–1361. doi: 10.1038/s41386-019-0393-9

- **3.** Aram S, Levy L, Pate JB, et al. The lowa gambling task: A review of the historical evolution, scientific basis, and use in functional neuroimaging. *SAGE Open.* 2019;9(3):1–12. doi: 10.1177/2158244019856911
- **4.** Pyurveev SS, Nekrasov MS, Dedanishvili NS, et al. Chronic mental stress in early ontogenesis increased risks of development for chemical and non-chemical forms of addiction. *Reviews on Clinical Pharmacology and Drug Therapy*. 2023;21(1):69–78. doi: 10.17816/RCF21169-78 EDN: GJBUYN
- **5.** Sekste EA, Lebedev AA, Bychkov ER, et al. Increase in the level of orexin receptor 1 (0X1R) mRNA in the brain structures of rats prone to impulsivity in behavior. *Biochemistry (Moscow)*. 2021;67(5):411–417. doi: 10.18097/PBMC20216705411 EDN: ZVENEQ
- **6.** Lebedev AA, Karpova IV, Bychkov ER, et al. The ghrelin antagonist [D-LYS3]-GHRP-6 decreases signs of risk behavior in a model of gambling addiction in rats by altering dopamine and serotonin metabolism. *Neuroscience and Behavioral Physiology*. 2022;52(3):415–421. doi: 10.1007/s11055-022-01255-x EDN: LZTUKA
- **7.** Gruzdeva VA, Sharkova AV, Zaichenko MI, Grigoryan GA. The influence of early pro inflammatory stress on manifestations of impulsive behavior in rats of different age and sex. *I.P. Pavlov Journal of Higher Nervous Activity.* 2021;71(1):114–125. doi: 10.31857/S0044467721010056 EDN: MKHQSI
- **8.** Pavlova IV, Zaichenko MI, Merzhanova GK, Grigoryan GA. Conditioned reflex reac-tions in high-impulsivity rats are weaker than those in low-impulsivity animals. *Neuroscience and Behavioral Physiology*. 2020;50(5):567–574. doi: 10.1007/s11055-020-00937-8
- **9.** Zaichenko MI, Merzhanova GK, Grigoryan GA. Ability to discriminate visual signals in the morris water maze in high- and low-impulsivity rats. *Neuroscience and Behavioral Physiology*. 2020;70(2):231–242. doi: 10.31857/S0044467720020136
- **10.** Weidacker K, Johnston SJ, Mullins PG, et al. Impulsive decision-making and gambling severity: The influence of γ-amino-butyric acid (GABA) and glutamate-glutamine (Glx). *Eur Neuropsychopharmacol*. 2020;32:36–46. doi: 10.1016/j.euroneuro.2019.12.110
- **11.** Fischer KD, Knackstedt LA, Rosenberg PLA. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. *Neurochem Int.* 2021;144:104896. doi: 10.1016/j.neuint.2020.104896
- **12.** Bimpisidis Z, Wallén-Mackenzie Å. Neurocircuitry of reward and addiction: potential impact of dopamine—glutamate co-release as future target in substance use disorder. *J Clin Med.* 2019;8(11):1887. doi: 10.3390/jcm8111887
- **13.** Christie MJ, Summers RJ, Stephenson JA, et al. Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA. *Neuroscience*. 1987;22(2):425–439. doi: 10.1016/0306-4522(87)90345-9
- **14.** Cai J, Tong Q. Anatomy and function of ventral tegmental area glutamate neurons. *Front Neural Circuits*. 2022;16:867053. doi: 10.3389/fncir.2022.867053
- **15.** Bouchard AE, Dickler M, Renauld E, et al. Brain morphometry in adults with gambling disorder. *J Psychiatr Res.* 2021;141;66–73. doi: 10.1016/j.jpsychires.2021.06.032

