Rehabilitation of spinal patients with diseases and injury of the cervical spine in the early and late postoperative period (analysis of russian and foreign recommendations)

Cover Page


Cite item

Full Text

Abstract

Despite the success of modern conservative therapy of severe spinal instability, surgical methods still retain their importance in the treatment of this pathology, but even the most successful operation may be in vain without subsequent adequate rehabilitation. This report summarizes the features of rehabilitation of patients after surgery for injuries of the cervical spine using methods and means of physiofunctional treatment.

Full Text

ВВЕДЕНИЕ

Заболевания шейного отдела позвоночника представляют собой обширную и гетерогенную группу патологии с вовлечением в патологический процесс позвонков, межпозвонковых дисков, фасеточных суставов, сухожилий, связок и мышц, реже — спинного мозга и спинномозговых корешков. Рецидивирующие боли в шее и/или в руке испытывают около 50% населения [1]. Распространённость шейной радикулопатии гораздо меньше, чем болей в области шеи и плеча, — 3,3 случая на 1000 человек, заболеваемость — 2,1 на 1000 населения, пик наблюдается на четвёртом-пятом десятилетии жизни [2]. Определить истинную причину повреждения вышеуказанных структур до проведения углублённого обследования удаётся только в 10–15% случаев [3]. Прогрессирующие возрастные дегенеративные изменения шейного отдела позвоночника могут обусловить сдавление спинного мозга и развитие спондилогенной миелопатии [4]. Ее клинические проявления характеризуются наличием выраженного неврологического дефицита, возникающего в результате сдавления спинного мозга при локальном стенозе спинномозгового канала [5]. Генез острой компрессионно-ишемической миелопатии обычно связан с пролабированием грыжи межпозвонкового диска больших размеров, причиной хронической миелопатии могут быть гипертрофия, оссификация задней продольной связки, врождённая узость сагиттального диаметра позвоночного канала [6].

Патофизиологические механизмы структурного повреждения спинного мозга при травме шейного отдела позвоночника определяются действием нескольких факторов — статических, динамических, биологических и молекулярных [7, 8]. В развитии и прогрессировании тяжёлой неврологической симптоматики главную роль при отсутствии своевременной и эффективной фиксации, безусловно, играют динамические и ретракционные факторы. Сгибание шейного отдела приводит к натяжению спинного мозга, а если позвоночный канал у больного стенозирован — к повреждению спинномозговых структур. Разгибание шейного отдела позвоночника вызывает прогиб, натяжение жёлтой связки с одновременным выпячиванием диска и/или остеофита, вторичной компрессией спинного мозга. Не менее значимыми причинами сужения позвоночного канала, помимо повторяющихся движений в переднем и заднем направлении, являются спондилолистез и гиперподвижность фасеточных суставов. При компрессии страдает кровоснабжение спинного мозга: так, синдром передней спинальной артерии, или центромедуллярный синдром (traumatic central cord syndrome), обусловлен компрессией переднего отдела спинного мозга. Дисгемия возникает как в артериальном, так и венозном отделе спинального сосудистого русла. В силу особенностей спинального кровообращения зона гипоперфузии/ишемии включает несколько сегментов спинного мозга, дистальнее и проксимальнее места повреждения, в пределах которых развиваются и прогрессируют функциональные и дегенеративные структурные изменения [9, 10].

Механизмы вторичного повреждения спинного мозга в острую (первые сутки) и подострую (до ≥2 недель) фазу включают нарушение баланса катион-хлоридных котранспортеров (KCC2, NKCC1) [11] и микроРНК [12]; развитие локального отёка [13], митохондриальной дисфункции, эксайтотоксичности, оксидативного стресса и перекисного окисления липидов в нейронах [14]; развитие воспаления в связи с экспансией лимфоцитов CD4+ (Th1, Th17) и CD8+, продукции хемокинов, провоспалительных цитокинов [15], а в последующем — апоптоз, гибель клеток, проводящих путей из-за нарастающей глутаматергической токсичности, повреждения белков, ДНК, клеточных мембран [16], что негативно отражается на восстановлении нарушенных после травмы двигательных, сенсорных и вегетативных функций [17]. Летальность после хирургического лечения остаётся высокой (60%), главным образом при травме верхнешейного отдела позвоночника [18, 19].

Своевременное и грамотно выполненное оперативное вмешательство, обеспечивающее декомпрессию и стабилизацию позвоночника, не только спасает жизнь больного, но и создаёт оптимальные условия для восстановления утраченных функций [20].

РЕАБИЛИТАЦИЯ ПРИ НЕПОЛНОМ ПОВРЕЖДЕНИИ СПИННОГО МОЗГА

Реабилитации при заболеваниях позвоночника, травме спинного мозга после оперативного вмешательства подлежат все пациенты вне зависимости от причины, степени поражения и доминирующего синдрома. Основным её принципом является как можно более раннее начало восстановления нарушенных функций, которое не только положительно отражается на реабилитационном процессе, но и способствует профилактике инвалидности. В связи с этим, согласно современным представлениям, инициировать начало физической реабилитации необходимо в отделении интенсивной терапии и затем проводить нагрузочный тренинг с дозируемым отягощением и числом повторений как можно дольше после выписки из стационара до достижения ожидаемого результата [21–23].

Раннее начало реабилитации больного после оперативного вмешательства, всесторонней оценки соматического статуса, психологического состояния, степени, характера структурного дефекта, ограничения жизнедеятельности, функционального личностного резерва (восстановительный потенциал) — залог положительного результата в виде частичного или полного регресса клинических проявлений, возможности передвижения и самообслуживания с использованием фиксирующих аппаратов, экзоскелетов, роботизированных систем, кресел-колясок. В соответствии с приказом Минздрава России № 788н и клиническими рекомендациями, оптимальной является трёхэтапная, трёхуровневая система реабилитационной помощи [24, 25].

Последовательность и объём действий членов междисциплинарной бригады (врачи, вспомогательный персонал) определяется сразу при поступлении больного в реанимационное отделение. Использование методов и средств физиофункционального лечения осуществляется по индивидуальной программе с учётом количественной оценки функций и жизнедеятельности, выраженности нарушений в соответствии градациями Международной классификации функционирования, ограничений жизнедеятельности и здоровья (International Classification of Functioning, Disability and Health, ICF), меняющегося статуса больного как после операции (до 12–15 дней), так и при переводе его в нейрохирургическое отделение [7, 26–29].

С целью профилактики ранних послеоперационных осложнений (пролежни, пневмония и т.п.), контрактур суставов конечностей, а также для уменьшения в зоне оперативного вмешательства выраженности отёка, улучшения трофики тканей на периферии, в области лопаток, крестца больного активизируют в постели. Начинают с позиционирования — изменения положения тела (повороты на бок, спину, живот в зависимости от оперативного доступа без сгибания туловища) со сменой позиции каждые 1,5–2 часа, используя средства постуральной адаптации (внешнюю жёсткую фиксацию позвоночника шейным ортезом, ортопедические валики, туторы для конечностей); далее дополнительно, по возможности, с помощью инструктора из положения лёжа на спине выполняются по нескольку раз пассивные, пассивно-активные движения в крупных и мелких суставах рук и ног. На область постоперационной раны со 2–3-го дня можно назначать магнитотерапию, которая оказывает противовоспалительное, противоотёчное и обезболивающее действие. При наличии противопоказаний к магнитотерапии альтернативой во время перевязок может стать ультрафиолетовое облучение [24].

При асептическом воспалении, инфильтрации тканей в области операционной раны, развитии пролежней, декубитальных трофических язв применимы фото-, ультратонотерапия (ток надтональной частоты, ТНЧ-терапия) по контактной методике, ультравысокочастотная (УВЧ), лазеро- и магнитотерапия; для подавления инфекции при гнойных осложнениях в послеоперационной ране, очищения раны от некротических тканей используют электрофорез антибиотиков с антисептиками класса поверхностно-активных веществ или ферментами. В стадии эпителизации раны эффективны ультрафиолетовое облучение, озоно-, лазеротерапия и дарсонвализация. Позднее можно рекомендовать инфракрасное излучение, квант- и магнитолазерную терапию, трансвертебральную микрополяризацию [24].

