DOI: 10.17816/byusu20190244-61 УДК 621.382

В. А. Солодуха, Ю. П. Снитовский, Я. А. Соловьев

ОСОБЕННОСТИ МЕТОДА ВНУТРЕННЕГО ФОРМИРОВАНИЯ СТРУКТУР В БИПОЛЯРНОЙ И КМОП-ТЕХНОЛОГИЯХ

Показана возможность создания кремниевых биполярных мощных СВЧ-транзисторов методом ионного легирования монокремния ионами B^+ через слой SiO₂ и эмиттерные окна в нем с последующим введением в них ионов P^+ и отжигом в атмосфере аргона. Разработанный процесс обеспечивает снижение трудоемкости изготовления и улучшение частотных и мощностных характеристик транзисторов: повышение f_{zp} ($I_K = 1,5 A$) с 1,8 до 2,1 ГГц и с 1,5 до 1,9 ГГц ($I_K = 2,8 A$), P_{6blx} с 20 до 21,3 Вт, коэффициент усиления по мощности с 2,5 до 2,7, коэффициент полезного действия коллектора с 60 до 79,8 %. Рассмотрено формирование карманов n^- и p^- типа КМОП-структур с применением маски из термического SiO₂ без слоя Si₃N₄. Разработанный процесс обеспечивает снижение трудоемкости изготовления на ~21,5 % и повышение выхода годных структур КМОП ИС на ~4,5 % благодаря снижению величины остаточных напряжений в монокремнии и совершенствованию методов легирования карманов.

Ключевые слова: биполярная технология, МОП-структура, монокремний, фотолитография, ионное легирование, самосовмещение, самоформирование.

V. A. Solodukha, Yu. P. Snitovsky, Ya. A. Soloviev

PECULIARITIES OF THE METHOD IN INTERNAL FORMATION OF STRUCTURES IN BIPOLAR AND CMOS TECHNOLOGIES

The possibility of creating silicon bipolar high-power microwave transistors by the method of ion doping of monosilicon with B + ions through a layer of SiO₂ and emitter windows in it with the subsequent introduction of P + ions into them and annealing in argon is shown. The developed process reduces the labor intensity of manufacturing and improves the frequency and power characteristics of transistors: increasing the cut-off frequency (collector current = 1.5 A) from 1.8 to 2.1 GHz and from 1.5 to 1.9 GHz (collector current = 2,8 A), output power from 20 to 21.3 W, power gain from 2.5 to 2.7, collector efficiency from 60 to 79.8 %. The formation of pockets of n- and p- type CMOS structures was considered using a mask of thermal SiO₂ without a layer of Si₃N₄. The developed process reduces the labor intensity of manufacturing by ~ 21.5 % and increases the yield of CMOS microcircuit structures by ~ 4.5 %, thanks to a decrease in the residual stresses in monosilicon and the improvement of pocket doping methods.

Key words: bipolar technology, MOS structure, monosilicon, photolithography, ion doping, self-alignment, self-formation.

Введение

Поиск компромиссных решений, позволяющих получить оптимальную комбинацию энергетических и частотных параметров биполярных кремниевых транзисторов, привел к тому, что сложился определенный подход к их конструированию [1–4].

В то же время дальнейшее улучшение характеристик и качества этого класса приборов на основе сложившегося подхода практически невозможно. Это связано с тем, что в настоящее время в некоторой степени реализованы предельные возможности современной технологии. Кроме того, существуют причины фундаментального характера, включая ограничение допустимых рабочих температур полупроводниковых материалов и напряженности электрического поля в них [5], вероятность теплового (выделяемая джоулевая мощность в современных транзисторных структурах составляет ~ 10^7 BT/см³) и электрического пробоя (напряженность электрического поля в элементах транзистора достигает ~ 10^5 B/см), эффектов, связанных с насыщением дрейфовой скорости носителей заряда, скин-эффекта и других факторов [6, 7]. При этом для транзисторов спад выходной мощности с ростом частоты подчиняется зависимости ~ $1/f^2$ [5, 6, 8].

Целью работы является поиск дополнительных возможностей для улучшения качества и выходных параметров биполярных транзисторов, в частности, с использованием методов внутреннего формирования структур (самосовмещение и самоформирование) [9–13] без изменения горизонтальных размеров и формы коллекторной, базовой и эмиттерных областей. В работе приведены результаты сравнительных данных по особенностям формирования структуры мощного СВЧ-транзистора по стандартной технологии и новой (методом внутреннего формирования структур).

Обзор путей совершенствования технологии

Эволюция запоминающих устройств с произвольной выборкой (ЗУПВ) на основе КМОП-структур идет в направлении увеличения их информационной емкости и быстродействия, в результате возрастает количество элементов на кристалле и уменьшаются их размеры [14]. Основой ЗУПВ является накопитель информации, занимающий 60 % или более площади кристалла, построенный на основе запоминающих ячеек (ЗЯ), хранящих информацию. Структура отдельной ячейки памяти определяет степень интеграции всего ЗУПВ, а технологический процесс создания ЗУПВ является процессом синтеза ЗЯ и определяет уровень качества и стоимость ЗУПВ.

Изучение возможных путей повышения плотности упаковки элементов ЗЯ показывает [14, 16], что пропорциональное уменьшение (масштабирование) может быть применено не ко всем размерам элементов схемы. Одной из причин является то, что эффекты коротких и длинных каналов накладывают ограничения на длину и ширину каналов МОП-транзисторов. Второй фактор – рост «птичьих клювов» при создании изоляции элементов. Третья проблема связана с реализацией малых зазоров при создании контактов.

Решение этих проблем взаимосвязано. Подавление «клювов» также ведет к более высоким значениям плотностей дефектов и токов утечек переходов из-за значительного возрастания остаточных напряжений. К возрастанию дефектности и токов утечки приводит и увеличение концентрации примеси в каналах и канало-ограничительных (охранных) областях, требуемое для подавления эффектов узкого и короткого каналов, а также уменьшение зазоров при создании контактов. Кроме того, размер и форма «клювов» влияет на эффект узкого канала и на качество создаваемых контактов. Таким образом, более высокий процент выхода годных СБИС ЗУПВ и более низкая их трудоемкость могут быть достигнуты путем оптимизации технологических решений, включая меры по снижению плотности дефектов. Проблема повышения выхода годных и снижения трудоемкости СБИС ЗУПВ на блоке охраны в работе решается путем использования термического диоксида кремния (вместо нитрида кремния) в качестве маскирующего покрытия и совершенствованием способа легирования n^- и p^- -карманов КМОП-структур.

Самосовмещение в биполярной технологии СВЧ-транзисторов

Исследовались мощные CBЧ кремниевые эпитаксиально-планарные n-p-n транзисторы диапазона частот ≥ 1 ГГц, для изготовления которых использовали однослойные эпитаксиальные структуры 10КЭФ1,8/350ЭКЭС0,01(111).

На рис. 1 представлены два варианта конструкции транзистора. Равноудаленность эмиттерных *p*–*n*-переходов от коллекторного *p*–*n*-перехода на расстояние, равное толщине активного участка базы W_6 (рис. 1б), обеспечивает увеличенную эффективную площадь эмиттера, при этом минимальная глубина пассивного участка базы l соизмерима с толщиной активного участка области базы W_6 .