- **16.** Blaha CD, Yang CR, Floresco SB, et al. Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. *Eur J Neurosci*. 1997;9(5):902–911. doi: 10.1111/i.1460-9568.1997.tb01441.x
- **17.** Tzschentke TM, Schmidt WJ. Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward. *Crit Rev Neurobiol*. 2000;14(2):131–142. doi: 10.1615/CritRevNeurobiol.v14.i2.20
- **18.** Youngren KD, Daly DA, Moghaddam B. Distinct actions of endogenous excitatory amino acids on the outflow of dopamine in the nucleus accumbens. *J Pharmacol Exp Ther*. 1993;264(1):289–293. doi: 10.1016/S0022-3565(25)10266-8
- **19.** Morrell CN, Sun H, Ikeda M, et al. Glutamate mediates platelet activation through the AMPA-receptor. *J Exp Med.* 2008; 205(3):575–584. doi: 10.1084/jem.20071474
- **20.** van Huijstee AN, Mansvelder HD. Glutamatergic synaptic plasticity in the mesocortico-limbic system in addiction. *Front Cell Neurosci.* 2015;8:466. doi: 10.3389/fncel.2014.00466
- **21.** Vekovischeva OY, Zamanillo D, Echenko O, et al. Morphine-induced dependence and sensitization are altered in mice deficient in AMPA-type glutamate receptor-A subunits. *J Neurosci.* 2001;21(12):4451–4459. doi: 10.1523/JNEUROSCI.21-12-04451.2001
- **22.** Rasmussen K. The role of the locus coeruleus and N-methyl-D-aspartic acid (NMDA) and AMPA receptors in opiate withdrawal. *Neuropsychopharmacology*. 1995;13(4):295–300. doi: 10.1016/0893-133X(95)00082-0
- **23.** Bespalov AYu, Zvartau EE. *Neuropsychopharmacology of NMDA receptor antagonists*. Saint Petersburg: Nevsky Dialect; 2000. 297 p. (In Russ.)
- **24.** Potapkin AM, Lebedev AA, Gmiro VE, et al. Study of reinforcing properties of new antagonists of glutamate receptors. *Reviews on Clinical Pharmacology and Drug Therapy.* 2017;15(1):41–47. doi: 10.17816/RCF15141-47 EDN: YJMXLP
- **25.** Ducrot C, Fortier E, Bouchard C, Rompre P-P. Opposite modulation of brain stimulation reward by NMDA and AMPA receptors in the ventral tegmental area. *Front Syst Neurosci.* 2013;7:57. doi: 10.3389/fnsys.2013.00057
- **26.** Potapkin AM, Gmiro VE., Shabanov PD. Selective antagonists of calcium-permeable GluA1 AMPA-receptors as potential antiaddictive agents. *Psychopharmacology and biological narcology.* 2022; 13(3):7–30. doi: 10.17816/phbn267069 EDN: YNKAYQ
- **27.** Hansen KB, Wollmuth LP, Bowie D, et al. Structure, function, and pharmacology of glutamate receptor ion channels. *Pharmacol Rev.* 2021;73(4):298–487. doi: 10.1124/pharmrev.120.000131
- **28.** Yang W, Ma L, Hai D-M, et al. Hippocampal proteomic analysis in male mice following aggressive behavior induced by long-term administration of perampanel. *ACS Omega*. 2022;7(23):19388–19400. doi: 10.1021/acsomega.2c01008
- **29.** Dannon PN, Lowengrub K, Gonopolski Y, et al. Topiramate versus fluvoxamine in the treatment of pathological gambling: A randomized,

blind-rater comparison study. *Clin Neuropharmacol*. 2005;28(1):6–10. doi: 10.1097/01.wnf.0000152623.46474.07