Лечебная физкультура (ЛФК) в первые семь дней проводится в течение 20–30 минут 1–2 раза в день. Стандартный комплекс занятий включает:

  1. дренажные дыхательные упражнения по 8–10 минут 2–3 раза в день; с 5–6-го дня после операции — статические, динамические упражнения с акцентом на диафрагмальное дыхание и удлинённый выдох (при повреждениях шейного и верхнегрудного отдела позвоночника);
  2. изометрические упражнения для мышц нижних, верхних конечностей по 10–15 минут;
  3. идеомоторные упражнения для мышц переходной зоны ниже уровня оперативного вмешательства по 10–15 минут;
  4. пассивные ежедневные многократные движения и растяжки мышечных сухожилий для предотвращения контрактур [22, 24, 25].

Для профилактики пневмонии к обязательным процедурам следует отнести также позиционирование и вибромассаж грудной клетки.

При потере контроля за мочеиспусканием в зависимости от формы нарушения функции можно опорожнять мочевой пузырь путём напряжения брюшной стенки, в том числе использовать манёвры Креде, Вальсальвы, упражнения для мышц тазового дна в сочетании с биологической обратной связью (БОС), прерывистую (интермиттирующую), постоянную катетеризацию, катетерный дренаж презервативом, чрескожную стимуляцию заднего нерва, электростимуляцию мочевого пузыря, хемоденервацию мочевого пузыря, надлобковую цистостомию [30–32].

При адекватном контроле послеоперационной боли, в первые 2–3 дня после оперативного вмешательства больные с лёгкими/умеренными двигательными нарушениями и достаточной функциональной активностью мышц для осуществления изменения и поддержания позы тела стоя должны быть вертикализированы при помощи функциональной кровати с электромеханическим приводом.

Как при ортостатической тренировке, так и при вертикализации важно учитывать выраженность двигательных нарушений, вид проведённого хирургического вмешательства, надёжность достигнутой стабильности позвоночника. Ортостатическая тренировка проводится по 10–15 минут с использованием поворотного стола ErigoPro (Швейцария), вертикализатора EasyStand Glider (США), в последующем — с помощью подвесных поддерживающих систем (Unweighing System, Biodex Unweighing System США; Экзарта, Россия), балансировочных тренажёров, вспомогательных технических средств опоры и передвижения (ходунки, костыли, трости, cкандинавские палки, протезно-ортопедические аппараты или ортезы) [33–35].

Кроме мануальной терапии и пассивно-активной гимнастики в этот же период с целью восстановления функций паретичных мышц конечностей рекомендуется проведение ритмичной дозированной механотерапии, процедур миоэлектростимуляции (по 10–15 процедур), пневмо- (тренажёр «Корвит», Россия) и вибромассажа ( «Хивамат 200 Эвидент Клиник», Physiomed, Германия), для укрепления мышечного корсета плечевого пояса, cпины — щадящие техники ручного массажа, миоэлектростимуляция, кинезиотейпирование, при спастичности — сеансы релаксирующей гидротерапии, импульсной электротерапии, аутогенной тренировки. Данные средства и методы позволяют быстрее активизировать пациентов, улучшить трофику тканей, укрепить не только мышцы туловища и конечностей, но и стабилизировать психоэмоциональный статус, что, в конечном итоге, значительно увеличивает шансы больного на благоприятный исход.

На втором этапе (в раннем и промежуточном периодах после операции) при возможности самостоятельного передвижения или использования транспортных средств дальнейшее восстановительное лечение (кинези-, психо-, медикаментозная терапия, массаж, ЛФК, озокеритовые, парафиновые, грязевые аппликации, вихревые ванны, подводный душ-массаж, магнито-, лазеротерапия, миоэлектростимуляция и др.) продолжается в специализированном реабилитационном центре и/или амбулаторных условиях [24]. Через 1–1,5 месяца после операции при отсутствии противопоказаний разрешаются занятия в лечебном бассейне. С учётом плавучести, физического состояния, степени выраженности двигательных нарушений, шейной фиксации определяются формы бальнео-, гидрокинезитерапии (ванны, механический, термический душ, ЛФК, плавание), объём водных упражнений, интенсивность нагрузок в горизонтальном положении при удержании за бортик, вертикализации, с ластами, использованием отягощений, средств облегчения удержания на водной поверхности [36].

Особое внимание уделяется наземным тренировкам с поддержкой веса тела (BWSOGT), на беговой дорожке с поддержкой веса тела (BWSTT), ходьбе с помощью робота (RAGT). Через 6 месяцев (не ранее!) при положительной динамике допускается моторное обучение с использованием беговой дорожки при уклоне 10% с индивидуальной системой поддержки веса тела [37]. Длительность локомоторной тренировки ходьбы на тредмиле (1–2 раза в день) не должна превышать 15–20 минут, роботизированная ходьба на беговой дорожке с помощью управляемых ортезов при наличии нижнего спастического/вялого парапареза допустима до 30–45 минут (курс 25–40 тренировок, 4–6 раз в неделю) со средней скоростью 0,26–0,42 м/сек [38]. Освоение двигательных навыков необходимо продолжать в последующие 3 месяца в реабилитационном отделении, центре, санатории [24, 39, 40].

Повторные курсы реабилитационного лечения в стационаре, специализированном центре или на курорте (третий этап реабилитации) рекомендуется проводить в позднем периоде больным с благоприятным прогнозом, ежеквартально, в течение года-полутора лет [21, 34], последующие 2–3 года — 1 раз в 6 месяцев, длительностью от 3 до 4 недель, при необходимости до 90 дней [24]. На данном этапе, как и на предыдущем, обязательной является также реализация социально-психологических программ.

РЕАБИЛИТАЦИЯ ПРИ СИНДРОМЕ ТЯЖЁЛОГО НАРУШЕНИЯ ПРОВОДИМОСТИ СПИННОГО МОЗГА

При тяжёлом повреждении спинного мозга реабилитационные мероприятия должны быть в значительной степени индивидуализированы, проводиться по персонализированной программе, длиться долго (в стационарных условиях — до 3 месяцев) [24, 35]. В позднем периоде (на 3-м этапе восстановительной терапии) при констатации отсутствия положительной динамики, невозможности самостоятельного передвижения, самообслуживания, сохранения необходимости в постоянном уходе (III–IV функциональный класс) больные с учётом реалий и достигнутого с ними и родственниками консенсуса могут продолжать лечение в пансионе длительного содержания или доме сестринского ухода [24, 34], используя имеющиеся возможности дистанционной телереабилитации [41].

На всех этапах реабилитационного лечения степень восстановления нарушенных функций зависит не только от тяжести повреждения структур позвоночника, спинного мозга (тип А, В, С, D, Е), но и неукоснительного соблюдения медперсоналом существующих в каждой стране рекомендаций и протоколов [7, 42, 43]. В послеоперационном периоде (первые 2 недели) при нахождении больного в отделении нейрореанимации и интенсивной терапии основное внимание должно уделяться пролонгированной механической вентиляции лёгких [44], адекватной персонализированной фармакотерапии (высок риск полипрагмазии!) [24, 45], коррекции нутритивного статуса [46], профилактике и лечению нейровоспаления, возможных гемодинамических [47], висцеральных и инфекционных осложнений [7, 48].