Рисунок 1 – Фрагмент транзисторной структуры с эмиттерными переходами, изготовленными по стандартной (*a*) и новой (*б*) технологиям: 1 – коллекторная область; 2 – эпитаксиальный слой; 3 – *p*⁺–пассивный участок области базы; 4 – активный участок области базы; 5 – пассивный участок области базы; 6 – эмиттерная область; 7 – диоксид кремния; 8 – омический контакт к эмиттеру, 9 – омический контакт к базе

Основные операции, входящие в состав технологического маршрута формирования структуры мощного биполярного СВЧ-транзистора, представлены на рис. 2 (стандартная технология) и на рис. 3 (новая технология). В стандартной технологии после пирогенного выращивания толстого (~0,65 мкм) слоя SiO₂ на однослойной эпитаксиальной структуре 10КЭФ1,8/350ЭКЭС0,01(111) при температуре 1150°С и длительности 1 ч (рис. 2а) формировали p^+ -пассивную базу фотолитографией и травлением окон в SiO₂ с последующей имплантацией ионов В⁺ через окна в SiO₂ дозой 8,7·10¹⁵ см⁻² и энергией 40 кэВ (рис. 2б). После имплантационного отжига пластин монокремния, легированных ионами В⁺, в сухом кислороде при температуре 1150°С в течение 15 мин ($x_j \sim 1,9$ мкм, $R_s = 40$ Ом/кв) проводили формирование области базы путем вскрытия окон в пленке SiO₂ фотолитографией и травлением (рис. 2в), имплантации ионами В⁺ вскрытой поверхности эпитаксиального слоя монокремния [15] дозой 1,4·10¹⁴ см⁻² и энергией 40 кэВ и последующего пиролитического осаждения пленки SiO₂ толщиной порядка 300 нм.

Последующий постимплантационный отжиг пластин монокремния, имплантированных ионами В⁺, осуществляли в две стадии: сначала при температуре 940°С в течение 360 с во влажном кислороде, а затем при температуре 940°С в течение 360 с в среде сухого кислорода ($x_i \sim 300$ нм, $R_s = 520$ Ом/кв.).

При создании области эмиттера (рис. 2д) имплантацию ионов P^+ (доза 3,5·10¹⁵ см⁻², энергия 40 кэВ) проводили в эмиттерные окна, вскрытые в пленке SiO₂ фотолитографией и травлением. Последующий отжиг залегированных ионами P^+ пластин монокремния осуществляли в среде аргона при температуре 900°С в течение 16 мин.

Характеристики сформированной области эмиттера: глубина залегания *p*–*n*-перехода $x_j \sim 180$ нм, $R_s \sim 35$ Ом/кв. Финальной стадией изготовления активной транзисторной структуры являлось формирование многослойных контактов к кремнию на основе алюминия с барьерным слоем молибдена (рис. 2е). При этом боковые (латеральные) участки эмиттерных *p*–*n*-переходов удалены от коллекторного *p*–*n*-перехода на расстояние, большее толщины активного участка базы *l*>w₆ (рис. 1а).

Рисунок 2 – Основные этапы формирования транзисторной структуры по стандартной технологии

Рисунок 3 – Основные этапы формирования транзисторной структуры по новой технологии

После этого пленку пиролитического SiO₂ уплотняли при температуре 850°C в среде влажного кислорода. Далее фотолитографией с последующим травлением в смеси

HF:NH₄F:H₂O = 4:10:15 в течение 15–20 мин в двухслойной пленке SiO₂ толщиной 0,9 мкм вскрывали окно под область базы и проводили окисление монокремния в среде сухого кислорода при температуре 1150°C в течение 90 мин до получения пленки SiO₂ толщиной 250 нм. Затем с помощью фотолитографии формировали в резисте окна для p^+ -пассивной базы (рис. 36), выполняющей функцию охранного кольца, и проводили легирование монокремния в окна в резисте ионами В⁺ дозой 2,5·10¹⁵ см⁻² и энергией 100 кэВ.

После снятия фоторезиста в плазме O₂ и доснятия в смеси H₂SO₄+H₂O₂ = 3:1 проводили постимплантационный отжиг легированных ионами B⁺ пластин монокремния в среде аргона при температуре 1150°C в течение 1500 с. При этом глубина залегания (x_j) области p^+ -пассивной базы составляла порядка 1,9 мкм, а ее поверхностное сопротивление (R_s) – порядка 40 Ом/кв (рис. 3в).

После этого фотолитографией с последующим травлением в пленке термического SiO₂ толщиной 250 нм вскрывали эмиттерные окна для формирования базовой области – активной и пассивной – в одном процессе путем одновременной имплантации ионов B⁺ [15–17] в эпитаксиальный слой монокремния через слой SiO₂ и эмиттерные окна в нем (рис. 3г) дозой $1,3\cdot10^{14}$ см⁻² и энергией 55 кэВ с последующим постимплантационным отжигом пластин монокремния, легированных ионами B⁺. Таким образом, ионы B⁺, внедрившиеся в эптаксиальный слой монокремния через окна в слое термического SiO₂, формируют активный участок базы (4), а часть ионов, внедрившаяся через слой термического SiO₂, – пассивный участок базы (5) (рис. 16). Одновременная имплантация ионов B⁺ через пленку термического SiO₂ и сформированные в нем окна представляет собой процесс самоформирования структур. Пост-имплантационный отжиг пластин монокремния, легированных ионами B⁺ активной и пассивной областей базы, осуществляли в среде аргона при температуре 900°C в течение 1800 с. Характеристики сформированной активной и пассивной областей базы: глубина залегания *p*-*n*-перехода *x_j* ~ 360 нм, *R_s* ~ 600 Ом/кв. и – *x_j* ~ 200 нм, *R_s* ~ 1600 Ом/кв. соответственно.

Формирование области эмиттера осуществляли путем имплантации ионов P⁺ в эпитаксиальный слой монокремния дозой 4,375·10¹⁵ см⁻² и энергией 30 кэВ в те же самые эмиттерные окна пленки термического SiO₂ (рис. 3г), что и при легировании базы (процесс самосовмещения) с последующим постимплантационным отжигом пластин монокремния, легированных ионами P⁺. Постимплантационный отжиг пластин монокремния, легированных ионами P⁺, проводили в среде аргона при температуре 900°С в течение 600 с. Характеристики сформированной области эмиттера: глубина залегания *p*–*n*-перехода $x_i \sim 180$ нм, поверхностное сопротивление $R_s = 35$ Ом/кв.

Заключительная операция – формирование многослойных контактов к монокремнию осуществляется так же, как и в стандартной технологии (рис. 3е). При этом боковые участки эмиттерных p-n-переходов равноудалены от коллекторного p-n-перехода на расстояние порядка толщины активного участка базы l-w₆ (рис. 16).

Транзисторы в обоих случаях имели толщину активной базы в пределах 200–240 нм. Следует отметить, что доза имплантации ионами B^+ области базы (4, 5) в новой технологии (рис. 1б) ниже, чем в стандартной. После вскрытия контактных окон к базовой области транзистора наносили молибденалюминиевую металлизацию на планарную поверхность пластины для формирования омических контактов к эмиттерам и базе транзистора. Для нанесения пленки молибдена использовали метод магнетронного распыления в среде аргона, толщина барьерного слоя была 0,13 мкм. Верхний слой алюминия, легированный никелем (0,1 % никеля по массе), наносили термическим способом испарением навесок алюминиевой и никелевой проволок в соотношении по массе (алюминий + 0,5 % никеля). Фотолитографией с последующим травлением формировали разводку (рисунок 78-гребенчатой конфигурации токопроводящих дорожек). Отжиг контактов 8, 9 (рис. 1а,16) на основе алюминия с барьерным слоем молибдена к областям эмиттера и базы транзистора проводили в среде аргона при температуре 500°С в течение 300 с.

