Сontribution of circadian rhythms to the development of neurological disorders after prolonged anesthesia

Cover Page


Cite item

Full Text

Abstract

Despite the improvement of pre-, intra- and postoperative care methods, the problem of the development of postoperative neurological complications following prolonged anesthesia remains. A mechanism of occurrence of these complications may be circadian rhythm disorders. This article presents a review of the literature data on the prevalence, pathophysiological mechanisms, and risk factors of postoperative autonomic and circadian disorders. Notably, circadian rhythm disorders in surgical patients are observed at several levels: disruption of the sleep and wakefulness cycle, decreased melatonin secretion, instability of cortisol levels and body temperature, and changes in the vegetative balance towards sympathetic regulation. These disorders contribute to the development of postoperative pain and cognitive and anxiety-depressive disorders, hinder effective rehabilitation, and may be associated with postoperative mortality.

Full Text

ВВЕДЕНИЕ

Внедрение минимально инвазивной хирургии и расширенных программ восстановления привело к уменьшению послеоперационных субъективных жалоб и повышению качества жизни пациентов [1–4]. Однако, несмотря на существенные улучшения в до-, интра- и послеоперационном уходе, у больных по-прежнему отмечаются субъективный дискомфорт со снижением общего самочувствия, повышенной утомляемостью, болями, когнитивными расстройствами и нарушениями сна, а в ряде случаев высокая заболеваемость и смертность [5–7]. Центральную роль в развитии постоперационных осложнений могут играть нарушения циркадных ритмов [8]. Биологические ритмы оказывают влияние на многочисленные функции организма, однако наиболее известными и хорошо изученными являются следующие: ритм сна и бодрствования, циркадный ритм высвобождения мелатонина и кортизола, ритм внутренней температуры, а также тонус вегетативной нервной системы. Их нарушения могут иметь негативные последствия для восстановления после операции [9].

В представленном обзоре обобщены современные данные о распространённости, патофизиологических механизмах и факторах риска послеоперационных вегетативных и циркадных нарушений.

Методология поиска источников

Научные публикации для написания обзора получены из научных электронных библиотек CyberLeninka, eLIBRARY, Google Scholar, а также электронной базы медико-биологических публикаций PubMed.

В ходе исследования использованы следующие критерии включения научных публикаций в обзор: монографии, моноцентровые когортные исследования, обзоры, исследования случай-контроль, а также клинические случаи, описывающие вегетативные и циркадные нарушения у хирургических больных в послеоперационном периоде.

Поиск литературных источников проведён по следующим ключевым словам: вегетативная нервная система (autonomic Nervous System), циркадные нарушения (circadian disturbances), вариабельность сердечного ритма (heart rate variability), ортостатическая гипотензия (orthostatic hypotension), послеоперационный период (postoperative period).

ОБЩАЯ АНЕСТЕЗИЯ И НАРУШЕНИЯ СНА

Сон — одна из наиболее регулируемых циркадными ритмами функций организма. Влияние хирургических вмешательств на циркадный ритм, в том числе на изменения послеоперационного сна, хорошо изучено [2, 9]. Исследования, в которых использовалась полисомнография, показывают, что послеоперационный сон чаще состоит из поверхностного сна (non-rapid eye movement, NREM, стадия I+II) с уменьшением длительности глубокого сна (NREM стадия III) и быстрого сна (rapid eye movement, REM) в первые две послеоперационные ночи. Со временем количество поверхностного сна снижается, а фазы быстрого и глубокого сна увеличиваются. Измерения актиграфа и данные дневника сна у пациентов показали, что послеоперационный сон характеризуется сокращением общего времени сна, ухудшением его качества и увеличением продолжительности дневного сна [10]. Кроме того, после операции увеличивается количество пробуждений. С клинической точки зрения, эти изменения важны, поскольку глубокий сон особенно важен для выздоровления. Представляет также интерес взаимосвязь между другими патологическими состояниями и сном. Так, нарушение сна стало значимым предиктором развития послеоперационной боли [11–13]. Предполагается, что постоперационное кратковременное лишение сна может увеличить экспрессию и активность кальциевых каналов L-типа в поясничном ганглии дорсального корешка [14].