Целесообразно проведение локальной гипотермии [49], курсовой оксигено-баротерапии [50]. Помимо этих мероприятий, необходимы регулярная (каждые 2–3 часа) смена позы пациента для минимизации давления тела на прилежащие ткани, активный персонализированный контроль, включающий по нескольку раз в сутки дыхательные упражнения/тренировку дыхательных мышц, постуральную коррекцию, пассивную, активную мобилизацию с растяжением мышц, пневмо- или вибромассажем конечностей, нарастающим сопротивлением, активацию сенсорных и рефлекторных реакций, кинезитерапию, электростимуляцию и/или магнитостимуляцию паретичных мышц [42]. Если у больного отсутствует самостоятельное дыхание, важно своевременно прибегнуть к мионейростимуляции диафрагмы или диафрагмального нерва [51], при нарушении функционирования тазовых органов (атонии мочевого пузыря, кишечника) рекомендуется с первых дней использовать гимнастику для мышц тазового дна, магнитотерапию, локальную миоэлектростимуляцию, временную, а в дальнейшем, при необходимости, хроническую чрескожную или имплантационную нейромодуляцию [52]. Параллельно проводится крио-, лазеро- и/или направленная чрескожная, ректальная электротерапия. Стимуляция спинного мозга не обеспечивает долговременного положительного эффекта [24]. При сохраняющейся мочевыводящей и аноректальной дисфункции решение о форме оказания медицинской помощи определяется пациентом в виде информированного согласия на основании рекомендаций членов междисциплинарной бригады (невролога, уролога, проктолога, физиотерапевта и нейрохирурга) [53, 54]. К таковым относятся внутрисфинктерные инъекции ботулотоксина А [55], лапароскопическая имплантация нейромодулирующих электродов [56], тибиальная, постоянная сакральная стимуляция, ритмическая транскраниальная магнитная стимуляция [32, 52].

Через 5–7 дней после операции с целью ранней активизации больного при отсутствии противопоказаний расширяется постепенно двигательный режим, в комплекс упражнений включают осторожные повороты на спину или на живот (с помощью инструктора ЛФК). Занятия ЛФК в этот период являются составной частью двигательного режима. Первые 5 дней, лёжа в постели на животе или на спине, пациент выполняет пассивные, идеомоторные и по возможности дозированные активные движения. В эти же сроки в соответствии с инструкциями ему осуществляют вибромассаж грудной клетки по 8–10 минут, щадящий ручной, пневмомассаж нижних, а при необходимости и верхних конечностей, продолжительностью до 20 минут. Пассивно-активную кинези- и механотерапию начинают с 5–6-го дня после операции по 15–20 минут, 1–2 раза в день, количество процедур в течение курса определяется индивидуально. Используются упражнения с отягощением, механотерапия на блоковых механотерапевтических тренажёрах с целью дозированного укрепления ослабленных мышечных групп при сохранной силе не менее 2 баллов, пассивно-активная — на накроватных/прикроватных тренажёрах с пневмо-, гидро-, электроприводом. После переднего корпородеза шейного отдела позвоночника, на 7–14-й день после операции больного можно переводить в вертикальное положение на функциональной кровати или поворотном столе-вертикализаторе (Erigo, Швейцария) со встроенным интегрированным роботизированным механизмом для пассивной и активной циклической тренировки нижних конечностей (имитация шага) по 15–20 минут 1–2 раза в день.

При наличии локального или отражённого болевого синдрома, помимо назначения нестероидных противовоспалительных препаратов, анальгетиков, антидепрессантов, габапентина, прегабалина [57], а при нестерпимой и недостаточно купируемой хронической боли — кетамина [58], могут быть полезны такие процедуры, как когнитивная мультисенсорная реабилитация [59], пластыри с лидокаином, капсаицином [60], электрофорез анестетиков или анальгетиков, диадинамотерапия, амплипульстерапия (синусоидальные модулированные токи, СМТ-терапия), ультрафонофорез, магнито- и сверхвысокочастотная (СВЧ) электротерапия [7, 24]. Выбор конкретных методик с учётом клинических проявлений у больного определяют невролог, анестезиолог и врач-физиотерапевт; в перспективе возможные решения у части больных, такие как чрескожная электрическая стимуляция нервов, спинного мозга, транскраниальная стимуляция постоянным током, транскраниальная магнитная стимуляция, стимуляция глубоких структур/имплантационная нейромодуляция, находятся в компетенции нейрохирурга [61].

Главной задачей как раннего, так и позднего послеоперационного периода (с 3-й недели) является максимально возможное восстановление нарушенных травмой и операцией функций организма, предотвращение снижения силы в интактных мышцах, развитие контрактур, ретракций, остеопороза [24]. На этом этапе, на 4–5-й неделе, целесообразно применение процедур, стимулирующих регенеративные и репаративные тканевые процессы. К таковым относятся акупунктура, тепловые и водолечебные, озокеритовые или парафиновые аппликации, лекарственный фонофорез, электрофорез, в том числе с лидазой/ронидазой, магнитотерапия, лечебные ванны (жемчужные, кислородные и др.), гидромассаж, грязелечение; при замедленной консолидации костной ткани — лечебные ванны, подводный душ-массаж [62]; для лечения контрактур суставов, помимо теплолечения, массажа, остеопатии/мануальной терапии, — аппаратная пассивная в изокинетическом режиме CPM (continuous passive motion) механотерапия (Аrtromot К1, SP3, Германия-Россия; Kinetec Spectra Knee, Франция; Fisiotek HP2, Италия) с автоматической установкой диапазона и объёма движений, занятия на механотерапевтических тренажёрах «Орторент», «Экзарта» (Россия), Ormed GmbH (Германия), Biodex System (США). Необходимо также на протяжении этого периода с небольшими перерывами возобновлять курсы медикаментозной терапии, массажа, кинезитерапии, силовых тренировок, миоэлектростимуляции мышц конечностей; включать дополнительно в комплекс реабилитационных мероприятий занятия с использованием аппаратов биологической обратной связи [63], технологий машинного обучения [64], виртуальной реальности [65], осознания собственного тела (мультисенсорная когнитивная реабилитация) [66]. Такой подход позволяет осуществлять пролонгированную направленную тренировку ослабленных мышц, восстанавливать проприоцептивное чувство мышц, реципрокные взаимоотношения мышц-агонистов и антагонистов, формировать новые двигательные навыки с учётом степени имеющихся функциональных нарушений в основных звеньях нервно-мышечного аппарата.

Не менее сложная проблема — лечение спастичности. С учётом показаний и противопоказаний используются интратекальное введение баклофена (пероральный приём миорелаксантов неэффективен) [67], ботулинотерапия [68], акупунктура, электропунктура [69], растяжки, вибротерапия, двигательная терапия, аэробные упражнения, роботизированные локомоторные тренировки, в том числе с отягощением [70], поверхностная нервно-мышечная, функциональная электрическая стимуляция [71]; при ходьбе с роботом [72], езде на велосипеде [73] — чрескожная радиочастотная термическая нейроабляция [74], эпидуральная стимуляция спинного мозга [75], селективная дорсальная ризотомия [76].

Диапазон современных реабилитационных технологий не ограничивается вышеописанными — он более широк и в перспективе, при достижении должного уровня доказательности, может быть дополнен регенеративными технологиями, использующими стволовые клетки и биомиметические гидрогели, активирующие прорастание аксонов, проводящие биоматериалы, трёхмерные тканеинженерные скаффолды с региональной архитектурой и пр. [77–79].

Не менее оптимистичные надежды возлагаются на комбинированную терапию с имплантацией гидрогелей на основе хитозана [80], внеклеточных везикул (экзосом) и других стимуляторов нейрорегенерации [81], а также получивших положительную оценку уже сейчас новых технологий типа оптогенетической нейромодуляции, фотобиомодуляции, фотодинамической терапии, кинезиотерапевтических установок («Экзарта» и её аналоги) [82]. Разработаны и активно внедряются роботизированные программно-аппаратные комплексы для локомоторной терапии в безопорном и опорном состоянии [83, 84], роботизированные отечественные и зарубежные экзоскелеты для активации функций верхних (Armeo Spring, Rice Wrist-5, MAHI Exo II, Festo ExoHand, Hand of Hope) и нижних (Aiwalker, Ailegs, Ekso Bionics, Ekso, Hybrid Assistive Limb [HAL], Indego, ReWalk Robotics, Rex Bionics) конечностей [84–86], в их числе с функциональной электростимуляцией, адаптированные для длительной роботизированной ходьбы [87], езды на велосипеде [88]. Обнадёживающие результаты получены при применении роботизированных ортезов Armeo, Аmadeo, аппаратно-программных комплексов для восстановления хватательной функции пальцев рук и опорной/двигательной функции ног (HKAFO, KAFO) [89], рекуррентных нейросетей, систем с поддержкой веса тела (Locomot, BWSOGT, BWSTRT, ORET), сохранения равновесия [90], выполнения виртуальных заданий [91], HAL-терапии с использованием экзоскелета, систем пространственной гимнастики в трёх плоскостях (Gyrotonic Expansion System, ReoGoTM), имитирующих шагоподобные движения механотерапевтических устройств в сочетании с электростимуляцией, тренажёров для циклических тренировок мышц плевого пояса, спины, рук, нижних конечностей (Medica Medizintechnik THERA-Trainer Tigo, THERA-live), восстановления ходьбы и коррекции походки (Gait Trainer и аналоги), стабилоплатформ Biodex, Huber-360 с биологической обратной связью [92]. Для тяжёлых пациентов с необратимо утраченной локомоцией разрабатываются портативные электростимуляторы и программные устройства, определяющие успешное решение основных задач комплексной реабилитации при «щадящих» уровнях нагрузки, в том числе имеющие металлоконструкции [93]; совершенствуются технологии для целевой имплантационной нейромодуляции (стимуляции блуждающего нерва, спинного мозга) [94, 95], а также интракортикальные интерфейсы мозг–компьютер [96].

Эрготерапия направлена на восстановление у больных, независимо от степени повреждения спинного мозга, навыков повседневной деятельности, самообслуживания, сотрудничества (гигиена, контроль тазовых функций, питание, одевание, досуг, социальная, трудовая адаптация); обучение владением телефоном, компьютером для коммуникации; при наличии физических ограничений — на восстановление навыков передвижения с помощью технических средств с учётом локомоторного потенциала; при возможности самостоятельной ходьбы — пользования ходунками, ортезами, тростью. Занятия начинаются в лечебном учреждении, продолжаются дома, где создаются условия и психологический климат для пребывания пациента в привычной среде обитания, выполнения тренировочных заданий, профориентации [97]. Помимо эрготерапевта и родственников, привлекаются психолог, психотерапевт, массажист, инструктор ЛФК, кинезитерапевт, физиотерапевт, участковый терапевт, невролог, социальные работники, другие специалисты, составляющие междисциплинарную бригаду, вносящие свой вклад в мобилизацию больного, повышение уровня его функционирования и независимости [98].

ПСИХОЛОГИЧЕСКАЯ РЕАБИЛИТАЦИЯ

Психологическая, психосоматическая реабилитация включают общие и специальные методы общения с больным. Уже при поступлении в стационар он должен быть информирован об осложнениях, тяжести, последствиях полученной травмы, возможности их лечения и эффективности восстановления нарушенных функций из-за повреждения спинного мозга. Помимо рациональной психотерапии, переосмысления случившегося пациентом и его родственниками, врач может эффективно влиять на поведение больного, его эмоциональное состояние, используя другие подходы: виртуальную реальность, суггестию; методы убеждения, психологической коррекции, преодоления негативизма, отчаяния; для снятия психоэмоционального напряжения — самовнушение, аутотренинг, аппаратные комплексы «Вибросаунд», «Сенсориум», «Диснет»; с целью персонализированной терапии — сеансы психической саморегуляции негативного эмоционального фона больного, копинг-стратегий, Я-концепции и др. Оценка катамнестических данных констатирует высокий реабилитационный потенциал интернет-физиотерапии, телереабилитации, позитивной, когнитивно-поведенческой, личностно-, процессуально-ориентированной, клиент-центрированной, смысловой (Франкла), осознанной (Адлера), гештальт-, БОС-терапии, дистанционных форм общения через интернет, социальные сети, телефон доверия [24, 99, 100]. Их значимость особенно высока при взаимодействии с членами семьи, а также больными, успешно прошедшими реабилитационное лечение (семейная, групповая психотерапия).

ЗАКЛЮЧЕНИЕ

Восстановительное лечение, проводимое по современным клиническим рекомендациям и протоколам при заболеваниях и травме шейного отдела позвоночника, позволяет в приемлемые сроки адаптировать пациента к функционированию в привычной среде, а в перспективе — вернуть к максимально возможному для него уровню бытовой независимости, социальной и профессиональной активности.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Вклад авторов. С.И. Толстая — анализ литературы, написание текста; В.В. Белопасов — идея и концепция обзора, анализ литературы, корректура текста; Г.Е. Иванова, О.И. Дуров, И.А. Лавров, В.П. Баклаушев — анализ литературы, корректура текста. Авторы подтверждают соответствие своего авторства международным критериям ICMJE (все авторы внесли существенный вклад в разработку концепции, проведение исследования и подготовку статьи, прочли и одобрили финальную версию перед публикацией).

Authors’ contribution. S.I. Tolstaya — literature analysis, manuscript editing; V.V. Belopasov — the idea and concept of the review, literature analysis, text proofreading; G.E. Ivanova, O.I. Durov, I.A. Lavrov, V.P. Baklaushev — literature analysis, text proofreading. The authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.

Источник финансирования. Исследование выполнено при финансовой поддержке ФМБА России (НИР по государственному заданию, шифр «Нейромодуляция»).

Funding source. The study was financially supported by the Federal Medical and Biological Agency of Russia (R&D under the state order, code “Neuromodulation”).

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Competing interests. The authors declare that they have no competing interests.

Благодарности. Авторы выражают признательность заведующему отделением ранней реабилитации ФГБУ «Федеральный центр мозга и нейротехнологий» ФМБА России к.м.н. С.Н. Кауркину за консультативную помощь в подготовке рукописи.

Acknowledgements. The authors express their gratitude to the head of the Department of Early Rehabilitation of Federal Center of Brain and Neurotechnologies, PhD S.N. Kaurkin for his advisory assistance in the preparation of the manuscript.

×

About the authors

Svetlana I. Tolstaya

Astrakhan State Medical University; Rehabilitation Center of the Pension and Social Insurance Fund of the Russian Federation “Tinaki”

Email: cvetik1811@yandex.ru

MD

Russian Federation, Astrakhan; Astrakhan

Galina E. Ivanova

Federal Center of Brain Research and Neurotechnologies

Email: reabilivanova@mail.ru
ORCID iD: 0000-0003-3180-5525
SPIN-code: 4049-4581

Dr. Sci. (Med.)

Russian Federation, Moscow

Oleg V. Durov

Federal Center of Brain Research and Neurotechnologies; Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies

Email: durovo@gmail.com
ORCID iD: 0000-0002-5054-3594

MD, PhD

Russian Federation, Moscow; Moscow

Igor A. Lavrov

Kazan Federal University

Email: igor.lavrov@gmail.com
ORCID iD: 0000-0002-3885-4509
SPIN-code: 1411-4889

MD, PhD, Professor

Russian Federation, Kazan

Vladimir P. Baklaushev

Federal Center of Brain Research and Neurotechnologies; Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies

Email: baklaushev.vp@fnkc-fmba.ru
ORCID iD: 0000-0003-1039-4245
SPIN-code: 3968-2971

Dr. Sci. (Med.), Associate Professor

Russian Federation, Moscow; Moscow

Vladimir V. Belopasov

Astrakhan State Medical University

Author for correspondence.
Email: belopasov@yandex.ru
ORCID iD: 0000-0003-0458-0703
SPIN-code: 6098-1321

Dr. Sci. (Med.), Professor

Russian Federation, Astrakhan

References

  1. Cohen SP. Epidemiology, diagnosis, and treatment of neck pain. Mayo Clin Proc. 2015;90(2):284–289. doi: 10.1016/j.mayocp.2014.09.008
  2. Ament JD, Karnati T, Kulubya E, et al. Treatment of cervical radiculopathy: A review of the evolution and economics. Surg Neurol Int. 2018;(9):35. doi: 10.4103/sni.sni_441_17
  3. Nachemson AL. Epidemiology of neck and low back pain. In: Jonsson E, Nachemson AL, eds. Neck and back pain: The scientific evidence of causes, diagnosis, and treatment. Philadelphia: Lippincott Williams and Wilkins, 2000. 495 p.
  4. Помников В.Г., Лейкин И.Б. Дисциркуляторная ишемическая миелопатия. В кн.: Клинико-экспертная неврология. Рук-во для врачей / под ред. И.Г. Помникова. Санкт-Петербург: Гиппократ, 2023. С. 81–89. [Pomnikov VG, Leikin IB. Dyscirculatory ischemic myelopathy. In: Clinical and expert neurology: Handbook. Ed. by I.G. Pomnikov. Saint Petersburg: Hippocrat; 2023. Р. 81–89. (In Russ).]
  5. Byvaltsev VA, Kalinin AA, Hernandez PA, et al. Molecular and genetic mechanisms of spinal stenosis formation: Systematic review. Int J Mol Sci. 2022;23(21):13479. doi: 10.3390/ijms232113-479
  6. Хохлова О.И. Патогенетические аспекты травматического повреждения спинного мозга и терапевтические перспективы (Обзор литературы) // Политравма. 2020. № 1. С. 95–104. [Khokhlova OI. Pathogenetic aspects of traumatic spinal cord injury and therapeutic perspectives (Literature review). Polytrauma. 2020;(1):95–104. (In Russ).] doi: 10.24411/1819-1495-2020-10013
  7. Eli I, Lerner DP, Ghogawala Z. Acute traumatic spinal cord injury. Neurol Clin. 2021;39(2):471–488. doi: 10.1016/j.ncl.2021.02.004
  8. Белозерцева И.И., Помников В.Г. Позвоночно-спинномозговая травма. Клинико-экспертная неврология. Рук-во для врачей / под ред. И.Г. Помникова. Санкт-Петербург: Гиппократ, 2023. С. 240–255. [Belozertseva II, Pomnikov VG. Spinal cord injury. In: Clinical and expert neurology: Handbook. Ed. by I.G. Pomnikov. Saint Petersburg: Hippocrat; 2023. Р. 240–255. (In Russ).]
  9. Мошонкина Т.Р. Интегративные механизмы моторного контроля интактного и поврежденного спинного мозга: Автореф. дис. … докт. биол. наук. Санкт-Петербург, 2017. 40 с. [Moshonkina TR. Integrative mechanisms of motor control of intact and damaged spinal cord [dissertation abstract]. Saint Petersburg; 2017. 40 р. (In Russ).]
  10. Бывальцев В.А., Калинин А.А., Шепелев В.В., Балданов Ц.Б. Травма спинного мозга и позвоночника: учебное пособие. Иркутск: ИГМУ, 2021. 120 с. [Byvaltsev VA, Kalinin AA, Shepelev VV, Baldanov TB. Spinal cord and spine injury: Textbook. Irkutsk: Irkutsk State Medical University; 2021. 120 р. (In Russ).]
  11. Talifu Z, Pan Y, Gong H, et al. The role of KCC2 and NKCC1 in spinal cord injury: From physiology to pathology. Front Physiol. 2022;(13):1045520. doi: 10.3389/fphys.2022.1045520
  12. Deng ZZ, Chen YH. Research progress of MicroRNAs in spinal cord injury. J Integr Neurosci. 2023;22(2):31. doi: 10.31083/j.jin2202031
  13. Seblani M, Decherchi P, Brezun JM. Edema after CNS trauma: A focus on spinal cord injury. Int J Mol Sci. 2023;24(8):7159. doi: 10.3390/ijms24087159
  14. Anjum A, Yazid MD, Daud FM, et al. Spinal cord injury: Pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020;21(20):7533. doi: 10.3390/ijms21207533
  15. Girón SH, Gómez-Lahoz AM, Sanz JM, et al. Patients with chronic spinal cord injury and a long period of evolution exhibit an altered cytokine production by CD4 and CD8 T cell populations. Int J Mol Sci. 2023;24(8):7048. doi: 10.3390/ijms24087048
  16. Wei X, Huang C, Chen K, et al. BMP7 attenuates neuroinflammation after spinal cord injury by suppressing the microglia activation and inducing microglial polarization via the STAT3 pathway. Neurochem Res. 2023. doi: 10.1007/s11064-023-03930-y
  17. Morishita Y, Kawano O, Maeda T. The pathophysiology of cervical spinal cord injury: What are the differences between traumatic injury and degenerative disorder. Spinal Cord Ser Cases. 2022;8(1):50. doi: 10.1038/s41394-022-00517-7
  18. Zileli M, Osorio-Fonseca E, Konovalov N, et al. Early management of cervical spine trauma: WFNS spine committee recommendations. Neurospine. 2020;17(4):710–722. doi: 10.14245/ns.2040282.141
  19. Amidei BC, Salmaso L, Bellio S, Saia M. Epidemiology of traumatic spinal cord injury: A large population-based study. Spinal Cord. 2022;60(9):812–819. doi: 10.1038/s41393-022-00795-w
  20. Островский В.В. Совершенствование диагностики и тактики хирургического лечения пациентов с травматическими и дегенеративными поражениями шейного отдела позвоночника: Автореф. дис. … докт. мед. наук. Саратов, 2020. 34 с. [Ostrovsky VV. Improvement of diagnostics and tactics of surgical treatment of patients with traumatic and degenerative lesions of the cervical spine [dissertation abstract]. Saratov; 2020. 34 р. (In Russ).]
  21. Дзяк Л.А., Цуркаленко Е.С., Сальков Н.Н. Возможности комплексной реабилитации пациентов, перенесших позвоночно-спинномозговую травму // Международный неврологический журнал. 2015. Т. 6, № 76. C. 91–97. [Dzyak LA, Tsurkalenko ES, Salkov NN. Possibilities of complex rehabilitation of patients who have suffered spinal cord injury. Int Neurol J. 2015;6(76):91–97. (In Russ).]
  22. Harvey LA. Physiotherapy rehabilitation for people with spinal cord injuries. J Physiother. 2016;62(1):4–11. doi: 10.1016/j.jphys.2015.11.004
  23. Помников В.Г., Токарева Д.В. Травматические заболевания спинного мозга. Реабилитация инвалидов. Национальное руководство. Москва: ГЭОТАР-Медиа, 2018. С. 582–584. [Pomnikov VG, Tokareva DV. Traumatic diseases of the spinal cord. Rehabilitation of the disabled. National leadership. Moscow: GEOTAR-Media; 2018. Р. 582–584. (In Russ).]
  24. Ведение больных с последствиями позвоночно-спинномозговой травмы на втором и третьем этапах медицинской и медико-социальной реабилитации. Клинические рекомендации / под общ. ред. проф. Г.Е. Ивановой. Москва, 2017. 320 с. [Management of patients with the consequences of spinal cord injury at the second and third stages of medical and medico-social rehabilitation. Clinical recommendations. Ed. by G.E. Ivanova. Moscow; 2017. 320 р. (In Russ).]
  25. Nunnerley JL, Glinsky JV, Dunn JA, et al. Developing spinal cord injury physiotherapy clinical practice guidelines: A qualitative study to determine how physiotherapists and people living with spinal cord injury use evidence. Spinal Cord. 2023;61(2): 160–168. doi: 10.1038/s41393-022-00867-x
  26. Рерих В.В., Корочкин С.Б. Позвоночная спинномозговая травма нижнешейного отдела позвоночника. Клинические рекомендации. Москва, 2014. 36 с. [Roerich VV, Korochkin SB. Spinal spinal injury of the lower cervical spine. Clinical recommendations. Moscow; 2014. 36 р. (In Russ).]