После проверки параметров транзисторов на пластине и проведения операции глубокого травления коллекторной области (1) (рис. 1а, 1б) пластины (утонение пластин) с целью снижения теплового сопротивления переход – окружающая среда, скрайбирования и ломки пластин на кристаллы, годные по параметрам кристаллы монтировали в корпуса КТ-16-2 (кри-

сталлы были посажены на эвтектику золото – кремний, разварены микропроволочными выводами) и загерметизированы. На собранных в корпус приборах, изготовленных по новой и стандартной технологиям, проводили измерение следующих параметров: граничная частота $f_{\rm rp}$ при токах коллектора $I_{\rm K}$ 1,5 A и 1,8 A, выходная мощность $P_{\rm вых}$ при входной мощности $P_{\rm вх}$ 8 BT, коэффициент усиления по мощности $K_{\rm yP}$, КПД коллектора $\eta_{\rm K}$, емкость коллекторного и эмиттерного переходов $C_{\rm K}$ и $C_{\rm 3}$ соответственно, пробивное напряжение эмиттер – база $U_{\rm 360}$ проб и тепловое сопротивление переход – корпус $R_{\rm T n-k}$.

Самосовмещения в технологии КМОП: замена Si₃N₄ пленкой SiO₂

Изготовление комплементарных КМОП ИС предполагает создание на пластинах монокремния, например, марки КЭФ 4,5 ориентации (100) транзисторов, противоположных типов проводимости, концентрация примесей в каналах которых одного порядка с концентрацией примеси в подложке [18–20]. В технологическом процессе изготовления карманов КМОПструктур в качестве маскирующего покрытия (маски) обычно используется пленка нитрида кремния толщиной 0,1–0,2 мкм [18]. Нижняя граница толщины пленки Si₃N₄ обусловлена его устойчивостью к прокислению при выращивании локального толстого SiO₂. Верхняя – предельно допустимыми напряжениями на границе Si–SiO₂. Экспериментально показано, что при больших толщинах пленки Si₃N₄ значительно возрастает вероятность увеличения дефектности структуры, а при незначительных отклонениях от оптимальных режимов возможно даже образование трещин [21–25].

При нанесении пленок Si_3N_4 в качестве маскирующего покрытия возникают макронапряжения, которые не зависят от вида изоляции, а определяются качеством подложки и качеством покрытия. При этом в пленке Si_3N_4 , получаемой методом осаждения из парогазовой фазы при температуре 800°С, возникают внутренние напряжения порядка 100 ГПа [22], что превышает предел прочности кремния [24, с. 135].

Рентгенотопографические исследования образцов после осаждения пленок термического SiO₂, а также пленок пиролитического Si₃N₄ и SiO₂ показали [25], что пленки термического SiO₂ создают в слое монокремния под SiO₂ при нормальной температуре растягивающие напряжения, а пленки пиролитического Si₃N₄ и SiO₂ – напряжения сжатия. При этом была отмечена и существенная разница в величине напряжений.

В [26–28] приведены типовые результаты моделирования процесса изготовления диэлектрической изоляции приборов микроэлектроники с использованием окисления канавок в монокремнии при использовании маскирующего покрытия из пленки нитрида кремния. Показано, что высокотемпературное термическое окисление канавок в монокремнии в парах воды приводит как к изменению величины, так и знака остаточных напряжений в монокремнии. Причем величины максимальных остаточных напряжений (до 45 МПа) одного порядка со значениями остаточных напряжений (до 40 Мпа), приведенными в работе [27].

С учетом изложенного можно отметить главные особенности при использовании в качестве маскирующего покрытия пленок из нитрида кремния.

Во-первых, маскирующие покрытия из нитрида кремния создают в монокремнии напряжения сжатия порядка 100 ГПа, что превышает предел прочности монокремния и повышает его дефектность и токи утечки переходов [22].

Во-вторых, для повышения процента выхода годных КМОП ИС и снижения трудоемкости их изготовления целесообразно перейти от нитридной маски к маске из термического SiO₂ с одновременным совершенствованием метода легирования карманов.

Для реализации предложенного подхода для КМОП ИС на блоке охраны использовался метод внутреннего формирования структур, предложенный в [29] и усовершенствованный применительно к КМОП-технологии [22].

Существенным в новом способе является то, что в качестве источника диффузии для создания n-кармана КМОП-структур используют маскирующее покрытие – пленку термического SiO₂ (вместо пленки Si₃N₄) толщиной h (0,1–0,2 мкм), легированную примесью n-типа с коэффициентом сегрегации m > 1 и длиной среднего проективного пробега, удовлетворяющего условию $(R_{Pn} + 5\Delta R_{Pn}) \le h$, где ΔR_{Pn} – дисперсия пробега ионов *n*-типа, что обеспечивает легирование монокремния из источника ограниченной концентрации. Кроме того, легирование монокремния идет локально в процессе термообработки, что обеспечивается удалением той части пленки SiO₂, которая находится в областях p^- -кармана. Легирование областей p^- -кармана осуществляют через маскирующее покрытие пленки термического SiO₂ с защитой фоторезистивной маски ионами примеси *p*-типа с $R_{Pp} \ge h$ с последующим удалением легированной части пленки SiO₂, что обеспечивает попадание необходимой примеси нужной концентрации в области p^- -кармана. В связи с использованием для диффузии в монокремний двух различных источников – легированной пленки SiO₂ и непосредственно залегированного монокремния – отпадает необходимость в использовании в качестве маскирующего покрытия пленки Si₃N₄, что значительно снижает общее напряженное состояние пластин [22].

Экспериментальные исследования проводились на КМОП-структурах, изготовленных на пластинах монокремния марки КЭФ4,5(100), карманы которых изготавливались по новой [22] технологии (рис. 4).

Рисунок 4 – Основные этапы изготовления двух карманов КМОП-структур по новой технологии (с использованием в качестве маски термического SiO2)

Предлагаемая (новая) технология формирования карманов включает следующие операции. Окисление монокремния проводили в среде сухого кислорода до получения толщины пленки SiO₂ $h \sim 110$ нм (рис. 2a). Затем всю поверхность легировали ионами P⁺ дозой 3,2·10¹³ см⁻² и с энергией 35 кэВ, что удовлетворяет условию ($R_{Pn} + 5\Delta R_{Pn}$) $\leq h$. Поэтому ионы P⁺ легируют только пленку SiO₂, не проникая в монокремний (рис. 2б). Далее наносили фоторезистивную маску и по ней методом фотолитографии создавали рисунок p^- -кармана и проводили легирование ионами B⁺ дозой 1,25·10¹³ см⁻² и с энергией 100 кэВ (рис. 2в), что удовлетворяет условию $R_{Pp} \geq h$. Таким образом, на планарной поверхности пластины монокремния были сформированы два автономных источника диффузии примеси двух типов (n и p). После легирования ионами B⁺ диоксид кремния из областей p-типа вытравливают до монокремния (рис. 2г), фоторезист удаляют. После химической обработки проводили постимплантационный отжиг пластин монокремния, легированных примесями n- и p-типа в карманах одновременно в среде азота. Фосфор благодаря коэффициенту сегрегации m > 1 (~20) перераспределяется из пленки SiO₂ в монокремний, легируя его до требуемой концентрации. Окончательный вид структуры показан на рис. 2д.

Результаты и их обсуждение

В таблице 1 приведены значения измеренных параметров мощных СВЧ-транзисторов, изготовленных по стандартной и предложенной (эмиттерные *p*–*n*-переходы выполнены равноудаленными от коллекторного *p*–*n*-перехода на расстояние, равное толщине активного участка базовой области) технологиям. Из таблицы видно, что у транзисторов, изготовленных по предложенной технологии, значения параметров $f_{\rm rp}$, $K_{\rm yP}$, $\eta_{\rm k}$, $U_{\rm 3БO}$ проб больше, а $C_{\rm 3}$, $C_{\rm K}$ и $R_{\rm T}$ п-к меньше.