Длительные нарушения сна могут увеличивать и возможность возникновения послеоперационных психоэмоциональных расстройств, в том числе депрессии [15]. Проблемы со сном приводили к несмертельному членовредительству и самоубийству у пациентов после бариатрической операции [16]. Согласно результатам метаанализа, ранее существовавшие нарушения сна могут быть ассоциированы с послеоперационным делирием [17]. В эксперименте было показано, что предоперационные нарушения сна могут усугублять послеоперационные когнитивные нарушения у пожилых мышей, усиливая хирургически вызванное нейровоспаление, повреждение нервов и нарушение гематоэнцефалического барьера [18]. Пациенты с когнитивным дефицитом после обширной абдоминальной операции имели плохое качество сна и значительно более частые ночные просыпания. Вполне вероятно, что нарушения сна и циркадных ритмов могут быть основой когнитивной дисфункции после серьёзной операции [19].

Общая анестезия — искусственно вызванное подобное глубокому сну обратимое состояние [19]. Пропофол и тиопентал-натрия повышают активность ГАМК-ергических нейронов в вентральном преоптическом ядре гипоталамуса, подавляя возбуждение и усиливая медленный сон (NREM) [20, 21]. Инфузия кетамина, напротив, повышает возбуждение и подавляет медленноволновой сон [22]. Совместное использование пропофола и фентанила в анестезии снижало секрецию мелатонина в первую ночь после операции [23]. В то же время ингаляционные анестетики не являются ГАМК-опосредованным снотворным средством и могут увеличивать секрецию мелатонина. Кроме того, анестетики могут по-разному влиять на структуру сна. Так, ингаляция севофлураном может вызывать уменьшение латентного периода перед быстрым сном, не влияя на бодрствование или медленный сон [24]. Изофлурановая анестезия без хирургического вмешательства не оказывает влияния на фазу быстрого или медленного сна, за исключением перехода от более глубоких (III) к более лёгким (I и II) стадиям медленного сна [25]. Некоторые исследования показали, что опиоиды могут вызывать послеоперационные нарушения сна, характеризующиеся снижением медленной фазы, дозозависимым подавлением быстрого сна, а также ранним пробуждением [26]. Существуют некоторые экспериментальные данные, указывающие на то, что общая анестезия изменяет молекулярные часы, которые зависят от генов Per, Cry, Clock и Bma1 [27].

ОБЩАЯ АНЕСТЕЗИЯ И ГОРМОНАЛЬНЫЕ ИЗМЕНЕНИЯ

Одно из ранних хирургических исследований показало, что у женщин, перенёсших гинекологические операции, наблюдался значительно сниженный (уплощённый) ритм мелатонина в первую послеоперационную ночь [28]. Эти изменения были впоследствии подробно изучены в общей хирургической практике [2]. Хирургическое вмешательство приводит к снижению пиковой концентрации, среднего уровня и амплитуды секреции мелатонина в течение первых суток после операции, однако затем, на вторую ночь после операции, отмечается повышенная его продукция. Замечен также сдвиг в фазах, приводящий к тому, что пиковая концентрация мелатонина ночью наблюдается позже, чем до операции. Причина увеличения пика мелатонина на вторые послеоперационные сутки пока неясна. Возможно, что в это время анестетики метаболизируются, и происходит восстановление секреции мелатонина [29–32].

Существенные изменения продемонстрированы в отношении температуры тела и уровня кортизола. Так, зафиксирован значительный сдвиг в акрофазе ритма внутренней температуры тела. Это означает, что самые низкие температуры наблюдались днём и вечером, а самая высокая — ночью. Через два дня после операции были зафиксированы повышенная ночная температура при стабильно повышенном уровне кортизола [2, 33, 34].