Vol. 23(2) 2025

- **30.** Black D, McNeilly D, Burke WJ, et al. An open-label trial of acamprosate in the treatment of pathological gambling. *Ann Clin Psychiatry*. 2011;23(4):250–256.
- **31.** Magazanik LG, Buldakova SL, Samoilova MV, et al. Block of open channels of recombinant AMPA receptors and native AMPA/kainate receptors by adamantane derivatives. *J Physiol*. 1997; 505(3):655–663. doi: 10.1111/j.1469-7793.1997.655ba.x
- **32.** Gmiro VE, Zhigulin AS. Search for selective GluA1 AMPA receptor antagonists in a series of dicationic compounds. *Pharmaceutical Chemistry Journal*. 2022;56(3):8–14. doi: 10.30906/0023-1134-2022-56-3-8-14 EDN: ZSRCMD
- **33.** Karasawa J-i, Kotani M, Kambe D, Chaki S. AMPA receptor mediates mGlu 2/3 receptor antagonist-induced dopamine release in the rat nucleus accumbens shell. *Neurochem Int.* 2010;57(5):615–619. doi: 10.1016/j.neuint.2010.07.011
- **34.** Hultman C, Tjernstr N, Vadlin S, et al. Exploring decision-making strategies in the Iowa gambling task and rat gambling task. *Front Behav Neurosci.* 2022;16:964348. doi: 10.3389/fnbeh.2022.964348
- **35.** Lebedev AA, Purveev SS, Sexte EA, et al. Studying the involvement of ghrelin in the mechanism of gambling addiction in rats after exposure to psychogenic stressors in early ontogenesis. *Russian Journal of Physiology*. 2023;109(8):1080–1093. doi: 10.31857/s086981392308006x EDN: FCMBCJ
- **36.** Paxinos G, Watson C. *The rat brain in stereotaxic coordinates. 6th ed.* San Diego: Elsevier Academic Press; 2005. 207 p.
- **37.** Pyurveev SS, Sizov VV, Lebedev AA, et al. Registration of changes in the level of extracellular dopamine in the nucleus accumbens by fast-scan cyclic voltammetry during stimulation of the zone of the ventral tegmental area, which also caused a self-stimulation. *Russian journal of physiology*. 2022;108(10):1316–1328. doi: 10.31857/S0869813922100107 EDN: HVMITZ
- **38.** Sizov VV, Lebedev AA, Pyurveev SS, et al. Method for training electrical self-stimulation in response to head elevation in rats by a telemetry system that registers extracellular dopamine levels. *Neuroscience and Behavioral Physiology*. 2023;73(4):563–576. doi: 10.31857/s0044467723040093 EDN: WHOHOT
- **39.** Castagnola E, Robbins EM, Woeppel K, et al. Real-time fast scan cyclic voltammetry detection and quantification of exogenously administered melatonin in mice. *Front Bioeng Biotechnol*. 2020;8:602216. doi: 10.3389/fbioe.2020.602216
- **40.** Mena S, Visentin M, Witt CE, et al. User-friendly experimental and analysis strategies for fast voltammetry: Next generation FSCAV with Artificial Neural Networks. *ACS Meas Sci Au.* 2022;2(3):241–250. doi: 10.1021/acsmeasuresciau.1c00060
- **41.** Zoodsma JD, Chan K, Bhandiwad AA, et al. A model to study NMDA receptors in early nervous system development. *J Neurosci*. 2020;40(18):3631–3645. doi: 10.1523/JNEUROSCI.3025-19.2020
- **42.** Kim KH, Gmiro VE, Tikhonov DB, Magazanik LG. Mechanisms of blockade of ion channels of glutamate receptors: the paradox

- of 9-aminoacridine. *Biological membranes*. 2007;24(1):97–104. (In Russ.) EDN: HYSSTX
- **43.** Vorobjev VS, Sharonova IN, Haas HL. A simple perfusion system for patch-clamp studies. *J Neurosci Methods*. 1996;68(2):303–307. doi: 10.1016/0165-0270(96)00097-0
- **44.** Serdyuk SE, Gmiro VE. IEM-1460 and spermine potentiate analgesic effect of fentanyl and dipyrone in rats. *Russian journal of physiology*. 2013;99(12):1361–1365. EDN: RPVKZL
- **45.** Kopach O, Krotov V, Goncharenko J, Voitenko N. Inhibition of spinal Ca(2+)-permeable AMPA receptors with dicationic compounds alleviates persistent inflammatory pain without adverse effects. *Front Cell Neurosci.* 2016;10:50. doi: 10.3389/fncel.2016.00050
- **46.** Adotevi N, Lewczuk E, Sun H, et al. AMPA receptor plasticity sustains severe, fatal status epilepticus. *Ann Neurol*. 2020;87(1):84–96. doi: 10.1002/ana.25635
- **47.** Glick SD, Maisonneuve IM, Kitchen BA, Fleck MW. Antagonism of a3b4 nicotinic receptors as a strategy to reduce opioid and stimulant self-administration. *Eur J Pharmacol*. 2002;438(1–2):99–105. doi: 10.1016/s0014-2999(02)01284-0
- **48.** Nelson ME, Wang F, Kuryatov A, et al. Functional properties of human nicotinic AChRs expressed by IMR-32 neuroblastoma cells resemble those of alpha3beta4 AChRs expressed in permanently transfected HEK cells. *J Gen Physiol*. 2001;118(5):563–582. doi: 10.1085/jgp.118.5.563
- **49.** Alkondon M, Albuquerque EX. The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. *Progr Brain Res.* 2004;145:109–120. doi: 10.1016/S0079-6123(03)45007-3
- **50.** Gmiro VE, Groysman SD, Lukomskaya NYa, et al. Selective blockers of parasympathetic ganglia. *Reports of the USSR Academy of Sciences*. 1987;292(2):497–501. (In Russ.)
- **51.** Koval OM, Voitenko LP, Skok MV, et al. The beta-subunit composition of nicotinic acetylcholine receptors in the neurons of the guinea pig inferior mesenteric ganglion. *Neurosci Lett.* 2004;365(2):143–146. doi: 10.1016/j.neulet.2004.04.071
- **52.** Serdyuk SE, Gmiro VE. Blockade of the α3β4 N-cholinoreceptors and GLuR1 AMPA receptors eliminates clonic-tonic nicotinic and kainate seizures. *Experimental and clinical pharmacology*. 2008;71(4):14–17. doi: 10.30906/0869-2092-2008-71-4-14-17 EDN: TNKEAD
- **53.** Skatchkov SN, Buldakova SL, Veh RW, et al. AMPAR channel block and potentiation by spermine and IEM 1460. *Abstracts of Society for Neuroscience*. 2002.
- **54.** Lingford-Hughes A, Watson B, Kalk N, Reid A. Neuropharmacology of addiction and how it informs treatment. *Br Med Bull*. 2010;96(1):93–110. doi: 10.1093/bmb/ldq032
- **55.** Scofield MD, Heinsbroek JA, Gipson CD, et al. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. *Pharmacol Rev.* 2016;68(3):816–871. doi: 10.1124/pr.116.012484
- **56.** Luo JY, Ren YH, Zhu R, et al. The effect of l-tetrahydropalmatine on cocaine induced conditioned place preference. *Chinese J Drug Depend*. 2003;12:177–179.