	Параметры								
Технология	$f_{ m rp},$ ГГц		$P_{\rm BMX}$, BT	V	η_{κ_n}	Ск,	Сэ,	U ЭБО проб,	R _{Т п-к,}
	I _K =1,5 A	I _K =2,8 A	$P_{\rm BX} = 8 \mathrm{BT}$	л _{уР}	%	пΦ	πФ	B	°С/Вт
Стандартная	1,71-	1,42-	19,97-	2,51-	56,00-	15,5-16,7	180-	4,8-	6,1-
_	1,92	1,56	20,06	2,57	60,62		190	4,9	6,6
						14,5-			
Новая	2,04-	1,81-	20,79-	2,65-	77,23-	15,3	145-	5,2-	4,4-
	2,13	2,01	21,73	2,72	82,46		167	5,6	4,8

Таблица 1 – Влияние технологии изготовления на параметры мощного СВЧ-транзистора

С учетом результатов работы [30] была разработана физическая модель [31], объясняющая влияние рельефности области пространственного заряда (ОПЗ) коллекторного перехода транзистора в активном режиме работы с учетом растекания неосновных носителей с боковой поверхности эмиттерных переходов в базу транзистора на его параметры (рис. 5).

Рисунок 5 – Схематическое изображение ячейки транзистора в разрезе, изготовленного по новой (а) и по стандартной (б) технологиям

Из рисунка видно, что линии напряженности электрического поля в ОПЗ коллекторного перехода показаны сплошными стрелками, траектории пролета – подвижными носителями заряда области базы и ОПЗ коллекторного перехода – пунктирными стрелками. При этом $A = A' \approx 0,4$ мкм, $H = H' \approx 1,9$ мкм, $S_2 > S_2'$, $L > L'_1$.

При прохождении потока подвижных носителей заряда через ОПЗ коллекторного перехода концентрация их на выходе из этой области будет превышать концентрацию на входе. Соотношение площадей (S_1/S_2) будет определять кратность увеличения концентрации носителей на выходе из этой области (сечение S_2) по сравнению с концентрацией на входе (сечение S_1) при достаточной однородности распределения носителей по сечениям S_1 и S_2 , так как все носители, входящие в ОПЗ коллекторного перехода через сечение S_1 , выходят из нее через сечение S_2 (без учета генерации и рекомбинации в ОПЗ).

Соотношение площадей S_1/S_2 будет зависеть от бокового растекания неосновных носителей в базе транзистора, а также геометрии ОПЗ коллекторного перехода и значений напряжения на коллекторном переходе (для нашего случая $U_{\rm K} = 28$ В). Площадь S_1 зависит от распределения носителей в базе транзистора. Минимально возможная площадь S_1 будет равна площади эмиттерного перехода, а максимальная площадь будет определяться растеканием носителей в базе транзистора. Площадь S_2 будет зависеть от геометрии коллекторного перехода, удельного сопротивления материала коллекторной области и напряжения на коллекторном переходе. Для приборов, изготовленных на однослойных эпитаксиальных структурах кремния 10КЭФ1,8/350ЭКЭС0,01(111) с удельным сопротивлением эпитаксиального слоя $\rho_{\rm K} = 1,8$ Ом·см, ширина ОПЗ будет равна ~3,9 мкм при $U_{\rm K} = 28$ В. При такой ширине ОПЗ в современных СВЧ-транзисторах, обладающих большой плотностью компоновки элементов транзисторной структуры, площадь S_2 может стать практически равной нулю.

Так как площадь S_1 не может стать меньше площади эмиттерного перехода, то соотношение S_1/S_2 стремится к бесконечности, и поток подвижных носителей заряда фокусируется на выходе из ОПЗ, то есть в малом объеме этой области под эмиттером будет резко возрастать их концентрация. Отличительной чертой СВЧ-транзисторов являются исключительно малые размеры объемов взаимодействия. При этом основное количество тепловой энергии выделяется именно в этих строго ограниченных объемах, в основном в области коллекторного перехода СВЧ-транзистора, расположенного под эмиттерными переходами. Фокусировка потока носителей в ОПЗ будет приводить к тому, что удельная плотность мощности, выделяемая в коллекторном переходе под эмиттером, будет достигать ~10⁷ Вт/см³ [32]. Такая высокая плотность выделяемой в полупроводниковых приборах мощности ведет к локальным перегревам, а при неоднородностях в полупроводниковом материале – концентрации тока под отдельными эмиттерами и еще большему возрастанию локальной плотности мощности.

Продвижение вверх по частотному диапазону требует, как правило, уменьшению емкостей и пролетных промежутков. В результате объем взаимодействия уменьшается и плотность мощности растет. В свою очередь высокая концентрация мощности грозит развитием процессов теплового пробоя. Следовательно, СВЧ-транзисторы работают буквально на пределе физических возможностей.

Фокусировка потока носителей в ОПЗ будет приводить и к снижению $f_{\rm rp}$, а в результате и к снижению $P_{\rm вых}$, $K_{\rm Уp}$, $\eta_{\rm K}$ и увеличению $R_{\rm T\ n-\kappa}$ транзисторов, изготовленных по стандартной технологии, по сравнению с транзисторами, изготовленными по новой технологии, так как $S'_2 < S_2$, а $S_1 = S'_1$ (рис. 56). В то же время рельефность ОПЗ коллекторного перехода у транзисторов, изготовленных по стандартной технологии, больше рельефности области объемного заряда коллекторного перехода транзисторов, изготовленных по новой технологии: $L>L'_1$ (рис. 56). При этом уменьшение величины $C_{\rm K}$ транзисторов, изготовленных по новой технологии, обусловлено различием в вертикальной геометрии исследуемых структур, а именно планаризацией области объемного заряда коллекторного перехода и уменьшением его площади (рис. 5а, 56). Снижение $R_{\rm T\ n-\kappa}$ транзисторов, изготовленных по новой технологии, больсти объемного заряда коллекторного перехода и уменьшением его площади (рис. 5а, 56). Снижение $R_{\rm T\ n-\kappa}$ транзисторов, изготовленных по новой технологии, больсти объемного заряда коллекторного перехода и уменьшением его площади (рис. 5а, 56). Снижение $R_{\rm T\ n-\kappa}$ транзисторов, изготовленных по новой технологии, обусловлено раз-

Таким образом, увеличение f_{rp} и снижение $R_{T n-\kappa}$, а также улучшение энергетических параметров транзисторов, изготовленных по новой технологии, по сравнению со стандартной технологией, хорошо согласуется с предложенной моделью работы мощного СВЧтранзистора. Меньшая фокусировка подвижных носителей заряда на выходе из области пространственного заряда коллекторного перехода у транзисторов, изготовленных по новой технологии ($S_2 \approx S_1$, рис. 5а), улучшает равномерность распределения носителей и в соответствии с механизмом спада граничной частоты f_{rp} при растущем токе коллектора I_K , граничная частота f_{rp} таких транзисторов выше.

Анализ профилей распределения примесей в активной области транзисторной структуры позволяет объяснить экспериментальные результаты по электрическим характеристикам рассматриваемого биполярного транзистора, изготовленного по стандартной и предложенной (новой) технологиям. Снижение концентрации бора вдоль боковых участков эмиттерного p*n*-перехода в новой технологии по сравнению со стандартной [30] позволяет объяснить уменьшение C_{\Im} . В то же время более низкий уровень концентрации примесей у боковых участков эмиттерного p-*n*-перехода в новой технологии по сравнению со стандартной [30] позволяет объяснить уменьшение C_{\Im} . В то же время более низкий уровень концентрации примесей у боковых участков эмиттерного p-*n*-перехода в новой технологии обуславливает и повышение напряжения пробоя перехода эмиттер – база по сравнению со стандартной технологией.