НАРКОЗ И ВЕГЕТАТИВНЫЕ НАРУШЕНИЯ

Вариабельность сердечного ритма является выражением баланса между симпатической и парасимпатической нервной системой, на который в гомеостазе человека влияет циркадный ритм. Недавние исследования показали, что вариабельность сердечного ритма является независимым предиктором послеоперационных осложнений и отдалённой смертности при несердечных операциях [35, 36]. У пациентов, перенёсших как крупные, так и малые хирургические вмешательства, вариабельность сердечного ритма изменяется в периоперационном периоде [2, 37], при этом наблюдаются увеличение частоты сердечных сокращений и снижение активности парасимпатической системы даже при незначительных вмешательствах [2, 37]. После обширных абдоминальных операций обнаружено выраженное снижение амплитуды вариабельности сердечного ритма в ночное время, сопровождаемое изменениями сегмента ST, указывающее на возможное ишемическое поражение сердца [2].

Хирургические вмешательства могут вызывать дисфункцию вегетативной нервной системы сердца у всех пациентов, независимо от наличия или отсутствия изначально вегетативной дисфункции [38].

Ортостатическая гипотензия является одним из основных признаков вегетативной недостаточности. Распространённость ортостатической непереносимости после оперативного вмешательства в различных исследованиях варьирует от 35,2 до 60,5% [39–43]. В систематическом обзоре и метаанализе событий ортостатической непереносимости, в котором проанализировано 21 исследование (140 525 пациентов), частота возникновения ортостатической непереносимости составляла от 2 до 52%, ортостатической гипотензии — от 1 до 46%, синкопе/вазовагальных явлений — от 0 до 18% [44]. Факторы, независимо связанные с ортостатической гипотензией, включали пожилой возраст, женский пол и послеоперационное употребление опиоидов [39, 40, 43]. Более высокие баллы индекса тяжести бессонницы (Insomnia Severity Index, ISI), более высокая парасимпатическая активность при анализе вариабельности сердечного ритма были ассоциированы с более высоким уровнем боли по визуальной аналоговой шкале [45].

Причина нестабильности послеоперационного артериального давления и реакции вариабельности сердечного ритма неясна, но может быть объяснена несколькими факторами, связанными с хирургическим вмешательством. Послеоперационные пациенты могут быть уязвимы к развитию ортостатической гипотензии из-за гиповолемии. В исследованиях выяснилось, что острая лёгкая кровопотеря как изолированный фактор не способствует развитию послеоперационной вегетативной дисфункции, оцениваемой по показателям вариабельности сердечного ритма [46–48]. Использование более высоких доз опиоидов потенциально может вызвать ортостатическую гипотензию, поскольку они обладают ваготоническим действием и ослабляют эфферентную барорефлекторную активность [49, 50]. Известно также, что парасимпатическая система является неотъемлемой частью «нейровоспалительного» рефлекса, действуя как отрицательная обратная связь для продукции цитокинов, поэтому относительное увеличение активности блуждающего нерва можно рассматривать как нормальную реакцию на послеоперационном этапе из-за хирургического воспаления [51].

ЗАКЛЮЧЕНИЕ

Нарушения циркадного ритма у хирургических больных наблюдаются на нескольких уровнях: нарушение цикла сна и бодрствования с уменьшением длительности глубокого сна (NREM стадия III) и быстрого сна (REM) и увеличением длительности поверхностного сна (NREM стадия I+II), снижение секреции мелатонина, изменение уровня кортизола и температуры тела, а также изменение вегетативного баланса в сторону симпатической нервной системы. Нарушения сна могут быть предикторами усиления послеоперационной боли, развития когнитивных нарушений, тревожно-депрессивных состояний. Изменения вариабельности сердечного ритма связаны с послеоперационной смертностью. Ортостатическая гипотензия препятствует ранней вертикализации и последующей реабилитации.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Источник финансирования. Авторы заявляют об отсутствии внешнего финансирования при подготовке статьи.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Вклад авторов. Н.А. Мазуров, В.А. Салтанова, Ю.И. Доян — поиск и анализ литературных источников; Т.Э. Вербах, О.А. Кичерова — обсуждение результатов и написание текста; Л.И. Рейхерт — редактирование. Авторы подтверждают соответствие своего авторства международным критериям ICMJE (все авторы внесли существенный вклад в разработку концепции, проведение поисково-аналитической работы и подготовку статьи, прочли и одобрили финальную версию перед публикацией).

