Non-cystic fibrosis bronchiectasis: actual problem review and treatment prospects

Cover Page

Abstract


This review introduces some actual data related to the etiology, epidemiology, pathogenesis of non-cystic fibrosis bronchiectasis, presents the nowaday tendencies of treatment methods development.


ВВЕДЕНИЕ

Несмотря на то, что первые упоминания о бронхоэктазах относятся к 1819 г. [1], только в сентябре 2017 г. Европейское респираторное общество (European Respiratory Society, ERS) опубликовало Руководство по ведению взрослых пациентов с бронхоэктазами, которое представляет собой первые международные стандарты медицинской помощи данной категории больных. Согласно мнению специалистов ERS, бронхоэктазы — это хроническое респираторное заболевание, характеризуемое такими клиническими признаками, как кашель, продукция мокроты, наличие бронхиальной инфекции, и определяемое рентгенологическими признаками патологического и необратимого раширения бронхов [2]. Отечественные авторы предлагают более глубокое определение, описывая бронхоэктазы как хроническое приобретенное, а в ряде случаев врожденное заболевание с характерными необратимыми изменениями (расширением, деформацией) бронхов, сопровождающимися их функциональной неполноценностью, нарушением дренажной функции, хроническим гнойно-воспалительным процессом в бронхиальном дереве и перибронхиальном пространстве с развитием ателектазов, эмфиземы и цирроза в паренхиме легкого [3]. В настощее время «золотым стандартом» диагностики бронхоэктазов считается компьютерная томография высокого разрешения [4].

НЕМУКОВИСЦИДОЗНЫЕ БРОНХОЭКТАЗЫ

Эпидемиология

Данные о распространенности бронхоэктазов весьма разрозненны. Так, N. ten Hacken и соавт. сообщают, что в США частота встречаемости немуковисцидозных бронхоэктазов (НМБЭ) среди взрослого населения за период с 1999 по 2001 г. составляла 51 случай на 100 000 человек [5]. По другим данным, в период с 2000 по 2007 г. распространенность НМБЭ в США ежегодно увеличивалась на 8,74% [6]. По сведениям Испанского торакального общества, НМБЭ занимают 3-е место среди хронических воспалительных заболеваний дыхательных путей после бронхиальной астмы и хронической обструктивной болезни легких и тесно связаны с каждым из них. Распространенность НМБЭ составляет от 42 до 566 случаев на 100 000 населения [7]. В Российской Федерации точных данных о распространенности бронхоэктазов нет.

Клинические проявления бронхоэктазов сопряжены с рецидивирующими инфекционными обострениями, которые способствуют хронизации бронхиальной инфекции и прогрессирующему снижению функции легких, что в свою очередь приводит к ухудшению качества жизни, повышению заболеваемости и смертности [7]. Выделение в мокроте Pseudomonas aeruginosa, низкий показатель индекса массы тела, мужской пол, пожилой возраст и наличие хронической обструктивной болезни легких также были отнесены к факторам риска смертности в некоторых клинических исследованиях [8]. Уровень смертности при бронхоэктазах оценивался от 10 до 16% в течение приблизительно 4-летнего периода наблюдения [9–11]. Основной причиной смертности при бронхоэктазах является связанная с ними дыхательная недостаточность. Связь между конкретной этиологией бронхоэктазов и уровнем смертности окончательно не установлена [10, 11].

Экономическое бремя

Бронхоэктазы — существенная проблема, приводящая к стойкой нетрудоспособности, накладывающая значительную нагрузку на пациентов и систему здравоохранения. Так, в США стоимость лечения этих пациентов оценивается в 630 млн долларов в год [12]. Средняя стоимость ежегодного лечения пациента с бронхоэктазом в Испании составляет около 4700 евро, а при тяжелом течении — 10 000 евро, особенно если бронхоэктазы ассоциируются с хронической обструктивной болезнью легких, частыми обострениями и выделением P. aeruginosa [6].

Этиология

Этиологические факторы развития НМБЭ разнообразны (табл. 1).

 

Таблица 1. Этиология бронхоэктазов, сводные данные [7, 8, 13, 66]

Инфекция; 30%

Бактерии, микобактерии туберкулеза,

нетуберкулезные микобактерии, вирусы, грибы

Хронические воспалительные заболевания дыхательной системы; 6,3–13,7%

Хроническая обструктивная болезнь легких (3,9–7,8%),

бронхиальная астма (1,4–5,4%), дефицит α1-антитрипсина

Иммунодефицит; 5–9,4%

Первичный: гуморальный, клеточный или комбинированный.

Вторичный: вирус иммунодефицита человека, опухоли на фоне

иммуносупрессивной терапии

Гиперчувствительность; 0,9–2,6%

Аллергический бронхолегочный аспергиллез

Цилиарная дискинезия; 2,5–29%

Первичная цилиарная дискинезия

Локальная обструкция; <1%

Опухоль, инородное тело, стеноз, лимфаденопатия и др.

Посттрансплантационные осложнения; <1%

Болезнь «трансплантат против хозяина»

Поствоспалительный

пневмонит; <1%

Гастроэзофагеальная рефлюксная болезнь, аспирация, лучевая терапия, ингаляционное поражение токсическими веществами

Другие; <1%

Синдром желтого ногтя, синдром Маклеода, синдром Янга и др.