  27. Крылов В.В., Гринь А.А., Луцик А.А., и др. Рекомендательный протокол лечения острой осложненной и неосложненной травмы позвоночника у взрослых (Ассоциации нейрохирургов РФ). Часть 2 // Вопросы нейрохирургии им. Н.Н. Бурденко. 2015. Т. 79, № 1. С. 83–89. [Krylov VV, Grin AA, Lutsik AA, et al. Recommendation protocol for the treatment of acute complicated and uncomplicated spinal injury in adults (Association of Neurosurgeons of the Russian Federation). Part 2. Burdenko’s journal of neurosurgery. 2015;79(1):83–89. (In Russ).] doi: 10.17116/neiro201579183-89
  28. Рерих В.В., Аветисян А.Р., Елистратов А.А., и др. Позвоночно-спинномозговая травма верхнешейного отдела позвоночника. Клинические рекомендации. Москва, 2016. 32 с. [Roerich VV, Avetisyan AR, Elistratov AA, et al. Spinal cord injury of the upper cervical spine. Clinical recommendations. Moscow; 2016. 32 р. (In Russ).]
  29. Stokes S, Drozda M, Lee C. The past, present, and future of traumatic spinal cord injury therapies: A review. Bone Jt Open. 2022;3(5):348–358. doi: 10.1302/2633-1462.35
  30. Romo PG, Smith CP, Cox A, et al. Non-surgical urologic management of neurogenic bladder after spinal cord injury. World J Urol. 2018;36(10):1555–1568. doi: 10.1007/s00345-018-2419-z
  31. Yeh HL, Kuo HC, Tsai CH, Lee RP. Reasons for altering bladder management and satisfaction with current bladder management in chronic spinal cord injury patients. Int J Environ Res Public Health. 2022;19(24):17032. doi: 10.3390/ijer-ph192417032
  32. Касян Г.Р., Коновалов Н.А., Лысачев Д.А., и др. Нейроурология: учебное пособие. Москва: ГЭОТАР-Медиа, 2023. 240 с. [Kasyan GR, Konovalov NA, Lysachev DA, et al. Neurology: A textbook. Moscow: GEOTAR-Media; 2023. 240 р. (In Russ).]
  33. Крылов В.В., Гринь А.А., Луцик А.А., и др. Рекомендательный протокол лечения острой осложненной и неосложненной травмы позвоночника у взрослых (Ассоциация нейрохирургов РФ). Часть 3 // Вопросы нейрохирургии им. Н.Н. Бурденко. 2015. Т. 79, № 2. С. 97–110. [Krylov VV, Grin AA, Lutsik AA, et al. Recommendation protocol for the treatment of acute complicated and uncomplicated spinal injury in adults (Association of Neurosurgeons of the Russian Federation). Part 3. Burdenko’s journal of neurosurgery. 2015;79(2):97–110. (In Russ).]
  34. Луппова И.В., Куликов А.Г., Спичев О.В., и др. Принципы этапной реабилитации пациентов c тяжелым повреждением спинного мозга // Физиотерапия, бальнеология и реабилитация. 2017. Т. 16, № 1. C. 6–11. [Luppova IV, Kulikov AG, Ospishchev ОV, et al. Principles of stage-by-stage rehabilitation of patients with severe spinal cord injury. Physiotherapy Balneol Rehabilitat. 2017;16(1):6–11. (In Russ).]
  35. Жариков Ю.О., Нагайцева А.А., Николенко В.Н. Повреждение спинного мозга при компрессионных переломах позвоночника: неврологический дефицит и технологии реабилитации пациентов с неврологическими нарушениями // Медицинский вестник Северного Кавказа. 2021. Т. 16, № 1. C. 114–118. [Zharikov YO, Nagaytseva AA, Nikolenko VN. Spinal cord injury in spinal compression fractures: Neurological deficit and rehabilitation technologies for patients with neurological disorders. Med Bulletin North Caucasus. 2021;16(1):114–118. (In Russ).]
  36. Stanciu LE, Iliescu MG, Vlаdаreanu L, et al. Evidence of improvement of lower limb functioning using hydrotherapy on spinal cord injury patients. Biomedicines. 2023;11(2):302. doi: 10.3390/biomedi-cines11-20302
  37. Yang FA, Chen SC, Chiu JF, et al. Body weight-supported gait training for patients with spinal cord injury: A network meta-analysis of randomised controlled trials. Sci Rep. 2022; 12(1):19262. doi: 10.1038/s41598-022-23873-8
  38. Duan R, Qu M, Yuan Y, et al. Clinical benefit of rehabilitation training in spinal cord injury: A systematic review and meta-analysis. Spine. 2021;46(6):E398–E410. doi: 10.1097/BRS. 0000-000000003789
  39. Nistor-Cseppento CD, Gherle A, Negrut N, et al. The outcomes of robotic rehabilitation assisted devices following spinal cord injury and the prevention of secondary associated complications. Medicina (Kaunas). 2022;58(10):1447. doi: 10.3390/medicina5810-1447
  40. Морозов И.Н. Позвоночно-спинномозговая травма: восстановительное лечение в промежуточном и позднем периодах: Автореф. дис. … докт. мед. наук. Нижний Новгород, 2011. 35 с. [Morozov IN. Spinal cord injury: Restorative treatment in the intermediate and late periods [dissertation abstract]. Nizhniy Novgorod; 2011. 35 р. (In Russ).]
  41. Solomon RM, Dhakal R, Halpin SJ, et al. Telerehabilitation for individuals with spinal cord injury in low-and middle-income countries: A systematic review of the literature. Spinal Cord. 2022;60(5):395–403. doi: 10.1038/s41393-022-00797-8
  42. Gao X, Gong Y, Zhang B, et al. Factors for predicting instant neurological recovery of patients with motor complete traumatic spinal cord injury. J Clin Med. 2022;11(14):4086. doi: 10.3390/ jcm11144086
  43. Arienti C, Patrini M, Negrini S, Kiekens C. Overview of cochrane systematic reviews for rehabilitation interventions in persons with spinal cord injury: A mapping synthesis. Arch Phys Med Rehabil. 2023;104(1):143–150. doi: 10.10-16/j.apmr.2022.07.003
  44. Lippi L, D’Abrosca F, Folli A, et al. Rehabilitation interventions for weaning from mechanical ventilation in patients with spinal cord injury: A systematic review. J Back Musculoskelet Rehabil. 2023;36(3):577–593. doi: 10.3233/BMR-220201
  45. Jutzeler CR, Bourguignon L, Tong B, et al. Pharmacological management of acute spinal cord injury: A longitudinal multi-cohort observational study. Sci Rep. 2023;13(1):5434. doi: 10.1038/s41598-023-31773-8
  46. Flury I, Mueller G, Perret The risk of malnutrition in patients with spinal cord injury during inpatient rehabilitation: A longitudinal cohort study. Front Nutr. 2023;(10):1085638. doi: 10.3389/fnut.2023.1085638
  47. Chio JC, Xu KJ, Popovich P, et al. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp Neurol. 2021;(341):113704. doi: 10.1016/j.expneurol.2021.113704
  48. Гринь А.А., Кайков А.К., Крылов В.В. Осложнения и их профилактика у больных с позвоночно-спинномозговой травмой (часть 2) // Нейрохирургия. 2015. № 1. C. 55–66. [Grin AA, Kaikov AK, Krylov VV. Investigation and prevention in patients with combined spinal cord injury (part 2). Neurosurgery. 2015;(1):55–66. (In Russ).]
  49. Shin HK, Park JH, Roh SW, Jeon SR. Meta-analysis on the effect of hypothermia in acute spinal cord injury. Neurospine. 2022;19(3):748–756. doi: 10.14245/ns. 2244444.222
  50. Li T, Wang Y, Feng C, et al. Hyperbaric oxygen therapy for spinal cord injury: A protocol for systematic review and meta-analysis. Medicine (Baltimore). 2020;99(49):e23536. doi: 10.1097/MD. 0000000000023536
  51. Cavka K, Fuller DD, Tonuzi G, Fox EJ. Diaphragm pacing and a model for respiratory rehabilitation after spinal cord injury. J Neurol Phys Ther. 2021;45(3):235–242. doi: 10.1097/NPT.00000-00000000360
  52. Mansour NM, Peña Pino I, Freeman D, et al. Advances in epidural spinal cord stimulation to restore function after spinal cord injury: History and systematic review. J Neurotrauma. 2022;39(15-16):1015–1029. doi: 10.1089/neu.2022.0007
  53. Ярин Г.Ю., Крейдин Е.И., Салюков Р.В., и др. Возможности нейромодуляции при нейрогенной дисфункции нижних мочевыводящих путей // Вестник урологии. 2022. Т. 10, № 3. С. 106–121. [Yarin GY, Kreidin EI, Salyukov RV, et al. Possibilities of neuromodulation in neurogenic dysfunction of the lower urinary tract. Bulletin Urology. 2022;10(3):106–121. (In Russ).] doi: 10.21886/2308-6424-2022-10-3-106-121
  54. Boakye M, Ball T, Dietz N, et al. Spinal cord epidural stimulation for motor and autonomic function recovery after chronic spinal cord injury: A case series and technical note. Surg Neurol Int. 2023;(14):87. doi: 10.25-259/SNI_1074_2022
  55. Chen PC, Lee KH, Lee WC, et al. Treating neurogenic lower urinary tract dysfunction in chronic spinal cord injury patients-when intravesical botox injection or urethral botox injection are indicated. Toxins (Basel). 2023;15(4):288. doi: 10.3390/toxins15040288
  56. Lemos N, Fernandes GL, Ribeiro AM, et al. Rehabilitation of people with chronic spinal cord injury using a laparoscopically implanted neurostimulator: Impact on mobility and urinary, anorectal, and sexual functions. Neuromodulation. 2023;26(1): 233–245. doi: 10.1016/j.neurom. 2022.01.010
  57. Hayta E, Elden H. Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat. 2018;(87):25–31. doi: 10.1016/j.jchemneu. 2017.08.001
  58. StatPearls [Internet]. Orhurhu VJ, Roberts JS, Ly N, Cohen SP. Ketamine in acute and chronic pain management. Treasure Island (FL), 2023.
  59. Van de Winckel A, Carpentier ST, Deng W, et al. Identifying body awareness-related brain network changes after cognitive multisensory rehabilitation for neuropathic pain relief in adults with spinal cord injury: Delayed treatment arm phase randomized controlled trial. medRxiv. 2023;2023:02.09.23285713. doi: 10.1101/2023.02.09.23285713
  60. Kupfer M, Formal CS. Non-opioid pharmacologic treatment of chronic spinal cord injury-related pain. J Spinal Cord Med. 2022;45(2):163–172. doi: 10.1080/107-90268.2020.1730109
  61. Dorrian RM, Berryman CF, Lauto A, Leonard AV. Electrical stimulation for the treatment of spinal cord injuries: A review of the cellular and molecular mechanisms that drive functional improvements. Front Cell Neurosci. 2023;(17):1095259. doi: 10.3389/fncel.2023.1095259
  62. Palladino L, Ruotolo I, Berardi A, et al. Efficacy of aquatic therapy in people with spinal cord injury: A systematic review and meta-analysis. Spinal Cord. 2023. doi: 10.1038/s41393-023-00892-4
  63. Бодрова Р.А., Аухадеев Э.И., Якупов Р.А., и др. Обоснование применения технологий медицинской реабилитации с биологической обратной связью у пациентов с повреждением спинного мозга с позиций Международной классификации функционирования, ограничений жизнедеятельности и здоровья // Практическая медицина. 2017. Т. 2, № 1. С. 104–109. [Bodrova RA, Aukhadeev EI, Yakupov RA, et al. Substantiation of the use of medical rehabilitation technologies with biofeedback in patients with spinal cord injury from the standpoint of the International Classification of Functioning, Limitations of Vital Activity and Health. Practical Med. 2017;2(1):104–109. (In Russ).]
  64. Kapoor D, Xu C. Spinal cord injury AIS predictions using machine learning. eNeuro. 2023;10(1):ENEURO.0149-22.2022. doi: 10.1523/ENEURO.0149-22.2022
  65. Papa DC, Menezes LD, Moraes IA, еt al. Cardiac autonomic modulation in response to postural transition during a virtual reality task in individuals with spinal cord injury: A cross-sectional study. PLoS One. 2023;18(4):e0283820. doi: 10.1371/journal. pone.0283820
  66. Van de Winckel A, Carpentier ST, Deng W, еt al. Identifying body awareness-related brain network changes after cognitive multisensory rehabilitation for neuropathic pain relief in adults with spinal cord injury: Delayed treatment arm phase i randomized controlled trial. medRxiv. 2023;2023:02.09.23285713. doi: 10.1101/2023.02.09.23285713
  67. Dietz N, Wagers S, Harkema SJ, D’Amico JM. Intrathecal and oral baclofen use in adults with spinal cord injury: A systematic review of efficacy in spasticity reduction, functional changes, dosing, and adverse events. Arch Phys Med Rehabil. 2023;104(1):119–131. doi: 10.1016/j.apmr.2022.05.011
  68. Mastrorilli V, De Angelis F, Vacca V, et al. Xeomin, a commercial formulation of botulinum neurotoxin type a, promotes regeneration in a preclinical model of spinal cord injury. Toxins (Basel). 2023;15(4):248. doi: 10.3390/toxins15040248
  69. Zhang Y, Al Mamun A, Yuan Y, et al. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep. 2021;23(6):417. doi: 10.3892/mmr.2021.12056
  70. Shackleton C, Evans R, West S, et al. Robotic locomotor training for spasticity, pain, and quality of life in individuals with chronic SCI: A pilot randomized controlled trial. Front Rehabil Sci. 2023;(4):1003360. doi: 10. 3389/fresc.2023.1003360
  71. Dolbow DR, Gorgey AS, Sutor TW, et al. Invasive and non-invasive approaches of electrical stimulation to improve physical functioning after spinal cord injury. J Clin Med. 2021;10(22):5356. doi: 10.33-90/jcm10225356
  72. Krenn MJ, White JM, Stokic DS, Tansey KE. Neuromodulation with transcutaneous spinal stimulation reveals different groups of motor profiles during robot-guided stepping in humans with incomplete spinal cord injury. Exp Brain Res. 2023;241(2): 365–382. doi: 10.1007/s00221-022-06521-5
  73. Fang CY, Lien AS, Tsai JL, et al. The effect and dose-response of functional electrical stimulation cycling training on spasticity in individuals with spinal cord injury: A systematic review with meta-analysis. Front Physiol. 2021;(12):756200. doi: 10.3389/fphys.2021.756200
  74. Pascoal A, Lourenço C, Ermida FN, et al. Ultrasound-Guided percutaneous radiofrequency thermal neuroablation for the treatment of adductor and rectus femoris spasticity. Cureus. 2023;15(1):e33422. doi: 10.77-59/cureus.33422
  75. Dolbow DR, Gorgey AS, Johnston TE, Bersch I. Electrical stimulation exercise for people with spinal cord injury: A healthcare provider perspective. J Clin Med. 2023;12(9):3150. doi: 10.3390/jcm12093150
  76. Oraee-Yazdani S, Tavanaei R, Rezaee-Naserabad SS, et al. Safety and potential efficacy of selective dorsal rhizotomy in adults with spinal cord injury-induced spasticity: An open-label, non-randomized, single-arm trial. World Neurosurg. 2023;(170):e806–e816. doi: 10.1016/j.wneu. 2022.11.127
  77. Revkova VA, Sidoruk KV, Kalsin VA, et al. Spidroin silk fibers with bioactive motifs of extracellular proteins for neural tissue engineering. ACS Omega. 2021;6(23):15264–15273. doi: 10.1021/acsomega.1c01576
  78. Baklaushev VP, Bogush VG, Kalsin VA, et al. Tissue engineered neural constructs composed of neural precursor cells, recombinant spidroin and PRP for neural tissue regeneration. Sci Rep. 2019;9(1):3161. doi: 10.1038/s41598-019-39341-9
  79. Xu J, Fang S, Deng S, et al. Generation of neural organoids for spinal-cord regeneration via the direct reprogramming of human astrocytes. Nat Biomed Eng. 2023;7(3):253–269. doi: 10.1038/s41551-022-00963-6
  80. Revkova VA, Grebenik EA, Kalsin VA, et al. Chitosan-g-oligo(L,L-lactide) copolymer hydrogel potential for neural stem cell differentiation. Tissue Eng. Part A. 2020;26(17-18):953–963. doi: 10.1089/ten.TEA.2019.0265
  81. Kim HN, McCrea MR, Li S. Advances in molecular therapies for targeting pathophysiology in spinal cord injury. Expert Opin Ther Targets. 2023;27(3):171–187. doi: 10.1080/14728-222.2023.2194532
  82. Коновалова Н.Г., Филатов Е.В., Ляховецкая В.В., Фроленко Ю.С. Опыт применения кинезитерапевтической установки «Экзарта» в реабилитации пациентов с патологией спинного мозга на шейном уровне // Физиотерапия, бальнеология и реабилитация. 2017. Т. 16, № 2. С. 102–106. [Konovalova NG, Filatov EV, Lyakhovetskaya VV, Frolenko YS. The experience of using the kinesiotherapy unit «Exarta» in the rehabilitation of patients with spinal cord pathology at the cervical level. Physiotherapy Balneol Rehabilitat. 2017;16(2):102–106. (In Russ).]
  83. Powell ES, Lopez J, Westgate PM, еt al. Effects of dynamic overground body weight support training during inpatient rehabilitation after traumatic spinal cord injury: A retrospective case series. Am J Phys Med Rehabil. 2022;101(2):196–200. doi: 10.1097/PHM.00000000000-01828
  84. Stampacchia G, Gazzotti V, Olivieri M, еt al. Gait robot-assisted rehabilitation in persons with spinal cord injury: A scoping review. NeuroRehab. 2022;51(4):609–647. doi: 10.3233/NRE-220061
  85. Воробьев А.А., Петрухин А.В., Засыпкина О.А., Кривоножкина П.С. Экзоскелет — новые возможности абилитации и реабилитации (Аналитический обзор) // Вопросы реконструктивной и пластической хирургии. 2015. № 2. С. 51–62. [Vorobyev AA, Petrukhin AV, Zasypkina OA, Krivonozhkina PS. Exo-skeleton: New possibilities of habilitation and rehabilitation (Analytical review). Questions Reconstruct Plastic Sur. 2015;(2): 51–62. (In Russ).]
  86. Ткаченко П.В. Реконструкция ходьбы с применением экзоскелета в реабилитации больных с последствиями травмы спинного мозга: Автореф. дис. … канд. мед. наук. Москва, 2018. 23 с. [Tkachenko PV. Reconstruction of walking with the use of an exoskeleton in the rehabilitation of patients with the consequences of spinal cord injury [dissertation abstract]. Moscow; 2018. 23 p. (In Russ).]
  87. Tamburella F, Lorusso M, Tramontano M, еt al. Overground robotic training effects on walking and secondary health conditions in individuals with spinal cord injury: Systematic review. J Neuroeng Rehabil. 2022;19(1):27. doi: 10.1186/s12984-022-01003-9
  88. Calabrо RS, Portaro S, Tomasello P, еt al. Paving the way for a better management of pain in patients with spinal cord injury: An exploratory study on the use of Functional Electric Stimulation (FES)-cycling. J Spinal Cord Med. 2023;46(1): 107–117. doi: 10.1080/10-790268.2021.1961050
  89. Cardoso LR, Bochkezanian V, Forner-Cordero A, еt al. Soft robotics and functional electrical stimulation advances for restoring hand function in people with SCI: A narrative review, clinical guidelines and future directions. J Neuroeng Rehabil. 2022;19(1):66. doi: 10.1186/s12984-022-01043-1
  90. Lorusso M, Tagliamonte NL, Tramontano M, еt al. Technology-assisted balance assessment and rehabilitation in individuals with spinal cord injury: A systematic review. NeuroRehab. 2022;51(2):213–230. doi: 10.3233/NRE-220060
  91. Даминов В.Д., Ткаченко П.В., Низаметдинова А.А. Применение имитирующих шагоподобные движения механотерапевтических устройств в сочетании с электростимуляцией у пациентов со спинальной травмой // Вестник восстановительной медицины. 2020. № 5. С. 53–61. [Daminov VD, Tkachenko PV, Nizametdinova AA. The use of mechanotherapeutic devices simulating step-like movements in combination with electrical stimulation in patients with spinal injury. Bulletin Res Med. 2020;(5):53–61. (In Russ).] doi: 10.38025/2078-1962-2020-99-5-53-61
  92. Туруспекова С.Т., Саулебай Ж.К., Имантаев Б.Р., Райимжанов З.Р. Позвоночно-спинномозговая травма: что нового в нейрореабилитации? // Электронный научно-образовательный вестник «Здоровье и образование в XXI веке». 2017. Т. 19, № 12. С. 283–284. [Turuspekova ST, Saulebai ZK, Imantaev B.R., Raimzhanov ZR. Spinal cord injury: What’s new in neurorehabilitation? Electronic Sci Educational Bulletin Health Education XXI Century. 2017;19(12):283–284. (In Russ).]
  93. Li H, Wang J, Fang Y. Recent developments in multifunctional neural probes for simultaneous neural recording and modulation. Microsyst Nanoeng. 2023;(9):4. doi: 10.1038/s41378-022-00444-5
  94. Darrow MJ, Torres M, Sosa MJ, еt al. Vagus nerve stimulation paired with rehabilitative training enhances motor recovery after bilateral spinal cord injury to cervical forelimb motor pools. Neurorehabil Neural Repair. 2020;34(3):200–209. doi: 10.1177/1545968319895480
  95. Medina R, Ho A, Reddy R, еt al. Narrative review of current neuromodulation modalities for spinal cord injury. 2023;(4): 1143405. doi: 10.3389/fpain.2023.1143405
  96. Davis KC, Meschede-Krasa B, Cajigas I, et al. Design-development of an at-home modular brain-computer interface (BCI) platform in a case study of cervical spinal cord injury. J Neuroeng Rehabil. 2022;19(1):53. doi: 10.1186/s12984-022-01026-2
  97. Гнилоквас А.П. Эрготерапия и травма спинного мозга // Актуальные научные исследования в современном мире. 2018. № 11-5. С. 60–63. [Gnilokvas AP. Ergotherapy spinal cord injury. Aktual'nye naucnye issledovania v sovremennom mire. 2018;(11-5):60–63. (In Russ).]
  98. Ачкасов Е.Е., Ярославская М.А., Машковский Е.Е., и др. Клинико-психологические аспекты реабилитации пациентов с позвоночно-спинномозговой травмой // Неврология, нейропсихиатрия, психосоматика. 2017. Т. 9, № 2. С. 4–9. [Achkasov ЕE, Yaroslavskaya MA, Moshkovsky EЕ, et al. Clinical and psychological aspects of rehabilitation of patients with spinal cord injury. Neurol Neuropsychiatry Psychosomatics. 2017;9(2):4–9. (In Russ).]
  99. Булюбаш И.Д., Морозов И.Н., Приходько М.С. Психологическая реабилитация пациентов с последствиями спинальной травмы. Самара: Бахрах-М, 2011. 272 с. [Bulyubash ID, Morozov IN, Prikhodko MS. Psychological rehabilitation of patients with the consequences of spinal injury. Samara: Bakhrakh-M; 2011. 272 р. (In Russ).]
  100. Хохлова О.И. Реабилитационный потенциал личности и функциональная независимость лиц с травматической болезнью спинного мозга // Политравма. 2020. № 3. С. 100–107. [Khokhlova OI. Rehabilitation potential of personality and functional independence of persons with traumatic spinal cord disease. Polytrauma. 2020;(3):100–107. (In Russ).]

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 38032 от 11 ноября 2009 года.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies