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INTRODUCTION

Ischemic stroke (IS) remains a crucial issue in 

modern medicine owing to its high morbidity, mortality, 

and patient disability rates [1–3]. According to the World 

Health Organization, IS and other acute circulatory 

disorders account for 11% of global mortality [4–6]. Over 

the last 5 years, ~430,000–470,000 cases of infectious 

diseases have been reported annually in Russia. The 

hospital mortality rate ranged from 17% to 21% [7].

Currently, the only effective IS treatments 

are intravenous thrombolysis and intravascular 

thromboextraction during the acute period to restore 

blood flow in cerebral arteries [8, 9]. However, these 

methods have limitations and contraindications, the 

most significant of which is the short time interval or 

“therapeutic window” for their application. Recent 

studies have shown that the therapeutic window 

ranges from 4.5 h for intravenous thrombolysis to 

24 h for thromboextraction [10–12]. After IS, patients 

may experience lifelong neurological deficits, even 

after successful reperfusion therapy, due to the death 

of neurons and glial cells in the center of the brain 

infarction [13].

Recent analytical studies have revealed that 

in Russia, a high percentage of patients become 

permanently disabled after experiencing IS, resulting in 

reduced ability to work and contributing to economic 

cost. The state incurs an average cost of 0.9–1.2 million 

rubles per stroke case, and the economic damage 

during the first year after a stroke is equivalent to 0.3% 

of the country’s annual gross domestic product. This 

highlights the creation of a substantial socioeconomic 

burden for the state and thus confirms the need for 

new, effective methods and approaches for IS therapy 

in patients who miss the therapeutic window.

In recent years, there has been significant evidence 

supporting the potential of mesenchymal stem cell 

(MSC) transplantation as an IS therapy. MSCs are  

a subpopulation of mesenchymal stromal cells that meet 

the stemness criteria established by the International 

Society for Cellular Therapy (ISCT) [14]. The stemness 

criteria imply cell multipotency, i.e., the ability to 
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differentiate into different mature cell types within 

one germinal leaflet (in the case of MSCs, mesoderm) 

along with the ability to actively proliferate. MSCs 

are commonly used in cell therapy and regenerative 

medicine because of their immunomodulatory, 

anti-inflammatory, angiogenesis-stimulating, and 

antiapoptotic effects [15, 16]. In addition to directly 

secreting cytokines and other regulatory molecules into 

the extracellular space, MSCs produce extracellular 

vesicles that can be taken up by target cells, facilitating 

the intracellular delivery of biologically active molecules. 

Exosomes are the most extensively studied MSC 

extracellular vesicles. They are 30–100 nm in size and 

can transport a diverse range of regulatory microRNAs 

and growth factors.

Phenotypically, MSCs express certain cell surface 

markers from the differentiation cluster (CD). The 

ISCT Mesenchymal and Tissue Stem Cell Committee 

proposed the minimum criteria for defining MSCs as 

cells that express CD105, CD73, and CD90 but do not 

express CD45, CD34, CD14, CD11b, CD79α, CD19, or 

HLA-DR. As adherent and actively proliferating cells, 

they can form a dense cell monolayer when cultured 

on adhesive polymer coatings under standard 

conditions. Additionally, under special conditions 

in vitro, MSCs can differentiate into adipocytes, 

chondroblasts, and osteoblasts [17] and into various 

cell types, such as pericytes, hepatocytes [18], 

cardiomyocytes [19], and other mesodermal cells. 

However, the scientific community currently questions 
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the ability of MSCs to differentiate into neurons  

without additional induction [20].

MSCs can be isolated from various organs and 

tissues, including the bone marrow, placenta, umbilical 

cord, amniotic fluid, adipose tissue, skin, dental 

pulp, and stroma of parenchymal organs [21–26]. 

Importantly, MSCs obtained from different sources 

or donors may exhibit significant differences in gene 

expression patterns, resulting in varying regenerative 

potential [27]. MSCs have an immunomodulatory 

effect and are considered relatively immunologically 

inert because of their low HLA expression. This means 

that the risk of pathological immunosensitization 

during allogeneic MSC transplantation is low although 

it cannot be excluded [28].

The advantages of MSCs include their ease to 

procure from primary sources, such as the placenta, 

which is classified as biowaste, and the low cost 

of obtaining primary cultures and scaling up cell 

production for clinical use. Furthermore, their safety 

has been confirmed in preclinical and clinical studies. 