Заболевания

соединительной ткани

Синдром Мунье−Куна, синдром Марфана,

синдром Вильямса−Кэмпбелла

Аутоиммунные заболевания

Ревматоидный артрит, синдром Шегрена

 

В Великобритании были проведены клинические исследования, посвященные этиологии немуковисцидозных бронхоэктазов, показавшие, что в 26–53% случаев они являются идиопатическими [13–15].

В связи с тем, что персистирование инфекции в ды- хательных путях является одной из ведущих причин формирования НМБЭ, большое значение придается микробиологическому исследованию мокроты.

Грамотрицательные бактерии — наиболее часто выявляемые микроорганизмы в мокроте больных НМБЭ. Р. King и соавт. продемонстрировали, что Haemophilus influenzae присутствует у 47% пациентов, P. aeruginosa — у 12%, Moraxella catarrhalis — у 8% [16]. Другие клинические исследования показали, что P. aeruginosa более распространена и встречалась у 25–58% пациентов [17–19]. Более того, выявление в мокроте P. aeruginosa коррелировало с более тяжелым течением заболевания, большим снижением функции легких, частыми обострениями и снижением качества жизни по сравнению с другими микробными агентами [17–20]. Схожие результаты опубликованы в 2018 г. в Китае. В ходе ретроспективного клинического исследования с участием 1188 пациентов с диагнозом НМБЭ P. aeruginosa была выделена у 232 из них. При этом зарегистрированы 74 случая смерти (из них у 12% пациентов была обнаружена синегнойная палочка, у 7,3% не обнаружена). Пациенты с P. aeruginosa имели худшие результаты по Госпитальной шкале тревоги и депрессии, опроснику Лестера по кашлю, шкале одышки mMRC и демонстрировали высокую частоту обострений (т.е. ≥3 в год). В соответствии с этими результатами риск смерти у пациентов с P. aeruginosa был в 3,07 раза выше, чем без нее [21].

Грамположительные бактерии встречаются реже и представлены в основном Streptococcus pneumoniae и Staphylococcus aureus. У 89 пациентов, обследованных Р. King и соавт., S. pneumoniae был выделен у 7% пациентов, тогда как S. aureus только у 3% [16].

Отдельное внимание уделяется нетуберкулезным микобактериям. Имеются данные, что эта инфекция распространена у пациентов с НМБЭ, и что ее встречаемость увеличивается [22].

Большинство бактерий, присутствующих при бронхоэктазах, образуют биопленки [23–26], которые снижают эффективность антибактериальной терапии, поскольку эффективно защищают организованные сообщества микроорганизмов от внешних воздействий [7], что является отдельной существенной проблемой в лечении таких пациентов.

Патогенез

Бронхоэктазы являются результатом сложного порочного круга, состоящего из поражения мукоцилиарного клиренса, воспаления, инфекции и ремоделирования дыхательных путей, которые также зависят от конкретной этиологии. Повреждение мукоцилиарного клиренса затрудняет эскалацию слизи, создавая благоприятную среду для роста микроорганизмов и развития воспаления в стенке бронха, которые приводят к повреждению структуры дыхательных путей, замыкая этот порочный круг [7]. В просвете бронха депонируются клетки воспаления — нейтрофилы, лимфоциты, мононуклеары. Колонизация микроорганизмами коррелирует с такими биологическими маркерами, как интерлейкин (interleukin, IL) 8, IL1β, фактор некроза опухоли альфа (tumor necrosis factor, TNFα). Разрушение стенки бронха происходит под воздействием высокой протеолитической активности нейтрофильной эластазы и металлопротеиназ [27]. Эндотелиальные клетки под действием лейкотриена B4 обеспечивают миграцию нейтрофилов. Он активирует их трансмиграцию, блокирует клеточный апоптоз и индуцирует высвобождение секреторных гранул нейтрофилов, что связано с образованием активных форм кислорода. Таким образом, воспаление в дыхательных путях имеет нейтрофильный профиль [28].

Современные тенденции в терапии бронхоэктазов

Из ключевых рекомендаций по лечению бронхоэктазов в руководстве ERS только легочная реабилитация подтверждена высококачественными данными. Остальные рекомендации имеют низкое или очень низкое качество доказательств (табл. 2) [29].

 

Таблица 2. Резюме рекомендаций ERS по лечению пациентов с бронхоэктазами [29]

Рекомендации

Сила

рекомендации

Категория

доказательности

Антибиотики

Курс антибиотикотерапии при обострении бронхоэктаза >14 дней

Условная

D

Проводить курс эрадикационной терапии при первичном выделении P. aeroginosa

Условная

D

Не проводить эрадикационную терапию при выделении других возбудителей

Условная

D

При обострениях ≥3 в год рассмотреть длительную терапию макролидами

Условная

B

ДДБЛ

Избегать рутинного назначения, назначать пациентам с выраженной одышкой в индивидуальном порядке

Условная

D

Муколитики

Назначать пациентам с затрудненным отхождением мокроты и низким качеством жизни, когда другие методы поддержания мукоцилиарного клиренса неэффективны

Условная

D

НЕ назначать

Хирургическое лечение, за исключением случаев с локализованными формами и частыми обострениями, если другие методы лечения неэффективны

Условная

D

Ингаляционные глюкокортикостероиды

Условная

C

Статины

Высокая

C

Дорназа альфа

Высокая

B

ДМ/ЛР

Дренажные методики должны проводиться пациентам с хроническим кашлем и/или имеющим трудности с отделением мокроты

Условная

C

Пациенты с низкой физической тренированностью должны включаться в программы легочной реабилитации

Высокая

A

Примечание. ДДБЛ — бронхолитики длительного действия, ДМ — дренажные методики, ЛР — легочная реабилитация.