- **57.** Xi Z-X, Yang Z, Li S-J, et al. Levo-tetrahydropalmatine inhibits cocaine's rewarding effects: Experiments with self-administration and brain-stimulation reward in rats. *Neuropharmacology*. 2007;53(6):771–782. doi: 10.1016/j.neuropharm.2007.08.004
- **58.** Koob GF, Volkow ND. Neurobiology of addiction: A neurocircuitry analysis. *Lancet Psychiatry*. 2016;3(8):760–773. doi: 10.1016/S2215-0366(16)00104-8
- **59.** Wolf ME, Ferrario CR. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. *Neurosci Biobehav Rev.* 2010;35(2):185–211. doi: 10.1016/j.neubiorev.2010.01.013
- **60.** Volkow ND, Michaelides M, Baler R. The neuroscience of drug reward and addiction. *Physiol Rev.* 2019;99(4):2115–2140. doi: 10.1152/physrev.00014.2018
- **61.** Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. *Arch Gen Psychiatry*. 2007;6493):327–337. doi: 10.1001/archpsyc.64.3.327
- **62.** Grunze H, Csehi R, Born C, Barabássy Á. Reducing addiction in bipolar disorder via hacking the dopaminergic system. *Front Psychiatry Psychopharmacol.* 2021;12:803208. doi: 10.3389/fpsyt.2021.803208

- **63.** Wall ME, Durand CR, Machover H, et al. Perceptions of problem gambling among methadone maintenance treatment clients and counselors. *J Gambl Iss.* 2018;40:45–68. doi: 10.4309/jgi.2018.40.3
- **64.** Panagis G, Vlachou S, Higuera-Matas A, Simon M. Editorial: neurobehavioral mechanisms of reward: theoretical and technical perspectives and their implications for psychopathology. *Front Behav Neurosci.* 2022;16:967922. doi: 10.3389/fnbeh.2022.967922
- **65.** Brusina MA, Potapkin AM, Kubarskaya LG, et al. Anticonvulsant activity of 6,7-dihydro-5*H*-pyrrolo[1,2-*a*]imidazole-2,3-dicarboxylic acid and its bis-methylamide. *Pharmaceutical Chemistry Journal*. 2024;58(10):25–30. doi: 10.30906/0023-1134-2024-58-10-25-31 EDN: KDUQSL
- **66.** Robinson DL, Venton BJ, Heien MLAV, Wightman RM. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. *Clin Chem.* 2003;49(10):1763–1773. doi: 10.1373/49.10.1763
- **67.** Park C, Oh Y, Shin H, et al. Fast cyclic square-wave voltammetry to enhance neurotransmitter selectivity and sensitivity. *Anal Chem.* 2018;90(22):13348–13355. doi: 10.1021/acs.analchem.8b02920

AUTHORS' INFO

Andrei A. Lebedev, Dr. Sci. (Biology), Professor; ORCID: 0000-0003-0297-0425; eLibrary SPIN: 4998-5204; e-mail: aalebedev-iem@rambler.ru

*Aleksandr M. Potapkin, MD, Cand. Sci. (Medicine); address: 12 Akademika Pavlova st., Saint Petersburg, 197022, Russia; ORCID: 0009-0009-6034-364X; e-mail: potanin.alexander@yandex.ru

Sarng S. Pyurveev, MD, Cand. Sci. (Medicine); ORCID: 0000-0002-4467-2269; eLibrary SPIN: 5915-9767; e-mail: dr.purveev@gmail.com

Vadim V. Sizov; ORCID: 0009-0001-6198-1821; eLibrary SPIN: 1397-7380; e-mail: sizoff@list.ru

Valerii E. Gmiro, Cand. Sci. (Chemistry); eLibrary SPIN: 1526-2154; e-mail: g2119@online.ru

Eugenii R. Bychkov, MD, Dr. Sci. (Medicine); ORCID: 0000-0002-8911-6805; eLibrary SPIN: 9408-0799; e-mail: bychkov@mail.ru

Valery N. Mukhin, MD, Cand. Sci. (Medicine); ORCID: 0000-0003-0999-6847; eLibrary SPIN: 3655-9126; e-mail: Valery.Mukhin@gmail.com

Mariia A. Netesa; ORCID: 0009-0002-7353-1745; eLibrary SPIN: 8429-6486; e-mail: saintula@gmail.com

ОБ АВТОРАХ

Лебедев Андрей Андреевич, д-р биол. наук, профессор; ORCID: 0000-0003-0297-0425; eLibrary SPIN: 4998-5204; e-mail: aalebedev-iem@rambler.ru

*Потапкин Александр Михайлович, канд. мед. наук; адрес: Россия, 197022, Санкт-Петербург, ул. Академика Павлова, д. 12; ORCID: 0009-0009-6034-364X; e-mail: potanin.alexander@yandex.ru

Пюрвеев Сарнг Саналович, канд. мед. наук; ORCID: 0000-0002-4467-2269; eLibrary SPIN: 5915-9767; e-mail: dr.purveev@gmail.com

Сизов Вадим Викторович; ORCID: 0009-0001-6198-1821; eLibrary SPIN: 1397-7380; e-mail: sizoff@list.ru

Гмиро Валерий Евгеньевич, канд. хим. наук; eLibrary SPIN: 1526-2154; e-mail: g2119@online.ru

Бычков Евгений Рудольфович, д-р мед. наук; ORCID: 0000-0002-8911-6805; eLibrary SPIN: 9408-0799; e-mail: bychkov@mail.ru

Мухин Валерий Николаевич, канд. мед. наук; ORCID: 0000-0003-0999-6847; eLibrary SPIN: 3655-9126; e-mail: Valery.Mukhin@gmail.com

Нетеса Мария Александровна; ORCID: 0009-0002-7353-1745; eLibrary SPIN: 8429-6486; e-mail: saintula@gmail.com

^{*} Corresponding author / Автор, ответственный за переписку

Dmitrii E. Anisimov; e-mail: anisimov_bb@mail.ru

Andrey V. Droblenkov, Dr. Med. Sci. (Medicine), Professor; ORCID: 0000-0001-5155-1484; e-mail: droblenkov a@mail.ru

Petr D. Shabanov, MD, Dr. Sci. (Medicine), Professor; ORCID: 0000-0003-1464-1127; eLibrary SPIN: 8974-7477; e-mail: pdshabanov@mail.ru

Анисимов Дмитрий Евгеньевич; e-mail: anisimov_bb@mail.ru

Дробленков Андрей Всеволодович, д-р мед. наук, профессор; ORCID: 0000-0001-5155-1484; e-mail: droblenkov_a@mail.ru

Шабанов Петр Дмитриевич, д-р мед. наук, профессор; ORCID: 0000-0003-1464-1127; eLibrary SPIN: 8974-7477; e-mail: pdshabanov@mail.ru