Throughout the period of MSC research, no cases 

of tumor formation or oncogenic transformation 

resulting from transplanted MSCs have been reported. 

Therefore, the oncological safety of these cells is not 

debatable [29, 30].

Numerous preclinical studies (PCSs) have found that 

transplantation of MSCs in animals with experimental 

brain infarction can have a significant positive therapeutic 

effect [31–33]. Studies have demonstrated that systemic 

(intravenous or intra-arterial) MSC transplantation and 

local intracerebral injection improve the survival rate of 

laboratory animals, reduce the severity of neurological 

deficits, and, in some cases, decrease the size of the 

brain infarction zone [34–40]. According to PCS data, 

the most favorable MSC transplantation method in 

IS, particularly in the acute and subacute phases, is 

systemic intra-arterial administration. This method 

allows MSCs to enter the brain microcirculatory bed 

first and potentially have the greatest systemic effect 

within the central nervous system [34, 41]. However, 

the optimal method of MSC transplantation remains 

unclear. Intravenous administration is the least invasive 

method of systemic administration. However, most 

cells are retained in parenchymal organs, primarily 

the lungs, liver, and spleen. This retention reduces the 

efficiency of MSC delivery to the brain, resulting in 

lower functional recovery compared with intra-arterial 

administration [42]. Intra-arterial transplantation has 

shown the highest therapeutic efficacy by delivering 

MSCs directly to cerebral arteries, bypassing peripheral 

organs [43]. To avoid embolic complications during intra-

arterial injection, an appropriate dose and rate of MSC 

administration should be selected [44]. In recent years, 

endovascular surgery techniques have undergone 

significant development, making intra-arterial access 

more readily available for routine clinical use.

The ideal timing for transplantation of MSCs and 

other types of stem cells in stroke patients remains 

unknown. However, unlike reperfusion therapy, the 

therapeutic window for cell therapy in IS is longer. 

The therapeutic effects of cell transplantation from 

several hours to several months after the onset of acute 

cerebral circulatory failure have been reported [40]. In 

comparing the therapeutic effects, the experimental 

animals showed the best functional recovery and faster 

reduction of the brain infarction center volume within 

 24–48 h from the onset of neurological symptoms 

[45, 46]. The mechanism of action of MSCs is associated 

with their anti-inflammatory and neuroprotective effects 

in brain ischemia, neuroinflammation, and blood–

brain barrier damage. This association determines the 

maximum efficacy of MSC therapy within the first 48 h 

after IS [47]. The unique immunological properties of 

MSCs enable their allogeneic transplantation, which 

is significant from a socioeconomic perspective. This 

allows for the mass production of placental MSCs and 

their use during the acute and acute phases of IS when 

autologous cells are unobtainable [46, 48, 49].

The properties of MSCs described above and the 

encouraging results of PCSs have made it possible to 

conduct the first clinical trials (CTs) in foreign countries 

to study the effect of MSC transplantation on the 

course and outcomes of IS in humans.

The present study aimed to summarize the clinical 

trial experience of MSC transplantation in CTs, present 

the modern concept of MSC mechanism of action 

based on evidence-based medicine, and outline the 

methods of developing cell therapy for IS.

CLINICAL TRIAL REsULTs
Currently, the scientific literature presents the 

results of 14 CTs. These trials were conducted in 

foreign countries and evaluated the safety and 

efficacy of transplantation of MSCs obtained from 

different sources. Patients were transplanted with 

both autologous and allogeneic MSCs and genetically 

modified MSCs. In all studies, patients with IS were 

treated with standard therapy according to the clinical 

recommendations accepted in the country, in addition 

to cell therapy. Table 1 presents the results of the 

conducted studies [50–63].
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Table 1

Results of major clinical trials on cell therapy for ischemic stroke

study Phase
Total patients/

MsC transplan-
tation, n

MsC 
type/dose

Administration 
route

Follow-up 
period

Efficacy/adverse 
events, 

if identified

Bang et al. 
2005 [50]

I/II 30/5 

Autologous 
(bone marrow)/
two doses of 

50 million cells

Intravenous 1 year
NIHSS 

improvement

Lee et al.  
[51]