 

Большое внимание в клинических исследованиях, проводимых у пациентов с НМБЭ, уделяется ингаляционным антибиотикам, однако их результаты противоречивы. Так, небольшие клинические исследования тобрамицина и гентамицина показали положительные результаты, но сопровождались развитием бронхоспазма у 10–40% пациентов [30, 31], а широкомасштабных клинических исследований этих препаратов еще не проводилось.

В рандомизированном плацебоконтролируемом клиническом исследовании 3-й фазы у пациентов с бронхоэктазами и носительством P. aeruginosa использовался колистин. Данное исследование не достигло своей первичной конечной точки — времени до первого обострения, и было преждевременно прекращено. Среди вторичных конечных точек отмечалось значительное улучшение качества жизни по данным респираторного опросника клиники Святого Георгия (Sent George respiratory questionnaire, SGRQ, Россия) [32].

В двух плацебоконтролируемых рандомизированных клинических исследованиях (РКИ) III фазы применялся азтреонам [33], который используется в лечении муковисцидоза. При этом первичная конечная точка (показатель опросника оценки качества жизни при бронхоэктазах — QoL-B) была достигнута только в одном из них. Эти противоречивые данные пока не позволяют рутинно использовать данный препарат при НМБЭ в реальной клинической практике.

В ряде международных РКИ оценивалось влияние различных доз ингаляционного ципрофлоксацина на НМБЭ. Предварительные данные клинических исследований ORBIT-3 и ORBIT-4 показывают, что первичная конечная точка (время до первого обострения) была достигнута только в ORBIT-4 [34]. В РКИ RESPIRE-1 и RESPIRE-2 [35, 36] ципрофлоксацин применялся в перекрестных группах по 14- и 28-дневной схеме. Результаты RESPIRE-1 продемонстрировали увеличение времени до первого обострения и снижение частоты обострений при 14-дневном курсе лечения, в то время как 28-дневный курс не показал никаких улучшений ни в одной из этих первичных конечных точек. Таким образом, использование ингаляционной антибиотикотерапии не показало однозначного улучшения клинических исходов у пациентов с НМБЭ.

В последние 5 лет большое внимание уделялось макролидам. Одно клиническое исследование эритромицина [37] и три — по азитромицину [38–40] показали значительное снижение частоты обострений — примерно на 50% по сравнению с плацебо [29]. Однако отсутствие крупномасштабных РКИ, высокий риск развития побочных эффектов и формирования устойчивости к антибиотикам объясняют условность рекомендаций по использованию макролидов в клинических рекомендациях ERS [2].

В настоящее время проводится ряд клинических исследований новых фенотипспецифичных препаратов для лечения НМБЭ. Как говорилось ранее, при НМБЭ преобладает нейтрофильный тип воспаления. В связи с этим использование ингибиторов нейтрофильной эластазы представлялось весьма перспективным. Имеются данные по двум завершенным клиническим исследованиям: в первом не была достигнута первичная конечная точка (уменьшение количества нейтрофилов в мокроте), хотя по данным спирометрии отмечалась тенденция к увеличению объема форсированного выдоха за 1 сек и улучшению качества жизни по опроснику SGRQ, а во втором доказательств эффективности получено не было [41, 42].

Альтернативным подходом в ингибировании нейтрофильной эластазы является использование ингибиторов катепсина С, которые исследовались в 2 клинических исследованиях I фазы. В первом, где исследуемый препарат вводился в нарастающей дозе, было зарегистрировано незначительное снижение активности нейтрофильной эластазы в крови (около 20%), при этом у 7 из 10 пациентов развились нежелательные явления в виде ладонно-подошвенного эпидермального шелушения, в результате чего клиническое исследование было прекращено [43]. Во втором клиническом исследовании снижение активности нейтрофильной эластазы достигало 50% при использовании максимальных доз, но у 5 пациентов также развились нежелательные явления. Таким образом, ожидаемые нежелательные явления препятствуют проведению широкомасштабных РКИ с использованием данной группы препаратов [44].

Другой подход к уменьшению нейтрофильного воспаления заключается в том, чтобы непосредственно сократить количество нейтрофилов, поступающих в ткани. С этой целью применялись антагонисты рецептора к IL8 второго типа (C-X-C motif chemokine receptor 2, CXCR2). В данном клиническом исследовании прием перорального антагониста СХСR2 осуществлялся в дозе 80 мг 2 раза/сут в течение 28 дней и сравнивался с плацебо. У 45 пациентов, завершивших курс лечения, число нейтрофилов в мокроте сократилось на 69% при отсутствии различий между группами по частоте обострений. Однако в группе исследуемого препарата были зарегистрированы 4 нежелательных явления с прекращением лечения (1 из-за пневмонии и 3 из-за обострений бронхоэктазов) при отсутствии нежелательных явлений в группе плацебо [45]. Следует отметить, что данное клиническое исследование проводилось на небольшом количестве пациентов и имело короткий период наблюдения, не позволяющий адекватно оценить клинически значимые эффекты лечения.

Ранее было установлено, что витамин D обладает противовоспалительным действием. Подавляя продукцию цитокинов и способствуя секреции антимикробного пептида LL-37 из эпителиальных клеток, витамин D усиливал разрушение P. aeruginosa in vitro [46]. Одно из клинических исследований показало, что 50% пациентов с бронхоэктазами имели дефицит витамина D, который в большей степени выявлялся у лиц, имевших высокую частоту инфекционных обострений, в том числе обусловленных P. aeruginosa [47]. Однако использование препаратов витамина D3 у пациентов с хронической обструктивной болезнью легких не привело к клинически значимым улучшениям [48]. Таким образом, роль данной группы препаратов при заболеваниях с нейтрофильным типом воспаления представляется спорной и требует проведения дальнейших клинических исследований.

Одной из разработок в терапии НМБЭ является использование экзогенного гранулоцитарно-макрофагального колониестимулирующего фактора (granulocyte-macrophage colony-stimulating factor, GM-CSF). Следует отметить, что заместительное лечение GM-CSF уже используется в клинической практике при легочном альвеолярном протеинозе — редком заболевании легких, характеризуемом наличием антител против GM-CSF. Доказано, что экзогенный GM-CSF усиливает внутриклеточное уничтожение Mycobacterium avium in vitro [49]. Применение GM-CSF в одном из клинических исследований увеличило активность макролидов-антибиотиков в отношении M. avium, инфицировавшей макрофаги [50]. Имеется ряд работ, сообщающих о возможной эффективности использования GM-CSF при заболеваниях с нейтрофильным типом воспаления [51–53], однако их недостаточно для применения препарата в рутинной клинической практике и требуется проведение дальнейших клинических исследований.

Ингибитор фосфодиэстеразы-4 рофлумиласт активно используется у пациентов с бронхитическим фенотипом хронической обструктивной болезни легких с частыми обострениями. С учетом того, что до 50% пациентов с хронической обструктивной болезнью легких имеют бронхоэктазы [54], применение ингибитора фосфодиэстеразы-4 представляется логичным у этих пациентов. В настоящее время проводится первое клиническое исследование 2-й фазы в Южной Корее, но данные пока не опубликованы.

Ранее было показано, что статины обладают противовоспалительным эффектом [55]. В Великобритании были проведены 2 одноцентровых РКИ по использованию статинов у пациентов с НМБЭ [56, 57]. Однако небольшой размер выборки, противоречивые результаты и увеличение частоты нежелательных явлений привели к рекомендации против их использования (см. табл. 2).

В большинстве клинических исследований для пациентов с НМБЭ проводилась попытка адаптировать методы лечения, используемые для муковисцидоза [29]. Так, в одном из клинических исследований у взрослых с НМБЭ применялась дорназа альфа. При этом был зарегистрирован рост частоты обострений и нежелательных явлений в группе исследуемого препарата, в результате чего от использования дорназы альфа пришлось отказаться (см. табл. 2) [58]. В другом клиническом исследовании была произведена попытка использования ингаляционного сухого порошка маннитола у 461 пациента с НМБЭ. Однако клиническое исследование не достигло своей первичной конечной точки (частота обострений), хотя были отмечены улучшения во вторичных конечных точках (время до первого обострения и качество жизни) [59]. Таким образом, терапевтические подходы к лечению муковисцидоза не могут автоматически переноситься на пациентов с НМБЭ [29].

Как известно, причиной развития муковисцидоза являются мутации в гене CFTR (cystic fibrosis transmembrane regulator), который кодирует аденозинтрифосфатсвязывающий белок, формирующий канал для ионов хлора в клеточных стенках. Эти изменения в структуре CFTR приводят к нарушению транспорта электролитов и ионов хлора через мембраны эпителиальных клеток, что сопровождается усилением секреции густой слизи и закупоркой выводящих протоков различных желез. В ряде клинических исследований было показано, что у отдельных пациентов с НМБЭ выявляется нарушение функции CFTR, которое не соответствует диагностическим критериям муковисцидоза [60, 61]. В этой связи, согласно рекомендациям ERS, концентрацию хлорида пота предлагается измерять дважды и проводить анализ мутаций CFTR у лиц моложе 40 лет и детей, а также у лиц старше 40 лет с клиническими проявлениями муковисцидоза [2]. Для таких пациентов представляется перспективным применение препаратов группы корректоров CFTR и ингибиторов эпителиального натриевого канала (в настоящее время проводятся клинические исследования) [29].

Методы лечения, направленные на улучшение работы мукоцилиарного клиренса и гидратацию слизи, имеют большую перспективу и нуждаются в дальнейшей разработке. Возможность применения в клинической практике гипертонического и изотонического физиологического раствора или производных ацетилцистеина основана на небольшом количестве данных [2]. В настоящее время в Великобритании проводится крупное клиническое исследование по использованию гипертонического физиологического раствора и карбоцистеина у пациентов с бронхоэктазами, но данные пока не опубликованы [29].

В Российской Федерации имеются данные об эффективности ингаляционного использования ультранизких (более чем в 100 раз ниже обычных терапевтических) доз алкилирующих препаратов (мелфалан) при тяжелой стероидрезистентной бронхиальной астме — форме заболевания, характеризующейся зачастую нейтрофильным типом воспаления [62, 63]. В проведенных доклинических исследованиях и исследованиях на добровольцах было установлено, что ультранизкие дозы мелфалана, вводимые ингаляционно, не обладают цитостатическими свойствами, а оказывают противовоспалительное действие в бронхиальном дереве, усиливая пролиферацию лимфоцитов за счет избирательного повреждения β-цепи рецептора IL2 (IL-2R) на поверхности регуляторных Т-лимфоцитов (Treg), которые играют центральную роль в регуляции иммунного ответа [64]. Кроме того, в ультранизких концентрациях алкилирующие агенты способны нарушать проведение сигнала через рецептор для TNF I типа, тем самым оказывая протективное действие на клетки фибробластоидной клеточной линии от цитотоксического влияния TNFα [65].

С учетом всего вышесказанного можно предположить, что ингаляционное использование ультранизких доз мелфалана может быть эффективно у пациентов с НМБЭ — заболеванием, характеризующимся нейтрофильным типом воспаления. Разработка данного метода, возможно, позволит расширить арсенал средств лечения пациентов с НМБЭ. В настоящее время проводится научно-исследовательская работа по оценке безопасности, переносимости и эффективности ингаляционного применения ультранизких доз мелфалана у пациентов с НМБЭ.

ЗАКЛЮЧЕНИЕ

Таким образом, несмотря на достаточно глубокое понимание механизмов нейтрофильного воспаления, арсенал средств специфической противовоспалительной терапии при НМБЭ ограничен. Рекомендации ERS по ведению пациентов с бронхоэктазами указывают, что ни один из способов лечения, кроме легочной реабилитации, не подтвержден убедительной доказательной базой. Имеющиеся методы лечения, используемые в клинической практике, основаны на данных, полученных в ходе небольших клинических исследований с малой выборкой и подчас демонстрирующих противоречивые результаты. В этой связи необходимо проведение широкомасштабных РКИ для разработки новых фенотипспецифических методов лечения заболеваний с нейтрофильным типом воспаления.

E. A. Sinitsyn

Research Institute of Pulmonology of the Federal Medical-Biological Agency of Russia

Author for correspondence.
Email: sinymlad@list.ru
SPIN-code: 3156-7024

Russian Federation, 28, Orekchovy Boulevard, Moscow, 115682 

науч. сотр. лаборатории клинической пульмонологии

K. A. Zykov

Research Institute of Pulmonology of the Federal Medical-Biological Agency of Russia

Email: kirillaz@inbox.ru
ORCID iD: 0000-0003-3385-2632
SPIN-code: 6269-7990

Russian Federation, 28, Orekchovy Boulevard, Moscow, 115682 

докт. мед. наук, профессор РАН, и.о. директора

  1. Laënnec RTH. On mediate auscultation, or a treatise on the diagnosis of diseases of the lungs and heart. In: De l’auscultation médiate ou trait du diagnostic des maladies des poumon et du coeur. 1st ed. Paris: Brosson & Chaudé; 1819.
  2. Polverino E, Goeminne PC, McDonnell MJ, et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur Respir J. 2017;50(3):1700629. doi: 10.1183/13993003.00629-2017.
  3. Национальные клинические рекомендации «Наг- ноительные заболевания легких» [интернет]. / Под ред. Е.А. Корымасова. — М.; 2015. [Natsional’nye klinicheskie rekomendatsii «Nagnoitel’nye zabolevaniya legkikh» [Internet]. Ed by EA Korymasov. Moscow; 2015. (In Russ).] Доступно по: http://zodorov.ru/nacionalenie-klinicheskie-rekomendacii-nagnoitelenie-zabolevan.html. Ссылка активна на 12.08.2018.
  4. McGuinness G, Naidich DP. CT of airways disease and bronchiectasis. Radiol Clin North Am. 2002;40(1):1–19. doi: 10.1016/s0033-8389(03)00105-2.
  5. ten Hacken NH, van der Molen T. Bronchiectasis BMJ. 2010;341:c2766. doi: 10.1136/bmj.c2766.
  6. Seitz AE, Olivier KN, Adjemian J, et al. Trends in bronchiectasis among Medicare beneficiaries in the United States, 2000 to 2007. Chest. 2012; 142(2):432–439. doi: 10.1378/chest.11-2209.
  7. Martínez-García MÁ, Máiz L, Olveira C, et al. Spanish guidelines on the evaluation and diagnosis of bronchiectasis in adults [Article in English, Spanish]. Arch Bronconeumol. 2018;54(2):79–87. doi: 10.1016/j.arbres.2017.07.015.
  8. McShane PJ, Naureckas ET, Tino G, Strek ME. Non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2013;188(6):647–656. doi: 10.1164/rccm.201303-0411CI.
  9. Goeminne PC, Scheers H, Decraene A, et al. Risk factors for morbidity and death in non–cystic fibrosis bronchiectasis: a retrospective cross-sectional analysis of CT diagnosed bronchiectatic patients. Respir Res. 2012;13:21. doi: 10.1186/1465-9921-13-21.
  10. Loebinger MR, Wells AU, Hansell DM, et al. Mortality in bronchiectasis: a long-term study assessing the factors influencing survival. Eur Respir J. 2009;34(4):843–849. doi: 10.1183/09031936.00003709.
  11. Onen ZP, Gulbay BE, Sen E, et al. Analysis of the factors related to mortality in patients with bronchiectasis. Respir Med. 2007;101(7):1390–1397. doi: 10.1016/j.rmed.2007.02.002.
  12. Weycker D, Edelsberg J, Oster G, Tino G. Prevalence and economic burden of bronchiectasis. Clin Pulm Med. 2005;12(4):205–209. doi: 10.1097/01.cpm.0000171422.98696.ed.
  13. Olveira C, Padilla A, Martínez-García MÁ, et al. Etiology of bronchiectasis in a cohort of 2047 patients. An analysis of the Spanish Historical Bronchiectasis Registry. Arch Bronconeumol. 2017;53(7):366–374. doi: 10.1016/j.arbres.2016.12.003.
  14. Pasteur MC, Helliwell SM, Houghton SJ, et al. An investigation into causative factors in patients with bronchiectasis. Am J Respir Crit Care Med. 2000;162(4 Pt 1):1277–1284. doi: 10.1164/ajrccm.162.4.9906120.
  15. Shoemark A, Ozerovitch L, Wilson R. Aetiology in adult patients with bronchiectasis. Respir Med. 2007;101(6):1163–1170. doi: 10.1016/j.rmed.2006.11.008.
  16. King PT, Holdsworth SR, Freezer NJ, et al. Microbiologic follow-up study in adult bronchiectasis. Respir Med. 2007;101(8):1633–1638. doi: 10.1016/j.rmed.2007.03.009.
  17. Davies G, Wells AU, Doffman S, et al. The effect of Pseudomonas aeruginosa on pulmonary function in patients with bronchiectasis. Eur Respir J. 2006;28(5):974–979. doi: 10.1183/09031936.06.00074605.
  18. McShane PJ, Naureckas ET, Strek ME. Bron-chiectasis in a diverse US population: effects of ethnicity on etiology and sputum culture. Chest. 2012;142(1):159–167. doi: 10.1378/chest.11-1024.
  19. Wilson CB, Jones PW, O’Leary CJ, et al. Effect of sputum bacteriology on the quality of life of patients with bronchiectasis. Eur Respir J. 1997;10(8):1754–1760. doi: 10.1183/09031936.97.10081754.
  20. Evans SA, Turner SM, Bosch BJ, et al. Lung function in bronchiectasis: the influence of Pseudomonas aeruginosa. Eur Respir J. 1996;9(8):1601–1604. doi: 10.1183/09031936.96.09081601.
  21. Wang H, Ji XB, Mao B, et al. Pseudomonas aeruginosa isolation in patients with non-cystic fibrosis bronchiectasis: a retrospective study. BMJ Open. 2018;8(3):e014613. doi: 10.1136/bmjopen-2016-014613.
  22. Falkinham JO. Impact of human activities on the ecology of nontuberculous mycobacteria. Future Microbiol. 2010;5(6):951–960. doi: 10.2217/fmb.10.53.
  23. De Vries SP, Bootsma HJ, Hays JP, Her-mans PW. Molecular aspects of Moraxella catarrhalispathogenesis. Microbiol Mol Biol Rev. 2009;73(3):389–406. doi: 10.1128/MMBR.00007-09.
  24. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–193. doi: 10.1128/cmr.15.2.167-193.2002.
  25. Hall-Stoodley L, Keevil CW, Lappin-Scott HM. Mycobacterium fortuitum and Mycobacterium chelonae biofilm formation under high and low nutrient conditions. J Appl Microbiol. 1998;85 Suppl 1:60S–69S. doi: 10.1111/j.1365-2672.1998.tb05284.x.
  26. Otto M. Staphylococcal biofilms. Curr Top Microbiol Immunol. 2008;322:207–228. doi: 10.1007/978-3-540-75418-3_10.
  27. Респираторная медицина: руководство: в 3 т. / Под ред. А.Г. Чучалина. 2-е изд., перераб. и доп. — М.: Литтерра; 2017. — Т.1. — 640 с. [Respiratornaya meditsina: rukovodstvo: v 3 t. Ed by AG Chuchalin. 2th ed. revised and updated. Moscow: Litterra; 2017. T.1. 640 p. (In Russ).]
  28. Cotran RS, Kumar V, Collins T. Robins pathologic basis of diseases. Philadilphia: J.B. Saunders Company. 6th edition; 2008.
  29. Chalmers JD, Chotirmall SH. Bronchiectasis: new therapies and new perspectives. Lancet Respir Med. 2018;6(9):715–726. doi: 10.1016/S2213-2600(18)30053-5.
  30. Murray MP, Govan JR, Doherty CJ, et al. A randomized controlled trial of nebulized gentamicin in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2011;183(4):491–499. doi: 10.1164/rccm.201005-0756OC.
  31. Barker AF, Couch L, Fiel SB, et al. Tobramycin solution for inhalation reduces sputum Pseudomonas aeruginosa density in bronchiectasis. Am J Respir Crit Care Med. 2000;162(2 Pt 1):481–485. doi: 10.1164/ajrccm.162.2.9910086.
  32. Haworth CS, Foweraker JE, Wilkinson P, et al. Inhaled colistin in patients with bronchiectasis and chronic pseudomonas aeruginosa infection. Am J Respir Crit Care Med. 2014;189(8):975–982. doi: 10.1164/rccm.201312-2208OC.
  33. Barker AF, O’Donnell AE, Flume P, et al. Aztreonam for inhalation solution in patients with non-cystic fibrosis bronchiectasis (AIR-BX1 and AIR-BX2): two randomized double-blind, placebo-controlled phase 3 trials. Lancet Respir Med. 2014;2(9):738–749. doi: 10.1016/S2213-2600(14)70165-1.
  34. Haworth C, Wanner A, Froehlich J, et al. Inhaled liposomal ciprofloxacin in patients with bronchiectasis and chronic Pseudomonas aeruginosa infection: results from two parallel phase III trials (ORBIT 3 and 4). Am J Respir Crit Care Med. 2017;195:A7604.
  35. De Soyza A, Aksamit T, Bandel TJ, et al. RESPIRE 1: a phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. Eur Respir J. 2018;51(1):1702052. doi: 10.1183/13993003.02052-2017.
  36. Aksamit T, De Soyza A, Bandel TJ, et al. RESPIRE 2: a phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. Eur Respir J. 2018;51(1):1702053. doi: 10.1183/13993003.02053-2017.
  37. Serisier DJ, Martin ML, McGuckin MA, et al. Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial. JAMA. 2013;309(12):1260–1267. doi: 10.1001/jama.2013.2290.
  38. Altenburg J, de Graaff CS, Stienstra Y, et al. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA. 2013;309(12):1251–1259. doi: 10.1001/jama.2013.1937.
  39. Wong C, Jayaram L, Karalus N, et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):660–667. doi: 10.1016/S0140-6736(12)60953-2.
  40. Valery PC, Morris PS, Byrnes CA, et al. Long-term azithromycin forIndigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease (Bronchiectasis Intervention Study): a multicentre, double-blind, randomised controlled trial. Lancet Respir Med. 2013;1(8):610–620. doi: 10.1016/S2213-2600(13)70185-1.
  41. Stockley R, De Soyza A, Gunawardena K, et al. Phase II study of a neutrophil elastase inhibitor (AZD9668) in patients with bronchiectasis. Respir Med. 2013;107(4):524–533. doi: 10.1016/j.rmed.2012.12.009.
  42. Watz H, Pedersen F, Kirsten A, et al. Safety and tolerability of the NE inhibitor BAY85-8501 in patients with non-CF bronchiectasis. Eur Res J. 2016;48:PA4088. doi: 10.1183/13993003.congress-2016.pa4088.
  43. Miller BE, Mayer RJ, Goyal N, et al. Epithelial desquamation observed in a phase I study of an oral cathepsin C inhibitor (GSK2793660). Br J Clin Pharmacol. 2017;83(12):2813–2820. doi: 10.1111/bcp.13398.
  44. Stenvall K, Mo J, Russel M, et al. Target engagement confirmed in man with a dipeptidyl peptidase 1 inhibitor. Eur Res J. 2017;50:PA3251. doi: 10.1183/1393003.congress-2017.pa3251.
  45. De Soyza A, Pavord I, Elborn JS, et al. Randomised, placebo-controlled study of the CXCR2 antagonist AZD5069 in bronchiectasis. Eur Respir J. 2015;46(4):1021–1032. doi: 10.1183/13993003.00148-2015.
  46. Wang TT, Nestel FP, Bourdeau V, et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173(5):2909–2912. doi: 10.4049/jimmunol.173.5.2909.
  47. Chalmers JD, McHugh BJ, Docherty C, et al. Vitamin-D deficiency is associated with chronic bacterial colonisation and disease severity in bronchiectasis. Thorax. 2013;68(1):39–47. doi: 10.1136/thoraxjnl-2012-202125.
  48. Martineau AR, James WY, Hooper RL, et al. Vitamin D3 supplementation in patients with chronic obstructive pulmonary disease (ViDiCO): a multicentre, double-blind, randomized controlled trial. Lancet Respir Med. 2015;3(2):120–130. doi: 10.1016/S2213-2600(14)70255-3.
  49. Suzuki K, Lee WJ, Hashimoto T, et al. Recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) or tumour necrosis factor-alpha (TNF-alpha) activate human alveolar macrophages to inhibit growth of Mycobacterium avium complex. Clin Exp Immunol. 1994;98(1):169–173. doi: 10.1111/j.1365-2249.1994.tb06625.x.
  50. Onyeji CO, Nightingale CH, Tessier PR, et al. Activities of clarithromycin, azithromycin, and ofloxacin in combination with liposomal or unencapsulated granulocyte-macrophage colony-stimulating factor against intramacrophage Mycobacterium avium-Mycobacterium intracellulare. J Infect Dis. 1995;172(3):810–816. doi: 10.1093/infdis/172.3.810.
  51. Ballinger MN, Paine R 3rd, Serezani CH, et al. Role of granulocyte macrophage colony-stimulating factor during gram-negative lung infection with Pseudomonas aeruginosa. Am J Respir Cell Mol Biol. 2006;34(6):766–774. doi: 10.1165/rcmb.2005-0246OC.
  52. Conway Morris A, Kefala K, Wilkinson TS, et al. C5a mediates peripheral blood neutrophil dysfunction in critically ill patients. Am J Respir Crit Care Med. 2009;180(1):19–28. doi: 10.1164/rccm.200812-1928OC.
  53. Ruchaud-Sparagano MH, Gertig H, Hester KL, et al. Effect of granulocyte-macrophage colony-stimulating factor on neutrophil function in idiopathic bronchiectasis. Respirology. 2013;18(8):1230–1235. doi: 10.1111/resp.12138.
  54. Hurst JR, Elborn JS, De Soyza A; BRONCH-UK Consortium. COPD-bronchiectasis overlap syndrome. Eur Respir J. 2015;45(2):310–313. doi: 10.1183/09031936.00170014.
  55. Chalmers JD, Short PM, Mandal P, et al. Statins in community acquired pneumonia: evidence from experimental and clinical studies. Respir Med. 2010;104(8):1081–1091. doi: 10.1016/j.rmed.2010.04.005.
  56. Mandal P, Chalmers JD, Graham C, et al. Atorvastatin as a stable treatment in bronchiectasis: a randomised controlled trial. Lancet Respir Med. 2014;2(6):455–463. doi: 10.1016/S2213-2600(14)70050-5.
  57. Bedi P, Chalmers JD, Graham C, et al. A randomized controlled trial of atorvastatin in patients with bronchiectasis infected with Pseudomonas aeruginosa: a proof of concept study. Chest. 2017;152(2):368–378. doi: 10.1016/j.chest.2017.05.017.
  58. O’Donnell AE, Barker AF, Ilowite JS, Fick RB. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group. Chest. 1998;113(5):1329–1334. doi: 10.1378/chest.113.5.1329.
  59. Bilton D, Tino G, Barker AF, et al. Inhaled mannitol for non-cystic fibrosis bronchiectasis: a randomised, controlled trial. Thorax. 2014;69(12):1073–1079. doi: 10.1136/thoraxjnl-2014-205587.
  60. Casals T, De-Gracia J, Gallego M, et al. Bronchiectasis in adult patients: an expression of heterozygosity for CFTR gene mutations? Clin Genet. 2004;65(6):490–495. doi: 10.1111/j.0009-9163.2004.00265.x.
  61. Bienvenu T, Sermet-Gaudelus I, Burgel PR, et al. Cystic fibrosis transmembrane conductance regulator channel dysfunction in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2010;181(10):1078–1084. doi: 10.1164/rccm.200909-1434OC.
  62. Зыков К.А. Морфофункциональная оценка эффективности лечения эндогенной бронхиальной астмы ингаляциями ультрамалых доз мелфалана: Автореф. дис. … канд. мед. наук. — М.; 2000. — 22 с. [Zykov KA. Morfofunktsional’naya otsenka effektivnosti lecheniya endogennoj bronkhial’noj astmy ingalyatsiyami ul’tramalykh doz melfalana. [dissertation abstract] Moscow; 2000. 22 р. (In Russ).] Источник не найден.
  63. Зыков К.А. Клинико-иммунологические и мор- фологические изменения при терапии бронхиальной астмы иммунодепрессивными препа- ратами: Дис. ... докт. мед. наук. — М.; 2009. — 219 с. [Zykov KA. Kliniko-immunologicheskie i morfologicheskie izmeneniya pri terapii bronkhial’noj astmy immunodepressivnymi preparatami. [disser-tation] Moscow; 2009. 219 р. (In Russ).] Доступно по: http://www.dissercat.com/content/kliniko-immunologicheskie-i-morfologicheskie-izmeneniya-pri-terapii-bronkhialnoi-astmy-immun. Ссылка активна на 12.11.2018.
  64. Pukhalsky A, Toptygina A, Khaudukov S. Interleukin-2 receptor beta chain as a possible target for low doses of mafosfamide. Mediators Inflamm. 1995;4(3):175–180. doi: 10.1155/S0962935195000287.
  65. Pukhalsky AL, Shmarina GV. Stimulatory and protective effects of alkylating agents applied in ultra-low concentrations. Pharmacology. 2001;62(3):129–132. doi: 10.1159/000056084.
  66. Gao YH, Guan WJ, Liu SX, et al. Aetiology of bronchiectasis in adults: a systematic literature review. Respirology. 2016;21(8):1376–1383. doi: 10.1111/resp.12832.

Views

Abstract - 23

PDF (Russian) - 15

PlumX


Copyright (c) 2019 Sinitsyn E.A., Zykov K.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.