ADDITIONAL INFORMATION

Funding source. This study was not supported by any external sources of funding.

Competing interests. The authors declare that they have no competing interests.

Authors’ contribution. N.A. Mazurov, V.A. Saltanova, Yu.I. Doyan — search and analysis of literary sources; T.E. Verbakh, O.A. Kicherova — discussion of the results and manuscript writing; L.I. Reikhert — editing. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work.

×

About the authors

Nikita A. Mazurov

Tyumen State Medical University

Author for correspondence.
Email: nikita_banzay@mail.ru
ORCID iD: 0009-0002-7289-4587
SPIN-code: 3824-0682
Russian Federation, Tyumen

Oksana A. Kicherova

Tyumen State Medical University

Email: pan1912@mail.ru
ORCID iD: 0000-0002-7598-7757
SPIN-code: 3162-0770

MD, PhD, Associate Professor

Russian Federation, Tyumen

Tatyana E. Verbakh

Tyumen State Medical University

Email: shtork@yandex.ru
ORCID iD: 0000-0002-6294-1776
SPIN-code: 7776-4134

MD, PhD

Russian Federation, Tyumen

Lyudmila I. Reichert

Tyumen State Medical University

Email: lir0806@gmail.com
ORCID iD: 0000-0003-4313-0836
SPIN-code: 1703-2302

MD, PhD, Professor

Russian Federation, Tyumen

Yulia I. Doyan

Tyumen State Medical University

Email: yul-gol25@yandex.ru
ORCID iD: 0000-0002-8486-496X
SPIN-code: 2748-9442

MD, PhD

Russian Federation, Tyumen

Valentina A. Saltanova

Tyumen State Medical University

Email: valentinaslt72@gmail.com
ORCID iD: 0009-0002-1304-2202
Russian Federation, Tyumen