Важно также подчеркнуть, что слой диэлектрика на поверхности коллектора транзисторной структуры, формируемый по новой технологии [30], имеет большую толщину, чем в стандартной технологии. Увеличение толщины слоя диэлектрика позволяет минимизировать составляющую емкости коллектора между контактной площадкой и телом коллектора, поскольку эта емкость, включенная параллельно активному прибору в эквивалентной схеме транзистора, является паразитной [33, с. 13–15; 34]. Наличие участка с постоянной концентрацией фосфора в приповерхностной области эпитаксиального слоя монокремния при малой глубине диффузии обеспечивает в новой технологии и более высокий коэффициент инжекции эмиттерного перехода, что согласуется с экспериментальными данными [35, с. 265].

Следует отметить, что транзисторы, изготовленные по новой технологии, отдают одну и ту же мощность $P_{\text{вых}}$ при меньшем токе коллектора I_{K} , нежели обычные, но при одной и той же мощности на входе $P_{\text{вх}}$. При этом КПД у них выше за счет меньшей мощности источника питания на коллекторе. Более высокие КПД этих приборов приводят и к увеличению полезной $P_{\text{вых}}$ и снижению доли мощности, рассеиваемой транзистором, вызывающей его избыточный разогрев [5, 27].

Результаты измерения выходных характеристик транзисторов в схеме с общим эмиттером (ОЭ) $I_{\rm K} = f(U_{\rm KE})$, представленные на рис. 6, показывают, что при работе в линейном режиме (класс А) линейность усиления на транзисторах, эмиттерные *p*–*n*-переходы которых выполнены равноудаленными от коллекторного *p*–*n*-перехода на расстояние, равное толщине активного участка базовой области, будет лучше, поскольку нелинейные искажения у них выражены слабее.

Рисунок 6 – Выходные характеристики транзисторов в схеме ОЭ, изготовленных по новой технологии (а) и по стандартной (б)

При этом входные характеристики для схемы с ОЭ $I_{\rm b} = f(U_{\rm b})$ для транзисторов двух типов идентичны.

Нужно отметить [2, с. 12], что в транзисторах для линейных устройств следует стремиться максимально уменьшать значения ряда величин, которые могут быть источниками возникновения нелинейности: на входе транзистора такую роль может играть емкость эмиттерного перехода, на выходе – коллекторного перехода. Источником нелинейности на входе является и сама входная характеристика эмиттерного перехода.

Поскольку энергетические параметры очень важны для устройств, в которых применяются мощные CBЧ-транзисторы, следует полагать, что транзисторы, имеющие лучшие энергетические параметры ($P_{\text{вых}}$, $K_{\text{уP}}$, $\eta_{\text{к}}$), а также более высокие значения $f_{\text{гр}}$, более надежны при использовании их в режиме, когда транзисторный каскад работает в классах В или С. Полученные результаты свидетельствуют о том, что в конструкции мощного CBЧ-транзистора, эмиттерные p-*n*-переходы которых выполнены равноудаленными от коллекторного p-*n*-перехода на расстояние, равное толщине активного участка базовой области, его параметры и характеристики $P_{\text{вых}}$, $K_{\text{уP}}$, $\eta_{\text{к}}$, $f_{\text{гр}}$, C_3 , C_K , $U_{3\text{БО}}$ проб, $I_K = f(U_{\text{кз}})$ лучше, чем у транзистора стандартной конструкции. Улучшение параметров и выходных характеристик транзистора обусловлено более эффективной работой эмиттерного p-*n*-перехода за счет возрастания числа электронов, инжектированных в базовую область через боковые участки эмиттерного p-*n*-перехода вследствие одинаковой эффективности p-*n*-переходов боковых и плоских участков [17, 29]. При этом увеличивается и радиационная стойкость прибора [36].

Особенности формирования структуры кремниевого эпитаксиально-планарного *n*–*p*–*n* СВЧтранзистора по новой технологии (методом внутреннего формирования структур) следующие.

Создание слоя SiO₂ толщиной 900 нм на поверхности эпитаксиального слоя монокремния, полученного сочетанием термического окисления и пиролитического наращивания диоксида кремния, обусловлено следующими соображениями. Известно, см., например, [37, с. 370–387], что наиболее важными типами дефектов, которые могут образоваться в пластинах монокремния во время окисления, являются дислокации и дефекты упаковки. Эти дефекты могут влиять на процессы деградации электрических параметров полупроводниковых приборов и ИС, в частности биполярных транзисторов.

Поэтому, во-первых, для того, чтобы минимизировать возникновение дислокаций и дефектов упаковки в эпитаксиальном слое монокремния в новой технологии [17], окисление монокремния осуществляют в смеси водорода – кислорода при температуре 1150°C в течение 35–50 мин. При этом толщина выращенной пленки SiO₂ составляет ~400 нм. В то же время известно, см., например, [38, 39], что для получения пленки SiO₂ толщиной 1,0–2,0 мкм время процесса окисления монокремния при той же температуре может составить ~2–16 ч, что нерентабельно в условиях серийного производства транзисторов.

Во-вторых, при наращивании пленки пиролитического SiO₂ толщиной ~500 нм на SiO₂, полученный термическим окислением пластин монокремния, дислокации и дефекты упаковки в монокремнии не образуются.

В-третьих, в результате применения относительно толстой пленки SiO₂ толщиной ~900 нм (в стандартной технологии выращивается только термический диоксида кремния толщиной ~600–650 нм) удалось почти в 1,5 раза снизить емкость базовых контактных площадок.

В-четвертых, новая технология, в отличие от [40], позволяет легирование базовой области осуществлять путем внедрения ионов B^+ в эпитаксиальный слой монокремния через маску, формируемую из пленки термического SiO₂ и в ее эмиттерные окна, с последующим имплантационным отжигом легированных ионами B^+ пластин монокремния в нейтральной среде аргона. При этом за счет совмещения в одном цикле операций по имплантации ионов B^+ обеспечивается создание как активного, так и пассивного участков базовой области (процесс самоформирования).

В-пятых, внедрение ионов Р⁺ для формирования эмиттерных областей в новой технологии осуществляется в те же самые эмиттерные окна, что и для формирования активного участка базовой области, чем достигается эффект самосовмещения и отсутствие эффекта эмиттерного оттеснения (образование углубления в области перехода база – коллектор). Последнее позволяет получать более узкую базу (более высокую f_{rp}). С другой стороны, отсутствие углубления в области перехода база – коллектор исключает «прокол» базы, и, как следствие, допустимые рабочие напряжения транзистора не ухудшаются.

В-шестых, исключаются операции по удалению пленки SiO₂ в эмиттерных окнах (в частности, боросиликатного стекла), поскольку постимплантационный отжиг залегированных ионами В⁺ пластин монокремния осуществляется в нейтральной среде аргона, что исключает рост пленки SiO₂ в эмиттерных окнах и обеспечивает не только их чистоту, но также исключает возможность увеличения их ширины. Последнее исключает возможность ухудшения параметров P_{вых}, f_{гр} и других и, следовательно, улучшает качество изготовления транзисторных структур. Исключается удаление пленки SiO₂ (фосфорносиликатного стекла) в эмиттерных окнах, так как постимплантационный отжиг легированных ионами Р⁺ пластин монокремния при создании эмиттерной области также осуществляется в нейтральной среде аргона, что исключает рост пленки SiO₂ в эмиттерных окнах. Это обеспечивает не только их чистоту, но также исключает возможность обнажения эмиттерного перехода (особенно важно для мелких эмиттерных переходов ~ 100–200 нм) и возникновения его короткого замыкания материалом разводки. Таким образом, в новой технологии отсутствует необходимость в травлении окон после постимплантационного отжига легированных ионами Р⁺ пластин монокремния. Это также улучшает качество изготовления транзисторных структур. Кроме этого улучшается и качество металлкремниевых контактов, так как известно, см., например [41, 42], что наличие тонкой пленки SiO₂ в окнах приводит к деградации контактов, таких как, например, омический контакт в сторону увеличения переходного сопротивления контактов транзистора.