I/II 52/16
Autologous 

(bone marrow)
Intravenous 

transplantation
5 years

Improved functional 
recovery, reduced 

mortality

Honmou 
et al. [52]

I 12

Autologous 
MSCs (bone 

marrow)/0.6 to 
1.6×108 cells

Intravenous 
transplantation

1 year

Trend towards 
reduction in 

neurological deficits, 
significant reduction 

in size of infarct 
focus

Bhasin 
et al. [53]

I/II 12/6

Autologous 
MSCs (bone 

marrow) /
50–60×106 cells

Intravenous 
transplantation

6 months

Trend towards 
reduction in 
neurological 

deficits

Bhasin 
et al. [54]

I/II
40/ MSC 6/

14 mononuclear 
SCs

Autologous 
MSCs (bone 

marrow)/
50–60 million 

cells

Intravenous 
transplantation

6 months

Statistically 
significant 

improvement 
of mBI in the MSC 

therapy group

Fang et al.  
[55]

I/IIа 18/6/6 EPCs

Autologous 
MSCs (bone 

marrow)/ 
2.5×106 cells + 

2.5×106 cells/kg 
after 1 week

Intravenous 
transplantation

4 years

No statistically 
significant 
differences 

between groups

Hess et al.  
[56]

II 129/67

Allogeneic 
MSCs (bone 

marrow)/ 
400 mln 
cells/kg 

or 1200 mln 
cells/kg

Intravenous 
transplantation

3 years

Positive therapeutic 
effect observed 
with early MSC 
transplantation 

within 12–36 hours

Levy et al.  
[57]

I/II 36

Allogeneic 
MSCs (bone 

marrow)/
1.5 million 
cells/kg

Intravenous 
transplantation

12 months

Significant increase 
in mBI after 
6 months 

and 12 months

Steinberg 
et al. [58]

I/IIa 18 

MSCs (SB623 
bone marrow 
line)/ 2.5×106, 

5.0×106 or 
10×106 cells

Intrathecal 
stereotactic

2 years

Meaningful 
functional 

improvement 
(ESS, NIHSS, F-M) 

from month 1
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study Phase
Total patients/

MsC transplan-
tation, n

MsC 
type/dose

Administration 
route

Follow-up 
period

Efficacy/adverse 
events, 

if identified

Qiao et al.  

[59]
I 8 

Allogeneic 

MSCs 

(umbilical cord)/ 

0.5×106 cells/kg 

intravenously 

or 5×106 cells 

of MSCs + 

6×106 cells 

of NSCs/NPCs 

intrathecally

Intrathecal MSC 

transplantation 

by 4 injections 

or co-

transplantation 

of 1 dose of MSC 

intravenously 

and MSC + NSC 

intrathecally

2 years

Functional 

improvement 

(NIHSS, mBI, 

and mRS) more 

pronounced after 

co-transplantation

Jaillard 

et al. [60]
I/II 44/31

Autologous 

MSCs (bone 

marrow)/ 

1×106 cells/kg

Intravenous 

transplantation
90 days 

Significant 

improvement 

in F-M scale and 

restoration 

of interhemispheric 

and ipsilateral 

conduction pathways

Jaillard 

и др. [61]
II 31/16

Autologous 

MSCs (bone 

marrow)/ 

1×108 cells 

or 3×108 cells

Intravenous 

transplantation
2 years

Significant 

improvement 

in motor function

De Celis-

Ruiz et al.  

[62]

IIb 30/15

Allogeneic 

MSCs (adipose 

tissue)/ 

106 cells/kg

Intravenous 

transplantation
2 years

Improvement 

trend in NIHSS 

score

Bang et 

al.  [63]
II 54/39

Autologous 

MSCs (bone 

marrow)/ 

1×106 cells/kg

Intravenous 

transplantation
90 days 

Significant 

increase (~5-fold) 

in blood levels of 

extracellular vesicles 

and microRNAs 

associated with 

neurogenesis/

neuroplasticity 

24 hours after 

transplantation, 

correlating with 

recovery of motor 

function and 

pathway

Note: MSCs — mesenchymal stem cells; EPCs — endothelial progenitor cells; SC — stem cells; NIHSS — National Institutes 
of Health Stroke Scale; mBI — modified Barthel Index; mRS — modified Rankin scale; ESS — European Stroke Scale;  
F-M — Fugl-Meyer scale; NSCs/NPCs — neural stem/progenitor cells. 

Table 1

Continued
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Transplantation of autologous MsCs
In 2005, Bang et al. have conducted one of the first 

CTs on cell therapy for IS using MSC transplantation. 

The study involved intravenous transplantation 

of autologous bone marrow MSCs at a dose of 

100 million cells (using cell culture media containing 

fetal bovine serum) in five individuals within 5–7 weeks 

from the onset of the disease. No serious side effects 

were found, and the transplantation was deemed 

safe. Furthermore, patients who received cell therapy 

demonstrated persistent clinical improvement and 

a reduction in neurological deficit severity at 3, 6,  

and 12 months post-transplantation compared with  

25 controls.

Following the success of their initial study, Bang 

et al. have performed a larger blinded phase II study 

with 52 patients [51]. The study involved intravenous 

MSC transplantation in two stages: an initial dose of 

50 million cells followed by an additional 50 million 

cells 2 weeks later. Furthermore, the study confirmed 

the safety of intravenous MSC transplantation and 

reported that using bovine serum to culture MSCs did 

not result in zoonosis or any other adverse effects. The 

cell therapy group showed higher functional recovery 

and lower mortality than the control group.

Owing to concerns within the scientific community 

regarding prion disease transmission through animal-

derived media and sera used for culturing MSCs, 

Honmou et al. have conducted a study in which 

MSCs were cultured in autologous serum [52]. They 

performed intravenous transplantation of bone 

marrow-derived MSCs in patients 36–133 days after 

IS. The study confirmed the safety and feasibility 

of culturing autologous bone marrow MSCs using 

autologous human serum. No significant adverse 

events were detected. In the patients who received 

cell therapy, a decrease in neurological deficits and 

significant decrease in the size of the brain infarction 

focus were observed 1 week after intravenous 

transplantation.

In 2011, Bhasin et al. transplanted autologous 

bone marrow MSCs into patients with IS for the first 

time. MSCs were cultured on serum-free medium. 

In the phase I/II study, MSCs were administered 

intravenously to 12 patients with IS in the early and 

late recovery period (from 3 months to 1 year from 

disease onset). The data were compared with those 

of the control group (6 patients). In the group that 

received MSC cell therapy, the severity of neurological 

deficits decreased; however, these changes were not 

statistically significant when compared with those 

in the control group. In 2013, Bhasin et al. initiated 

another clinical trial [54] to compare the efficacy of 

MSCs with that of hematopoietic/mononuclear cells. 

The results confirmed the safety and feasibility of cell 

therapy using MSCs. No significant differences were 

found between the controls and patients who showed 

improved neurological deficit.

In 2019, Fang et al. [55] showed results of a clinical 

randomized placebo-controlled phase I/IIa study. 

The study involved the intravenous transplantation of 

autologous bone marrow MSCs to patients with IS. 

MSCs were cultured using fetal bovine serum. The 

efficacy of the treatment was evaluated 1 week after the 

onset of the disease. First, bone marrow was collected 

to isolate and culture autologous MSCs. These cells 

were then administered intravenously in two stages: 

the first dose was 2.5 million cells per kilogram of body 

weight, given after 4 weeks, followed by a second dose 

of the same amount after 1 week. The study compared 

therapeutic efficacy and safety between two groups: 

one group (6 people) received MSC transplantation 

and the other group (6 people) received a placebo that 

was intravenously injected with autologous endothelial 

progenitor cells. The follow-up period was 4 years, 

and the study was considered safe. No significant 

differences were found between the two groups 

regarding survival and degree of functional recovery. 

One possible reason for the insufficient therapeutic 

effect may be the introduction of MSCs during the 

subacute period of IS. To solve this problem, allogeneic 

stem cells should be transplanted in patients during the 

acute phase of IS.

Transplantation of allogeneic native MsCs
MSCs can be easily multiplied in culture and weakly 

express antigens of the major histocompatibility 

complex HLA-ABC, making their allogeneic 

transplantation possible [64, 65, 66]. This type of 

transplantation has advantages for the treatment of 

neurological diseases. First, it significantly reduces 

costs and simplifies production, allowing for the 

creation of a standardized bank of MSCs that can 

be prepared in advance and used in the acute period 

of IS as needed. Second, the age of the donors is  

a crucial factor to consider. Epidemiological studies 

have indicated that over 75% of all cases of IS occur in 

individuals aged >65 years [67]. Obtaining MSCs from 

bone marrow in this age group is challenging, and the 

regenerative potential of such MSCs is significantly 

lower than that of MSCs obtained from young donors. 

This difference is due to natural aging processes [68].
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The largest randomized double-blind placebo-

controlled phase II MASTERS trial to date, which 

studied the effect of allogeneic MSC transplantation in 

IS, was conducted across 33 medical centers in the 

USA and the UK [56]. This study investigated the safety 

and efficacy of the MultiStem cell product, which 

consists of allogeneic bone marrow MSCs obtained 

from adult donors [69]. Patients were administered 

MSCs intravenously at a dose of either 400 million 

or 1.2 billion cells 24–48 h after disease onset. The 

safety of this technology was confirmed when both 

doses of MSCs were administered. However, the 

primary endpoint of achieving the expected degree 

of improvement in the functional status of patients 

90 days after IS was not met when comparing the cell 

therapy group with the placebo group. A retrospective 

analysis of the results obtained in some patients with 

functional recovery still showed statistically significant 

improvement. The researchers used this data to 

initiate the next phase of the clinical trial, which is  

a prospective randomized placebo-controlled double-

blind phase III study (MASTERS-2). The study began 

between 18 and 36 h after the onset of neurological 

deficit and is currently ongoing. The results have not 

yet been published.

In a phase I/II study, Levy et al. [57] have evaluated 

the safety and efficacy of allogeneic bone marrow 

MSCs obtained from a single healthy donor. MSCs were 

transplanted intravenously at a dose of up to 1.5 million 

cells per kilogram of body weight to 38 patients in the 

late recovery period of IS (>6 months from disease 

onset). The study revealed the safety of MSC infusion, 

and all patients demonstrated significant functional 

recovery according to the Barthel scale. However, this 

study did not include a control group.

Transplantation of modified allogeneic MsCs
In phase I/IIa, Dr. Steinberg and a team of scientists 

studied the safety and efficacy of transplanting  

a modified line of allogeneic bone marrow MSCs, known  

as SB623, in patients with IS. SB623 is a modified 

line of bone marrow-derived MSCs. These cells were 

transiently transfected with a plasmid containing the 

intracellular domain of Notch1, resulting in Notch1 

overexpression. Notch1 plasmid does not replicate 

during mitosis and is rapidly lost during cell division. 

In PCSs, Notch1-modified MSCs were found to have 

a neurotrophic effect, improve survival and maintain 

neuronal viability in cerebral ischemia, improve 

neoangiogenesis, and have an anti-inflammatory 

effect [70–73]. In experimental IS models, SB623 

MSCs demonstrated both functional recovery and 

neuroprotective effects on neurons in the peri-infarct 

area. However, the transplanted cells did not have  

a direct substitutive effect and were not preserved in 

the recipient’s body for an extended period [74]. In CTs, 

the SB623 cell line was stereotactically injected into the 

brains of 18 patients during the late recovery period of 

IS (6 months to 3 years from disease onset) at doses 

of 2.5, 5, or 10 million cells. Each patient received 

20  stereotactic injections in the brain infarction 

areas. The authors attributed adverse events, such 

as headache, nausea, and vomiting, to neurosurgery 

rather than the effects of the transplanted cells. No 

graft rejection reactions were observed. The study 

demonstrated significant functional recovery in 

patients at 3, 6, and 12 months, with sustained clinical 

improvement 2 years after transplantation [75]. A larger 

randomized phase IIb clinical trial has been initiated 

because of the promising results; however, its findings 

have not yet been published.

Combined transplantation of MsCs 
and other stem/progenitor cells
In the context of PCSs, MSCs secrete various 

paracrine factors and exhibit trophic, neuroprotective, 

anti-inflammatory, and immunomodulatory effects 

[46, 76]. It is hypothesized that joint transplantation of 

MSCs with other types of stem/progenitor cells can 

improve graft engraftment and enhance the therapeutic 

effects of cell therapy. Animal studies using models 

of experimental brain infarction have confirmed that 

combined transplantation of MSCs with neural [77] 

or endothelial progenitor cells [78] can have a more 

pronounced effect than monotherapy with only one 

type of stem/progenitor cells [76]. This may be due 

to the synergy between the therapeutic effects of the 

two different stem cell types. Several CTs have been 

conducted on the combined transplantation of MSCs 

and other types of stem cells on patients with IS based 

on encouraging preclinical data.

In a pilot clinical study, Chen et al. [79] transplanted 

allogeneic MSCs obtained from umbilical cord blood, 

along with various fetal cells of neural origin (neural 

progenitor cells, cells of olfactory lining, Schwann 

cells isolated from sciatic nerve), in 10 patients with 

ischemic or hemorrhagic stroke in the late recovery 

period (from 6 months to 20 years). MSCs were 

transplanted intravenously, whereas the other cell 

types were injected intracerebrally or intrathecally. 

The study results demonstrated an improvement in the 

clinical condition of patients without significant adverse 
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reactions. However, the sample size in each group was 

negligible.

Qiao et al. [59] have assessed the safety and 

feasibility of transplanting human fetal neural progenitor 

cells and allogeneic MSCs isolated from umbilical cord 

blood in 8 patients with IS at different stages of the 

disease (ranging from 1 week to 2 years after onset). 

The first group of patients received four intravenous 

injections of MSCs at 500,000 cells per kilogram of body 

weight. The second group received a single intravenous 

infusion followed by three consecutive injections of 

MSCs and neural progenitor cells into the brain cisterns. 

The combined transplantation of MSCs and NPCs was 

deemed feasible and safe. Each treated patient showed 

clinical improvement, which was sustained for 2 years 

after transplantation. No oncogenic transformation of 

organs was observed during this period.

To confirm these findings, further randomized 

placebo-controlled multicenter CTs on a larger sample 

of patients with IS are recommended.

Mechanisms of MsC action
Currently, numerous preclinical studies have 

investigated the efficacy and mechanisms of MSCs in 

experimental IS [80]. The following presents generalized 

data on the therapeutic mechanism of MSCs from an 

evidence-based medicine perspective.

Although MSCs are multipotent stem cells capable 

of differentiating into various mesodermal cells, 

some scientists revealed that MSCs have low or no 

potential for transdifferentiation in the ectodermal 

direction, specifically into neural or glial cells in the 

brain infarction area. Therefore, a direct substitutive 

mechanism of action is unlikely. Single cases have been 

described in which, after intracerebral injection, some 

of the transplanted MSCs lost expression of specific 

markers and acquired a neuron-like phenotype [81]. 

Simultaneously, a significant amount of data indicated 

that the therapeutic potential of MSCs is linked to their 

paracrine action. This refers to their ability to secrete 

anti-inflammatory cytokines, growth factors, and 

exosomes loaded with biologically active substances 

such as microRNAs, cytokines, and growth factors [82]. 

Furthermore, several studies have shown that MSCs 

can fuse with other cells, which may be a mechanism 

of tissue regeneration [83]. Transplanted MSCs 

have a direct neuroprotective effect by transferring 

mitochondrial and cytoplasmic components to the 

recipient nerve and glial cells [84]. Several studies have 

reported enhancement of endogenous neurogenesis 

in recipient animals after MSC transplantation [85–87].

Currently, the therapeutic effect of MSCs is primarily 

due to their paracrine effect, rather than their ability 

to differentiate into other cell types [88,  89]. MSCs 

secrete factors that influence tissue regeneration, 

reduce inflammation, and promote angiogenesis. 

These factors include cytokines that modulate the 

immune response, such as interleukin (IL)-6, and 

regulatory molecules, including vascular endothelial 

growth factor (VEGF), IGF-1, IGF-2, and PDGF-AA. 

These molecules were detected in the conditioned 

medium in which MSCs were cultured. Moreover, 

a  transcriptome analysis showed that human MSCs 

differ from fibroblasts, osteoblasts, chondrocytes, and 

adipocytes, among other types of differentiated cells, 

because of increased expression of certain molecules. 

Specifically, the levels of brain-derived neurotrophic 

factor (BDNF) are approximately 20-fold higher, IL-6 

is 60-fold higher, and VEGF is 20-fold higher [90]. 

Experimental evidence confirms the neuroprotective 

role of BDNF secreted by human MSCs  [91]. 

Furthermore, MSC transplantation can stimulate 

recipient cells to produce VEGF and basic fibroblast 

growth factor, as demonstrated in a rat model of brain 

ischemia [92]. IL-6 plays a pro-inflammatory role [93] 

and a crucial role in regeneration and stemness. It 

helps maintain the “stem” phenotype of MSCs [94] 

and can activate axon regeneration in mature retinal 

ganglion cells under certain conditions [95].

Currently, researchers are attempting to determine 

the molecular composition of biologically active 

substances in exosomes secreted by MSCs. The 

exosomes of MSCs from adipose tissue contain 

591 proteins, which are mainly involved in signal 

transduction (GO:0007165), cell adhesion (GO:0007155), 

positive regulation of proliferation (GO:0008284), and 

immune response (GO:0006955), according to Gene 

Ontology  [96]. Exosomes contain 489 microRNAs 

from various families, including the mir-515 and  

mir-10 families. A significant portion of microRNAs 

in MSC-secreted exosomes are believed to exist as 

microRNA precursors [79]. Bioinformatics indicates 

that some of these precursors are involved in regulating 

inflammatory processes, such as microRNAs  

hsa-let-7g-5p, hsa-miR-16-5p, and hsa-miR-92a-3p, or 

in negatively regulating macrophage activation, such as 

hsa-miR-124-3p [97]. Furthermore, microRNA targets of 

secreted MSCs in exosomes include the Wnt signaling 

pathway, profibrotic signaling cascades such as TGF-β 

(transforming growth factor-β) and PDGF (platelet-

derived growth factor), and signaling pathways that 

regulate cell proliferation and apoptosis [98].
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The immunomodulatory effect of MSCs is 

based on their ability to influence the polarization of 

macrophages in the area of injury. This polarization can 

lead to the M2 phenotype, which is anti-inflammatory, 

in response to cytokines such as IL-4, IL-10, and IL-13.  

Polarization plays a crucial role in central nervous 

system damage. Macrophages, depending on their 

phenotype, can either contribute to secondary 

tissue damage or aid in its repair [99]. This process 

is influenced by the activation of pro-inflammatory M1 

or anti-inflammatory M2 macrophages. Research has 

demonstrated that MSCs can influence the polarization 

of macrophages toward M2 through regulatory 

molecule secretion [100]. Remarkably, this polarization 

is regulated by both cytokines and nucleic acids found 

in exosomes secreted by MSCs. For instance, a long 

noncoding RNA called LncGm37494 possesses such 

a function. It can promote macrophage polarization in 

the M2 direction by inhibiting miR-130b-3p microRNA 

and stimulating PPARγ expression [101]. MSCs 

can influence the balance of T-cell subpopulations, 

particularly Treg and Th17, as demonstrated in vitro 

[102]. This effect can lead to the repair of damaged 

tissue. MSCs also affect Breg cells although the 

mechanism of this effect is poorly understood [103]. 

Both Treg and Breg cells are key suppressors of 

inflammation and autoimmune reactions.

MSCs can affect the state of the extracellular 

matrix, which is a crucial component of the cellular 

microenvironment that regulates cell differentiation, 

migration, and tissue repair. MSCs produce and 

deposit fibronectin, a component of the extracellular 

matrix, which can promote tissue regeneration, as 

demonstrated in a model of spinal cord injury [104]. 

Additionally, MSCs secrete proangiogenic factors, 

which have been extensively covered in recent 

publications. Factors secreted by MSCs include 

growth factors, such as EGF, FGF-2, ANGPT1, ANG, 

PDGF, TGF-α, TGF-β, and VEGF [105], and regulatory 

nucleic acids that affect angiogenesis. Among these 

nucleic acids are proangiogenic microRNAs, including 

miR-30b [106].

strategies for developing cell 
therapy using MsCs
None of the CTs conducted to date in patients with 

IS after MSC transplantation have revealed serious 

adverse events. All studies have noted a tendency 

toward improvement in patients’ condition and  

a reduction in the severity of neurological deficits. 

In studies involving humans, where patients were 

randomized and a control group was included, not 

all patients demonstrated a statistically significant 

positive effect of MSC cell therapy compared with the 

controls. Possible reasons for insufficiently expressed 

clinical effects include suboptimal parameters of cell 

transplantation and criteria for patient inclusion in trials, 

such as a limited therapeutic window and variation of 

several months regarding MSC infusion. Moreover, 

therapy is often performed in the late recovery period 

of IS, and the comparison group may include patients 

with a large age difference (from childhood/youth to 

old age) or those who receive autologous MSCs from 

elderly donors. The choice of transplantation method 

and the frequency of MSC administration should be 

considered. In most studies, MSCs were administered 

intravenously once or twice during the therapy period. 

Recent preclinical studies have demonstrated the 

high efficiency of the intra-arterial method of stem cell 

administration. This method allows for targeted delivery 

of transplanted cells to cerebral vessels, bypassing 

parenchymal organs [44]. Selecting the most effective 

therapeutic window and transplantation method is 

dependent on the presumed mechanisms of stem cell 

action, which require further study.

To further develop cell therapy for IS, one strategy 

is to modify and unify protocols for MSC use for 

further optimization. Currently, randomized placebo-

controlled multicenter CTs with modified protocols of 

cell transplantation are underway in several countries. 

The results of these trials will be available within the 

next few years [107].

In addition to continuing CTs, an essential 

strategy for developing cell therapy using MSCs is to 

continue translational basic research on experimental 

brain infarction models in laboratory animals. This 

study aimed to clarify the mechanisms of action of 

transplanted stem cells and optimize transplantation 

protocols for their subsequent introduction into clinical 

practice. When conducting translational studies, 

evaluating the efficacy of MSC therapy in animals 

of different genders and ages and in those with 

concomitant pathologies such as diabetes mellitus 

and arterial hypertension is advisable [108, 109]. 

Additionally, investigating the mechanisms of MSC 

therapeutic action and ways to enhance it is critical. 

For example, combining MSC transplantation with 

neuronal progenitor cells obtained through modern 

methods that do not involve the use of human embryo 

or fetal tissues [34, 110] may be effective.

To assess the efficacy of MSC cell therapy in 

preclinical studies, objective quantitative methods 
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of therapy evaluation, in particular the degree of 

neurological deficit severity, such as kinematics of 

movements of the paralyzed limb and assessment 

of the volume of the brain infarction focus, should 

be used. Wider implementation of new methods at 

the preclinical level will allow selecting the best ways 

to objectify the results of cell therapy evaluation 

and use them in the design of CTs. Evaluation of the 

brain infarction center volume is a critical objective 

quantitative parameter for assessing the quality of 

cell therapy. Morphometric analysis of brain infarction 

can be performed in experimental studies through 

histological examination [111, 112] and/or magnetic 

resonance imaging (MRI) [111, 112]. In preclinical studies 

on experimental models of cerebral ischemia, MRI 

allows for the assessment of changes in the volume of 

the brain infarction without the need to remove animals 

from the experiment for histologic analysis at each 

time point. When transferred to computer systems, 

MRI enables objective assessment of the dynamics of 

the pathological process in the brain before and after 

treatment throughout the patient’s lifetime [113–115]. 

For quantitative assessment of MRI data, a promising 

method is fully automatic parametric image analysis 

[116] or convolutional neural networks [117]. These 

methods minimize the subjective contribution of 

the operator when assessing the data. However, to 

increase the objectivity of the assessment, the process 

of morphometric analysis of the brain infarction focus 

should be standardized for optimal use upon the 

patient’s hospital admission. One of the methods is the 

segmentation method [118] by selecting the region of 

interest on a series of images. This approach allows 

avoiding errors due to the subjectivity of focal volume 

assessment by an operator or several operators without 

averaging their assessment.

The development and testing of methods for 

automatic objective assessment of cell therapy 

efficacy in cerebral infarction in PCSs and CTs can 

create a solid foundation for qualitative assessment of 

the results obtained.

CONCLUsIONs
Based on the analysis of the conducted CTs of 

the safety and efficacy of cell therapy for IS, it can 

be concluded that MSC transplantation is a safe and 

effective procedure from a pathogenetic perspective.

Continuing research in this direction, including the 

initiation of the first CTs in Russia, is recommended. 

To introduce IS therapy into clinical practice, CTs on 

a large sample of patients with randomization and 

adequate selection of a control group should be 

conducted. This should include criteria modification 

for patient inclusion in the study and protocols of 

MSC transplantation corresponding to a high degree 

of evidence. Further fundamental research on the 

mechanisms of cell therapy action and the selection of 

the optimal time window, methods, and frequency of 

stem cell administration is warranted.
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