References

  1. Smolensky MH, Portaluppi F, Manfredini R, et al. Diurnal and twenty-four hour patterning of human diseases: Cardiac, vascular, and respir-atory diseases, conditions, and syndromes. Sleep Med Rev. 2015;(21):3–11. doi: 10.1016/j.smrv.2014.07.001
  2. Gögenur I. Postoperative circadian disturbances. Danish Medical Bulletin. 2010;57(12):B4205.
  3. Зотов П.Б., Аксельров М.А., Аксельров П.М., и др. «Качество жизни» в клинической практике. Тюмень, 2022. 352 с. [Zotov PB, Axelrov MA, Axelrov PM, et al. ‘Quality of life’ in clinical practice. Tyumen; 2022. 352 р. (In Russ).] EDN: QXVIHN
  4. Рейхерт Л.И., Кичерова О.А., Ахметьянов М.А. Связанное со здоровьем качество жизни в неврологической практике // Академический журнал Западной Сибири. 2022. Т. 18, № 3. С. 25–34. [Reichert LI, Kicherova OA, Akhmetyanov MA. Health-related quality of life in neurological practice. Academic Journal West Siberia. 2022;18(3):25–34]. EDN: TYISHP doi: 10.32878/sibir.22-18-03(96)-25-34
  5. Aarts MA, Rotstein OD, Pearsall EA, et al. Postoperative ERAS interventions have the greatest impact on optimal recovery: experience with implementation of ERAS across multiple hospitals. Ann Surg. 2018;267(6):992–997. doi: 10.1097/SLA.0000000000002632
  6. Hansen MV. Chronobiology, cognitive function and depressive symptoms in surgical patients. Danish Med J. 2014;61(9):B4914.
  7. Kurbegovic S, Andersen J, Krenk L, Kehlet H. Delirium in fast-track colonic surgery. Langenbecks Arch Surg. 2015;400(4): 513–516. EDN: QUYWHW doi: 10.1007/s00423-015-1297-8
  8. Kvaslerud T, Hansen MV, Rosenberg J, Gögenur I. Circadian aspects of post-operative morbidity and mortality: Circadian aspects of post-operative morbidity and mortality. Acta Anaesthesiol Scand. 2010;54:1157–1163. doi: 10.1111/j.1399-6576.2010.02296.x
  9. Gögenur I, Wildschiøtz G, Rosenberg J. Circadian distribution of sleep phases after major abdominal surgery. Brit J Anaesthesia. 2008;100(1):45–49. EDN: IMLCBZ doi: 10.1093/bja/aem340
  10. Gögenur I, Rosenberg-Adamsen S, Kiil C, et al. Laparoscopic cholecystectomy causes less sleep disturbancethan open abdominal surgery. Surg Endoscopy. 2001;15(12):1452–1455. EDN: ASTOYJ doi: 10.1007/s004640090086
  11. Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322(5903):876–880. doi: 10.1126/science.1149213
  12. Jiang-Xie LF, Yin L, Zhao S, et al. A common neuroendocrine substrate for diverse general anesthetics and sleep. Neuron. 2019;102(5):1053–1065. doi: 10.1016/j.neuron.2019.03.033
  13. Fukuda S, Yasuda A, Lu Z, et al. [Effect sites of anesthetics in the central nervous system network-looking into the mechanisms for natural sleep and anesthesia. (In Japanese)]. Masui. 2011;60(5):544–558. EDN: OLMOTT
  14. Kushikata T, Sawada M, Niwa H, et al. Ketamine and propofol have opposite effects on postanesthetic sleep architecture in rats: Relevance to the endogenous sleep-wakefulness substances orexin and melanin-concentrating hormone. J Anesth. 2016;30(3):437–443. EDN: RDHRSG doi: 10.1007/s00540-016-2161-x
  15. Guo XY, Luo AL, Ren HZ, et al. [Perioperative melatonin secretion rhyme in patients undergoing coronary artery bypass grafting surgery. (In Chinese)]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2003;25(5):594–598.
  16. Pick J, Chen Y, Moore JT, et al. Rapid eye movement sleep debt accrues in mice exposed to volatile anesthetics. Anesthesiology. 2011;115(4):702–712. doi: 10.1097/ALN.0b013e31822ddd72
  17. Wren-Dail MA, Dauchy RT, Blask DE, et al. Effect of isoflurane anesthesia on circadian metabolism and physiology in rats. Comp Med. 2017;67(2):138–146.
  18. Dimsdale JE, Norman D, DeJardin D, Wallace MS. The effect of opioids on sleep architecture. J Clin Sleep Med. 2007;3(1):33–36.