В-седьмых, окислению монокремния, как правило, сопутствует перераспределение легирующих примесей, в частности бора, в растущий SiO_2 , в результате снижается его поверхностная концентрация. При проведении постимплантационного отжига залегированных ионами B⁺ пластин монокремния в среде аргона перераспределение примеси отсутствует и пленка SiO₂ не растет, что не противоречит результатам, полученным в работе [43].

В-восьмых, изготовление транзисторов по новой технологии обеспечивает создание вертикальной конфигурации базовой и эмиттерных областей, обеспечивающей более эффективную работу эмиттерного p-n-перехода за счет возрастания числа электронов, инжектируемых в базовую область через боковые участки эмиттерного p-n-перехода вследствие одинаковой эффективности p-n-переходов боковых и плоских участков.

Кроме того, был разработан специальный технологический процесс [11], позволяющий формировать эмиттерную область транзистора посредством имплантации ионов P^+ в эпитаксиальный слой монокремния через эмиттерные окна в пленке SiO₂. При этом удалось пересмотреть технологический маршрут изготовления транзисторов с использованием метода самосовмещения таким образом, чтобы использовать возможность формирования структуры транзисторов в едином цикле отжига базовой и эмиттерной примеси. Это позволило минимизировать влияние эффекта каналирования на профиль легирования в области базы, уменьшить дисперсию значений параметров приборов и получить более крутой диффузионный профиль в области базы.

Таким образом, в работе на примере экспериментальных образцов мощных СВЧтранзисторов показано, что за счет повышения эффективности эмиттерных областей можно получить качественно новое сочетание параметров: как увеличение значений энергетических параметров $P_{\text{вых}}$, $K_{\text{ур}}$, $\eta_{\text{к}}$, так и частоты $f_{\text{гр}}$ в схеме с ОЭ.

Поскольку для транзисторов спад выходной мощности $P_{\text{вых}}$ с ростом частоты подчиняется зависимости ~1/ f^2 [5, 6] и при этом произведение $P_{\text{вых}} f^2 = \text{const}$, то, следовательно, это позволяет до некоторой степени преодолеть фундаментальные ограничения, связанные со спадом выходной мощности с ростом частоты. Результаты исследований позволили разработать новую конструкцию мощного планарного СВЧ-транзистора с гребенчатой конфигурацией эмиттерной области [44]. Отметим, что в данной работе в биполярной технологии мощных СВЧ-кремниевых эпитаксиально-планарных n-p-n транзисторов, в которой выполнен описанный выше эксперимент, уровень технологии соответствует 3 мкм.

Результаты экспериментов по исследованию влияния маскирующего покрытия, сформированного из термического SiO₂ толщиной *h* и среднего проективного пробега ионов B⁺ и P⁺ в SiO₂, при формировании карманов КМОП ИС, изготовленных по новой технологии (рис. 4), на выход годных на блоке охраны, представлены в таблице 2. При этом параметры длины пробега ионов P⁺ и B⁺ в пленке SiO₂, представленные в таблице, взяты из работы [45, с. 329].

Из таблицы видно, что если длины пробегов ионов примеси *n*- и *p*-типа в SiO₂ связаны с толщиной маски эмпирическим соотношением $(R_{Pn} + 5\Delta R_{Pn}) \le h$ и $R_{Pp} \ge h$ соответственно, то процент выхода годных высокий. Невыполнение этих соотношений приводит или к резкому снижению процента выхода годных или даже к нулевому результату.

Физико-математическое моделирование распределения напряжений в структуре Si_3N_4 -SiO₂-Si, полученной по стандартной технологии [46], представлено на рис. 7, 8, а распределение напряжений в структуре SiO_2 -Si, полученной по новой технологии [46], представлено на рис. 9. Сравнение рис. 7, 8, 9 подтверждает более высокую степень остаточных напряжений, вносимых пленкой Si_3N_4 в монокремний (~100 раз), по сравнению с остаточными напряжениями, вносимыми пленкой термического SiO_2 . Отметим, что при изготовлении двух карманов с использованием в качестве маскирующего покрытия пленки Si_3N_4 остаточные напряжения в монокремнии носят характер растягивающих, а с использованием в качестве маскирующего покрытия пленки в качестве маскирующего покрытия.

Сравнение процессов формирования карманов n^- и p^- -типа показало, что новый процесс позволяет сократить количество операций при изготовлении двух карманов КМОП-структур, а также уменьшить дефектность и токи утечки переходов. В результате выход годных на блоке охраны увеличился на ~4,5 %, а расчет трудоемкости изготовления пластин на этом блоке показал, что она уменьшилась на ~21,5 % [22]. Измерение функционирования изделия показало, что съем годных кристаллов на пластине и их параметры не изменились. Таким образом, результаты физико-математического моделирования подтверждают значительное снижение остаточных напряжений в монокремнии (~100 раз) при использовании пленки термического SiO₂ в качестве маскирующего покрытия.

Следствием этого и является снижение дефектности в монокремнии, токов утечки переходов и, как следствие, повышение выхода годных КМОП ИС, а также снижение трудоемкости их изготовления. Однако следует отметить, что новая технология требует прецизионного оборудования ионной имплантации (особенно в части задания величины энергии примеси), а также проведения прецизионного термического окисления монокремния, особенно на начальной его стадии [47].

Толщина маски SiO ₂ h, мкм	Парамет- ры длины пробега ионов Р в SiO ₂ [45, c. 329]		рамет- іны ионов 0 ₂ [45, 9]	(<i>R_{Pn}</i> + 5Δ <i>R_{Pn}</i>) по отноше- нию к <i>h</i>	Параметры длины пробе- га ионов В в SiO ₂ [45, с. 329]		R _{Pp} по от- ношению к <i>h</i>	Выход годных, %	Примечание
	<i>Е</i> , эВ	<i>R_{Pn,}</i> мкм	$\Delta R_{Pn,}$ MKM		<i>Е</i> , кэВ	<i>R_{Pp,}</i> мкм			
0,1	20	0,0284	0,0093	<0,1	100	0,4024	>0,1	97,1	
0,2	60	0,0796	0,0236	≈0,2	100	0,4024	>0,2	96,9	
0,05	10	0,0155	0,0053	<0,05	100	0,4024	>0,05	95,0	
0,23	70	0,0925	0,0268	<0,23	100	0,4024	>0,23	90,0	

Таблица 2 – Влияние толщины маски на процент выхода годных на блоке охраны КМОП ИС в зависимости от величины среднего проективного пробега ионов по отношению к толщине маски

Особенности метода внутреннего формирования структур в биполярной и КМОП-технологиях

0,1	50	0,0667	0,0202	>0,1	100	0,4024	>0,1	10,0	Из-за большой глуби- ны легирования иона- ми Р залегированы <i>p</i> - области, что привело к падению U _{проб}
0,2	10	0,0155	0,0053	<<0,2	100	0,4024	>0,2	20,0	Из-за малого легиро- вания SiO ₂ ионами Р последний при раз- гонке кармана слабо залегировал <i>n</i> - карман, так что U _T оказалось гораздо ниже нормы
0,1	60	0,0796	0,0236	>0,1	100	0,4024	>0,1	0	Из-за большой глуби- ны легирования иона- ми Р залегированы <i>p</i> - области, что привело к падению U _{проб}
0,2	60	0,0796	0,0236	≈0,2	30	0,1439	<0,1	0	Из-за малого пробега ионов В карман <i>p</i> - типа оказался практи- чески не залегирован, в результате все пла- стины ушли в брак

Рисунок 7 – Распределение остаточных напряжений в структуре Si3N4–SiO2–Si: (а) – часть структуры вблизи края Si3N4; (б) – распределение напряжений в слоях Si3N4, SiO2 и Si [46].

Рисунок 8 – Распределение остаточных напряжений в структуре Si3N4–SiO2–Si: (а) – часть структуры на краю Si3N4; (б) – распределение напряжений в слоях Si3N4, SiO2 и Si [46].

Рисунок 9 – Распределение остаточных напряжений в структуре SiO₂–Si: (a) – часть структуры на краю SiO₂; (б) – распределение напряжений в слоях SiO₂–Si.

Выводы

Проведенные исследования показали, что возможно формировать области базы и эмиттера мощных СВЧ-транзисторов путем ионного легирования ионами B^+ эпитаксиального слоя монокремния через пленку термического SiO₂ и эмиттерные окна в ней (самоформирование) с последующим введением в них ионов P⁺ (самосовмещение) и имплантационным отжигом пластин в атмосфере аргона, что обеспечивает формирование равноудаленных эмиттерных *p*-*n*-переходов от коллекторного *p*-*n*-перехода на расстояние, равное толщине активного участка базовой области, а это обеспечивает увеличенную эффективную площадь эмиттера.

Установлено, что новый процесс позволяет снизить трудоемкость изготовления, а за счет повышения эффективности (коэффициента инжекции) эмиттерных областей можно получить качественно новое сочетание параметров: как увеличение значений энергетических параметров $P_{\text{вых}}$, $K_{\text{ур}}$, $\eta_{\text{к}}$, так и частоты $f_{\text{гр}}$ в схеме с ОЭ и улучшенные выходные характеристики ($I_{\text{K}} = f(U_{\text{K}})$) транзисторов. Это позволяет до некоторой степени преодолеть фундаментальные ограничения, связанные со спадом выходной мощности с ростом частоты.

Исследование КМОП-структур на блоке охраны показало, что благодаря упрощению конструкции маски и технологического процесса ее формирования снизилась трудоемкость изготовления КМОП ИС с двумя карманами. А вследствие применения маски, состоящей только из пленки термического SiO₂, без пленки Si₃N₄, величина остаточных напряжений в поверхностных слоях эпитаксиального слоя монокремния уменьшилась, что в свою очередь обеспечивает снижение дефектности и повышение выхода годных. Установлено, что длины пробегов ионов *n*-типа и *p*-типа связаны с толщиной маски *h* пленки термического SiO₂ эмпирическим соотношением ($R_{Pn} + 5\Delta R_{Pn}$) $\leq h$ и $R_{Pp} \geq h$ соответственно.

Литература

1. Кремниевые планарные транзисторы / под ред. Я. А. Федотова. – Москва : Сов. радио, 1973. – 335 с. – Текст : непосредственный.

2. Мощные высокочастотные транзисторы / Ю. В. Завражнов, И. И. Каганова, Е. З. Мазель, А. И. Миркин. – Москва : Радио и связь, 1985. – 177 с. – Текст : непосредственный.

3. Проектирование и технология производства мощных СВЧ-транзисторов / В. И. Никишин, Б. К. Петров, В. Ф. Сыноров, [и др.]. – Москва : Радио и связь, 1989. – 145 с. – Текст : непосредственный.

4. Патент № 683402 Мощный СВЧ-транзистор : а. с. SU 683402 : заявл. 24.03.1978 : опубл. 20.03.2012 / Снитовский Ю. П., Портнов Л. Я. – 1 с. – Текст : непосредственный.

5. Тагер, А. С. Перспективные направления полупроводниковой электроники СВЧ / А. С. Тагер. – Текст : непосредственный // Литовский физический сборник. – 1981. – № 4. – С. 23–44.

6. Любченко, В. Е. Фундаментальные ограничения и перспективы применения полупроводниковых приборов в радиосистемах миллиметрового диапазона волн / В. Е. Любченко. – Текст : непосредственный // Радиотехника. – 2002. – № 2. – С. 16–27.

7. Vashchenko, V. A. Physical limitations of semiconductor devices / V. A. Vashchenko, V. F. Sinkevitch. – New York : Springer, 2008. – 337 p. – Text : direct.

8. Johnson, O. E. Physical limitations on frequency and power parameters of transistors / O. E. Johnson. – Text : direct. // RCA Review. – 1965. – Vol. 26, № 2. – P. 163–177.

9. Янушонис, С. Самоформирование в полупроводниковой технологии / С. Янушонис, В. Янушонене. – Вильнюс : Мокслас. – 1985. – 192 с. – Текст : непосредственный.

10. Снитовский, Ю. П. Особенности изготовления полупроводниковых приборов с самосовмещением / Ю. П. Снитковский. – Текст : непосредственный // Тезисы докладов III Республиканского семинара «Самоформирование. Теория и применение». – Вильнюс, 1987. – С. 38.

11. Снитовский, Ю. П. Изготовление полупроводниковых приборов в едином цикле отжига примесей / Ю. П. Снитковский, А. Ф. Матюшевский. – Текст : непосредственный // Тезисы докладов IV Республиканского семинара «Самоформирование. Теория и применение в полупроводниковой технологии». – Вильнюс, 1989. – С. 24.

12. Гуляев, П. Ю. Физические принципы диагностики в технологиях плазменного напыления / П. Ю. Гуляев, А. В. Долматов. – Текст : непосредственный // Известия Самарского научного центра Российской академии наук. – 2009. – Т. 11. – № 5-2. – С. 382–385.

13. Снитовский, Ю. П. Изготовление полупроводниковых приборов методом самосовмещения / Ю. П. Снитковский. – Текст : непосредственный // Тезисы докладов I Всесоюзной научно-технической конференции «Автоматизация, интенсификация, интеграция процессов технологии микроэлектроники» : в 2 ч. – Ленинград, 1989. – Ч. 2. – С. 89–90.

14. Воронин, А. Д. Разработка конструции и технологии изготовления сверхбольших иттегральных схем оперативных запоминающих устройств на КМОП структурах : автореферат диссертации на соискание ученой степени кандидата технических наук / А. Д. Воронин ; Институтт электроники АН БССР. – Минск, 1989. – 24 с. – Текст : непосредственный.

15. Снитовский, Ю. П. Ионная имплантация через слой SiO₂ и возможность ее применения при изготовлении полупроводниковых приборов / Ю. П. Снитковский. – Текст : непосредственный // Материалы 12-й Международной конференции «Взаимодействие излучений с твердым телом» (Минск, Беларусь, 19-22 сент. 2017 г.). – Минск : Изд. центр БГУ, 2017. – С. 476–478.

16. Гуляев, П. Ю. Оптико-электронная система диагностики двухфазных потоков динамическим методом счета частиц / П. Ю. Гуляев, В. И. Иордан. – Текст : непосредственный // Известия высших учебных заведений. Физика. – 2008. – Т. 51, № 9-3. – С. 79–87.

17. Патент № 4756314. Способ изготовления транзисторов: а. с. SU 1828333 : заявл. 04.11.1989 : опубл. 20.03.2012 / Ю. П. Снитовский, А. П. Матюшевский. – 1 с. – Текст : непосредственный.

18. Plummer J. D. Silicon VLSI technology. Fundamentals, practice and modeling / J. D. Plummer, M. D. Deal, P. B. Griffin. –Beiging : Publishing House of Electronics Industry, 2003. – 10 p. – Text : direct.

19. Process and Device Performance of 1 µm-Channel n-Well CMOS Technology / T. Yamaguchi, S. Morimoto, H. Kawamoto, J. C. De Lacy. – Text : direct // IEEE Trans. Electron Devices. – 1984. – Vol. ED-31, №. 2. – P. 205–214.

20. Rung, R. D. A Retrograde p-Well for Higher Density CMOS / R. D. Rung, C. J. Dell'oca, L. G. Walker. – Text : direct // IEEE Trans. Electron Devices. – 1981. – Vol. 28. – P. 1115–1119.

21. Маскирующие покрытия для изопланарной технологии / Б. Г. Анохин, В. П. Болдырев, И. В. Некарюкин, А. А. Ковалевский // Электронная промышленность. – 1974. – № 10. – С. 60–63.

22. Патент № 1669333, а. с. SU. Способ изготовления КМДП интегральных схем : заявл. 05.06.1989 : опубл. 20.03.2012 / Ю. П. Снитовский, В. Л. Круковский, Г. С. Чертов [и др.]. – 1 с. – Текст : непосредственный.

23. Гуляев, П. Ю. Виновский критерий выбора параметров редукции температурного распределения частиц по их суммарному тепловому спектру / П. Ю. Гуляев, В. И. Иордан, И. П. Гуляев. – Текст : непосредственный // Известия высших учебных заведений. Физика. – 2008. – Т. 51, № 9-3. – С. 69–76.

24. Концевой, Ю. А. Пластичность и прочность полупроводниковых материалов и структур / Ю. А. Концевой, Ю. М. Литвинов, Э. А. Фаттахов. – Москва : Радио и связь, 1982. – 239 с. – Текст : непосредственный.

25. Клейнфельд, Ю. С. Образование и движение внеконтурных дислокаций при диффузии фосфора в кремнии / Ю. С. Клейнфельд, Ю. А. Концевой, Ю. М. Литвинов. – Текст : непосредственный // Электронная техника. Сер. 2. Полупроводниковые приборы. – 1981. – Вып. 3(146). – С. 3–11.

26. Snitovsky, Yu. P. A New Technology for Manufacturing the Dielectric Isolation of Elements of Microelectronic Devices by Oxidizing Grooves in Single-Crystal Silicon / Yu. P. Snitovsky, M. G. Krasikov. – Text : direct // Russian Microelectronics. – 2010. – Vol. 39. – P. 12–18.

27. Орликовский, А. А. Плазменные процессы в микро- и наноэлектронике. Часть 1. Реактивное ионное травление / А. А. Орликовский. – Текст : непосредственный // Микроэлектроника. – 1999. – Т. 28, № 5. – С. 344–362.

28. Гуляев, П. Ю. Моделирование технологических процессов плазменного напыления покрытий наноразмерной толщины /П. Ю. Гуляев, И. П. Гуляев. – Текст : непосредственный // Системы управления и информационные технологии. – 2009. – Т. 35, № 1.1. – С. 144–148.

29. Snitovsky, Yu. P. Lateral injection utilized for improving the performance of microwave bipolar transistors / Yu. P. Snitovsky. – Text : direct // Russian Microelectronics. – 2002. – Vol. 31, N_{2} . 4. – P. 248–253.

30. Snitovsky, Yu. P. New Approach to the Manufacturing of Power Microwave Bipolar Transistors: A Computer Simulation / Yu. P. Snitovsky, V. V. Nelayev, V. A. Efremov. – Text : direct // Russian Microelectronics. – 2007. – Vol. 36, N° 6. – P. 409–414.

31. Солодуха, В. А. Особенности изготовления мощных СВЧ-транзисторов методом внутреннего формирования структур / В. А. Солодуха, Ю. П. Снитовский, Я. А. Соловьев. – Текст : непосредственный // Современные проблемы радиоэлектроники : сборник научных трудов. – Красноярск : Сиб. федер. ун-т, 2017. – С. 521–525.

32. Интегральная электроника сверхвысоких частот / А. Ф. Трутко, Я. А. Федотов, Ю. А. Каменецкий, Д. И. Сметанина // Микроэлектроника и полупроводниковые приборы. – Москва : Советское радио, 1976. – Вып. 1. – С. 179–210.

33. Зайцев, А. А. Генераторные СВЧ транзисторы / А. А. Зайцев, Ю. Н. Савельев. – Москва : Радио и связь, 1985. – 47 с. – Текст : непосредственный.

34. Krasikov, M. Computer simulation of the dielectric isolation technology in the semiconductor devices / M. Krasikov, V. Nelayev, Yu. Snitovsky. – Text : direct // Proc. VIIIth Int. Conf. "The Experience of Designing and Application of CAD Systems in Microelectronics" (CADSM 2005). – Ukraine : Lviv-Polyana. – 2005. – P. 29–32.

35. Кремниевые планарные транзисторы / Под ред. Я. А. Федотова. – М.: Сов. радио, 1973.

36. Снитовский, Ю. П. Некоторые пути повышения радиационной стойкости биполярных СВЧ-транзисторов / Ю. П. Снитковский. – Текст : непосредственный // Труды XIV Международного совещания «Радиационная физика твердого тела». – Севастополь, 2004. – С. 445–449.

37. Рейви, К. Дефекты и примеси в полупроводниковом кремнии / К. Рейви. – Москва : Мир, 1984. – 472 с. – Текст : непосредственный.

38. Патент № 814175, а. с. SU Способ создания диэлектрической изоляции элементов полупроводниковых приборов : заявл. 30.11.1979 : опубл. 20.03.2012 / В. Ф. Данилов, Ю. П. Снитовский, А. А. Рассадин, С. Д. Владыченко. – 1 с. – Текст : непосредственный.

39. Microstructure and evolution of (TiB2+Al2O3)/NiAl composites prepared by self-propagation high-temperature synthesis / X. J. Song, H. Z. Cui, L. L. Cao [et al.]. – Text : direct // Transactions of Nonferrous Metals Society of China. – 2016. – T. 26. – No 7. – C. 1878–1884.

40. Диффузия через слой SiO₂ и возможность ее применения при изготовлении монолитных схем / И. М. Алиев, Н. Д. Гаджиев, Т. К. Исмаилов, В. К. Меджидова. – Текст : непосредственный // Электронная техника. Сер 3. Микроэлектроника. – 1984. – Вып. 4. – С. 76–79.

41. Солоненко, О. П. Плазменная обработка и напыление порошков оксидов металлов, состоящих из полых сфер / О. П. Солоненко, И. П. Гуляев, А. В. Смирнов. – Текст : непосредственный //Письма в Журнал технической физики. – 2008. – Т. 34. – № 24. – С. 22–27.

42. Ohmi, T. Ultraclean processing / T. Ohmi. – Text : direct // Microelectronic Engineering. – 1991. – Vol. 10 – №. 3–4. – P. 163–176.

43. Влияние среды отжига на перераспределение бора, имплантированного в кремний / А. Ф. Буренков, Ф. Ф. Комаров, В. Д. Курьязов, М. М. Темкин. – Текст : непосредственный // Микроэлектроника. – 1988. – Т. 17. – Вып. 3. – С. 256–260.

44. Патент ВҮ 22055. Мощный планарный СВЧ-транзистор с гребенчатой конфигурацией эмиттерной области : опубл. 30.08.2018 / Ю. П. Снитовский, А. С. Турцевич, Н. Л. Лагунович [и др.]. – 1 с. – Текст : непосредственный.

45. Рассел, Х. Ионная имплантация / Х. Рассел, Т. Руге. – Москва : Наука, 1983. – 360 с. – Текст : непосредственный.

46. Snitovsky Yu. P. New CMOS Process Using a Thermal-Oxide Mask for Making n⁻ and p⁻-Wells / Yu. P. Snitovsky, M. G. Krasikov. – Text : direct // Russian Microelectronics. – 2008. – Vol. $37. - N_{\odot} 3. - P. 166-174.$

47. Красников Г. Я. Начальный этап термического окисления кремния и формирование пограничного слоя в системе Si–SiO₂ / Г. Я. Красников, Н. Я. Зайцев, Н. В. Матюшкин. – Текст : непосредственный // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2003. – № 2. – С. 98–104.