  19. Tian JX, Yin C, Chu SS, et al. Murine clock gene expression in the suprachiasmatic nuclei and peripheral blood mononuclear cells during the daily sleep-wake rhythm and after isoflurane anesthesia. Sleep Biolog Rhythms. 2015;13(4):357–365. doi: 10.1111/sbr.12126
  20. Poole L, Kidd T, Leigh E, et al. Preoperative sleep complaints are associated with poor physical recovery in the months following cardiac surgery. Ann Behav Med. 2014;47(3):347–357. doi: 10.1007/s12160-013-9557-8
  21. Wang PK, Cao J, Wang H, et al. Short-term sleep disturbance-induced stress does not affect basal pain perception, but does delay postsurgical pain recovery. J Pain. 2015;16(11):1186–1199. doi: 10.1016/j.jpain.2015.07.006
  22. Li Q, Zhu ZY, Lu J, et al. Sleep deprivation of rats increases postsurgical expression and activity of L-type calcium channel in the dorsal root ganglion and slows recovery from postsurgical pain. Acta Neuropathol Commun. 2019;7(1):217. EDN: ZFJJBQ doi: 10.1186/s40478-019-0868-2
  23. Rhon DI, Greenlee TA, Marchant BG, et al. Comorbidities in the first 2 years after arthroscopic hip surgery: Substantial increases in mental health disorders, chronic pain, substance abuse and cardiometabolic conditions. Brit J Sports Med. 2019;53(9):547–553. doi: 10.1136/bjsports-2018-099294
  24. Konttinen H, Sjöholm K, Jacobson P, et al. Prediction of suicide and nonfatal self-harm after bariatric surgery: A risk score based on sociodemographic factors, lifestyle behavior, and mental health. A nonrandomized controlled trial. Ann Surg. 2021;274(2):339–345. doi: 10.1097/SLA.0000000000003742
  25. Fadayomi AB, Ibala R, Bilotta F, et al. A systematic review and meta-analysis examining the impact of sleep disturbance on postoperative delirium. Crit Care Med. 2018;46(12):1204–1212. doi: 10.1097/CCM.0000000000003400
  26. Ni P, Dong H, Zhou Q, et al. Preoperative sleep disturbance exaggerates surgery-induced neuroinflammation and neuronal damage in aged mice. Mediators Inflamm. 2019;2019:8301725. doi: 10.1155/2019/8301725
  27. Gögenur I, Middleton B, Burgdorf S, et al. Impact of sleep and circadian disturbances in urinary 6-sulphatoxymelatonin levels, on cognitive function after major surgery. Pineal Res. 2007;43(2):179–184. doi: 10.1111/j.1600-079X.2007.00460.x
  28. Cronin AJ, Keifer JC, Davies MF, et al. Melatonin secretion after surgery. Lancet. 2000;356(9237):1244–1245. EDN: EERXXP doi: 10.1016/S0140-6736(00)02795-1
  29. Gögenur I, Ocak U, Altunpinar O, et al. Disturbances in melatonin, cortisol and core body temperature rhythms after major surgery. World J Surg. 2007;31(2):290–298. EDN: LXDQLA doi: 10.1007/s00268-006-0256-5
  30. Shenshen Y, Minshu W, Qing Y, et al. The effect of cataract surgery on salivary melatonin and sleep quality in aging people. Chronobiol Int. 2016;33(8):1064–1072. doi: 10.1080/07420528.2016.1197234
  31. Yoshitaka S, Egi M, Morimatsu H, et al. Perioperative plasma melatonin concentration in postoperative critically ill patients: Its association with delirium. J Crit Care. 2013;28(3):236–242.
  32. Song Y, Liu Y, Yuan Y, et al. Effects of general versus subarachnoid anaesthesia on circadian melatonin rhythm and postoperative delirium in elderly patients undergoing hip fracture surgery: A prospective cohort clinical trial. EBioMed. 2021;(70):103490. doi: 10.1016/j.ebiom.2021.103490
  33. Ibrahim MG, Bellomo R, Hart GK, et al. A double-blind placebo-controlled randomised pilot study of nocturnal melatonin in tracheostomised patients. Crit Care Resusc. 2006;8(3):187–191.
  34. Khoo B, Boshier PR, Freethy A, et al. Redefining the stress cortisol response to surgery. Clin Endocrinol (Oxf). 2017;87(5):451–458. doi: 10.1111/cen.13439
  35. Filipovic M, Jeger RV, Girard T, et al. Predictors of long-term mortality and cardiac events in patients with known or suspected coronary artery disease who survive major non-cardiac surgery. Anaesthesia. 2005;60(1):5–11. doi: 10.1111/j.1365-2044.2004.03996.x
  36. Buccelletti E, Gilardi E, Scaini E, et al. Heart rate variability and myocardial infarction: Systematic literature review and metanalysis. Eur Rev Med Pharmacol Sci. 2009;13(4):299–307.
  37. Hansen MV, Rosenberg J, Gögenur I. Lack of circadian variation and reduction of heart rate variability in women with breast cancer undergoing lumpectomy: A descriptive study. Breast Cancer Res Treat. 2013;140(2):317–322. doi: 10.1007/s10549-013-2631-x
  38. Zhang J, Tu W, Dai J, et al. Dysfunction of pre- and post-operative cardiac autonomic nervous system in elderly patients with diabetes mellitus. Arch Gerontol Geriatrics. 2011;53(3): 334–337. doi: 10.1016/j.archger.2010.12.013
  39. Hardy PJ, Tavano A, Jacquet SV, et al. The impact of orthostatic intolerance on early ambulation following abdominal surgery in an enhanced recovery programme. Acta Anaesthesiol Scand. 2022;66(4):454–462. EDN: GILIKS doi: 10.1111/aas.14034
  40. Mizota T, Iwata Y, Daijo H, et al. Orthostatic intolerance during early mobilization following video-assisted thoracic surgery. J Anesthesia. 2013;27(6):895–900. EDN: EJFSDP doi: 10.1007/s00540-013-1634-4
  41. Gobezie NZ, Endalew NS, Tawuye HY, Aytolign HA. Prevalence and associated factors of postoperative orthostatic intolerance at University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia, 2022: Cross sectional study. BMC Surg. 2023;23(1):108. EDN: SEUGUG doi: 10.1186/s12893-023-02015-5
  42. Hanada M, Tawara Y, Miyazaki T, et al. Incidence of orthostatic hypotension and cardiovascular response to postoperative early mobilization in patients undergoing cardiothoracic and abdominal surgery. BMC Surg. 2017;17(1):111. EDN: SRGRXC doi: 10.1186/s12893-017-0314-y
  43. Eriksen JR, Munk-Madsen P, Kehlet H, Gögenur I. Orthostatic intolerance in enhanced recovery laparoscopic colorectal resection. Acta Anaesthesiol Scand. 2019;63(2):171–177. doi: 10.1111/aas.13238
  44. De Campos TF, Vertzyas N, Wolden M, et al. Orthostatic intolerance-type events following hip and knee arthroplasty: A systematic review and meta-analysis. J Bone Joint Surg Am. 2023;105(3):239–249. doi: 10.2106/JBJS.22.00600
  45. Ho CN, Fu PH, Hung KC, et al. Prediction of early postoperative pain using sleep quality and heart rate variability. Pain Pract. 2024;24(1):82–90. EDN: FMBRYJ doi: 10.1111/papr.13288
  46. Hristovska AM, Uldall-Hansen B, Mehlsen J, et al. Orthostatic intolerance after acute mild hypovolemia: Incidence, pathophysiologic hemodynamics, and heart-rate variability analysis-A prospective observational cohort study. Can J Anaesth. 2023;70(10):1587–1599. doi: 10.1007/s12630-023-02556-6
  47. Jans Ø, Brinth L, Kehlet H, Mehlsen J. Decreased heart rate variability responses during early postoperative mobilization: An observational study. BMC Anesth. 2015;(15):120. EDN: XQGHHK doi: 10.1186/s12871-015-0099-4
  48. Bundgaard-Nielsen M, Jans Ø, Müller RG, et al. Does goal-directed fluid therapy affect postoperative orthostatic intolerance? A randomized trial. Anesthesiology. 2013;119(4): 813–823. doi: 10.1097/ALN.0b013e31829ce4ea
  49. Chen A, Ashburn MA. Cardiac effects of opioid therapy. Pain Med. 2015;16(Suppl. 1):27–31. doi: 10.1111/pme.12915
  50. Iwata Y, Mizota Y, Mizota T, et al. Postoperative continuous intravenous infusion of fentanyl is associated with the development of orthostatic intolerance and delayed ambulation in patients after gynecologic laparoscopic surgery. J Anesth. 2012;26(4):503–508. EDN: VCQCQU doi: 10.1007/s00540-012-1391-9
  51. Huston JM, Tracey KJ. The pulse of inflammation: Heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med. 2011;269(1):45–53. doi: 10.1111/j.1365-2796.2010.02321.x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 38032 от 11 ноября 2009 года.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies