ПОЛУЧЕНИЕ И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ГЕНЕТИЧЕСКИ МОДИФИЦИРОВАННЫХ ПЛЮРИПОТЕНТНЫХ СТВОЛОВЫХ КЛЕТОК

Обложка


Цитировать

Полный текст

Аннотация

В данном обзоре рассмотрены способы генетического моделирования плюрипотентных стволовых клеток, проблемы экспериментальных исследований данного направления и перспективы практического применения.

Полный текст

ПОЛУЧЕНИЕ И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ГЕНЕТИЧЕСКИ МОДИФИЦИРОВАННЫХ ПЛЮРИПОТЕНТНЫХ СТВОЛОВЫХ КЛЕТОК
×

Об авторах

Константин Юрьевич Казаченко

ФГБУ ФНКЦ ФМБА России

Email: infirmus100@yahoo.com
старший научный сотрудник лаборатории генетики Центра клеточных технологий ФГБУ ФНКЦ ФМБА России, к.б.н.

Список литературы

  1. Lavker R.M., Sun T.T. Epidermal stem cells: properties, markers, and location // Proc Natl Acad Sci USA. 2000. Vol. 97(25). P. 13473-75.
  2. Uchida N., Buck D.W., He D. Direct isolation of human central nervous system stem cells // Proc Natl Acad Sci USA. 2000. Vol. 97(26). P. 14720-25.
  3. Vessey C.J., de la Hall P.M. Hepatic stem cells: a review // Pathology. 2001. Vol.33(2). P.30-41.
  4. Mueller W.E. The stem cell concept in sponges (Porifera): Metazoan traits // Semin Cell Dev Biol. 2006 Vol. 17(4). P. 481-91.
  5. Bode H.R. The interstitial cell lineage of hydra: a stem cell system that arose early in evolution // J Cell Sci. 1996. V. 109 (6). P. 1155-64.
  6. Agata K., Watanabe K. Molecular and cellular aspects of planarian regeneration // Semin Cell Dev Biol. 1999. V.10(4). P. 377-83.
  7. Kuern U., Rendulic S., Tiozzo S. et al. Asexual propagation and regeneration in colonial ascidians // Biol Bull. 2011. V. 221(1). P. 43-61.
  8. Shukalyuk A.I., Golovnina K.A., Baiborodin S.I. et al. Vasa-related genes and their expression in stem cells of colonial parasitic rhizocephalan barnacle Polyascus polygenea (Arthropoda: Crustacea: Cirripedia: Rhizocephala) // Cell Biol Int. 2007. Vol. 31 (2). P. 97-108.
  9. Andrews P.W., Matin M.M., Bahrami A.R. et al. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin // Biochem Soc Trans. 2005. Vol. 33 (6). P. 1526-30.
  10. Kleinsmith L.J., Pierce G.B. Multipotentiality of single embryonal carcinoma cells // Cancer Res. 1964. V.24. P. 1544-51.
  11. Wang N., Trend B., Bronson D.L., et al. Nonrandom abnormalities in chromosome 1 in human testicular cancers // Cancer Res. 1980. Vol. 40 (3). P. 796-802.
  12. Niwa H. Mouse ES cell culture system as a model of development // Dev Growth Differ. 2010. Vol. 52 (3). P. 275-83.
  13. Nagy A., Gocza E., Diaz E.M., et al. Embryonic stem cells alone are able to support fetal development in the mouse // Development. 1990. Vol. 110 (3). P. 815-21.
  14. Lehman J.M. Studies of teratomas in mice: possibilities for the future production of animal models // Am J Pathol. 1980. Vol. 101 (3 Suppl.). P. 33-40.
  15. Doetschman T.C., Eistetter H., Katz M., et al. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium // J Embryol Exp Morphol. 1985 Vol. 87 (1). P. 27-45.
  16. Hooper M., Hardy K., Handyside A., et al. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells // Nature. 1987. Vol. 326 (6110). P. 292-95.
  17. Jaenisch R. Transgenic animals. Science. 1988. Vol. 240 (4858). P. 468-74.
  18. Bronson S.K., Smithies O. Altering mice by homologous recombination using embryonic stem cells // J Biol Chem. 1994. Vol. 269 (44). P. 27155-58.
  19. Capecchi M.R. The new mouse genetics: altering the genome by gene targeting // Trends Genet. 1989. Vol. 5 (3). P. 70-76.
  20. Capecchi M.R. Altering the genome by homologous recombination // Science. 1989. Vol. 244 (4910). P. 1288-92.
  21. Gurdon J.B., Elsdale T.R., Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei // Nature.1958. Vol. 182 (4627). P. 64-65.
  22. Elsdale T.R., Gurdon J.B., Fischberg M. A description of the technique for nuclear transplantation in Xenopus laevis // J Embryol Exp Morphol. 1960. Vol. 8. P. 437-44.
  23. Wilmut I., Schnieke A.E., McWhir J., et al. Viable offspring derived from fetal and adult mammalian cells // Nature. Vol. 385. P. 810-13.
  24. Wakayama T., Perry A.C., Zuccotti M., et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei // Nature. 1998. Vol. 394 (6691). P. 369-74.
  25. Zhou Q., Renard J.P., Le Friec G., et al. Generation of fertile cloned rats by regulating oocyte activation // Science. 2003. Vol. 302 (5648). P. 1179.
  26. Polejaeva I.A., Chen S.H., Vaught T.D., et al. Cloned pigs produced by nuclear transfer from adult somatic cells // Nature. 2000. Vol. 407 (6800). P. 86-90.
  27. Campbell K.H., McWhir J., Ritchie W.A., et al. Sheep cloned by nuclear transfer from a cultured cell line // Nature. 1996. V. 380 (6569). P. 64-66.
  28. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S. et al. Embryonic stem cell lines derived from human blastocysts // Science. 1998. Vol. 282 (5391). P.1145-47.
  29. French A.J., Adams C.A., Anderson L.S., et al. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts // Stem Cells. 2008. Vol. 26 (2). P. 485-93.
  30. Hall V.J., Compton D., Stojkovic P., et al. Developmental competence of human in vitro aged oocytes as host cells for nuclear transfer // Hum. Reprod. 2007. Vol. 22 (1). P. 52-62.
  31. Stojkovic M., Stojkovic P., Leary C., et al. Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes // Reprod. Biomed. Online. 2005. Vol.11 (2). P. 226-31.
  32. Chung Y., Bishop C.E., Treff N.R., et al. Reprogramming of human somatic cells using human and animal oocytes // Cloning Stem Cells. 2009. Vol. 11 (2). P. 213-23.
  33. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. 2006. Vol. 126 (4). P. 663-76.
  34. Okamoto K., Okazawa H., Okuda A., et al. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells // Cell. 1990. Vol. 60 (3). P. 461-72.
  35. Mitalipov S.M., Kuo H.C., Hennebold J.D., et al. Oct-4 expression in pluripotent cells of the rhesus monkey // Biol. Reprod. 2003. Vol. 69 (6). P. 1785-92.
  36. Palmieri S.L., Peter W., Hess H., et al. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. // Dev Biol. 1994. Vol. 166 (1). P. 259-67.
  37. Tanaka T.S., Kunath T., Kimber W.L., et al. Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity // Genome Res. 2002. Vol. 12 (12). P. 1921-28.
  38. Niwa H., Miyazaki J., Smith A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells // Nat Genet. 2000. Vol. 24 (4). P. 372-76.
  39. Nichols J., Zevnik B., Anastassiadis K., et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 // Cell. 1998. Vol. 95 (3). P. 379-91.
  40. Liu K., Lin B., Zhao M. et al. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis // Cell Signal. 2013. Vol. 25 (5). P. 1264-71.
  41. Rizzino A. Sox2 and Oct-3/4: a versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells // Wiley Interdiscip Rev Syst Biol. Med. 2009. Vol. 1 (2). P. 228-36.
  42. Mueller R., Bravo R., Burckhardt J., et al. Induction of c-fos gene and protein by growth factors precedes activation of c-myc // Nature. 1984. Vol. 312 (5996). P. 716-20.
  43. Luescher B., Eisenman R.N. New light on Myc and Myb. Part I. Myc //Genes Dev. 1990. Vol. 4 (12A). P. 2025-35.
  44. Cole M.D. The myc oncogene: its role in transformation and differentiation //Annu Rev Genet. 1986. Vol. 20. P. 361-84.
  45. Rowland B.D., Bernards R., Peeper D.S. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene // Nat Cell Biol. 2005.Vol. 7 (11). P. 1074-82.
  46. Zhang W., Geiman D.E., Shields J.M., et al. The gut-enriched Kruppel-like factor (Kruppel-like factor mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter // J Biol Chem. 2000. Vol. 275 (24). P. 18391-98.
  47. Kane N.M., Nowrouzi A., Mukherjee S., et al. Lentivirus-mediated reprogramming of somatic cells in the absence of transgenic transcription factors // Mol Ther. 2010. Vol. 18 (12). P. 2139-45.
  48. Mah N., Wang Y., Liao M.C. et al. Molecular insights into reprogramming-initiation events mediated by the OSKM gene regulatory network //PLoS One. 2011. Vol. 6 (8). P. 24351-67.
  49. Okita K., Nakagawa M., Hyenjong H. et al. Generation of mouse induced pluripotent stem cells without viral vectors // Science. 2008. Vol. 322 (5903). P. 949-53.
  50. Stadtfeld M., Nagaya M., Utikal J., et al. Induced pluripotent stem cells generated without viral integration //Science. 2008. Vol. 322 (5903). P. 945-49.
  51. Smith Z.D., Meissner A. DNA methylation: roles in mammalian development // Nat Rev Genet. 2013. Vol. 14 (3). P. 204-20.
  52. De Carvalho D.D., You J.S., Jones P.A. DNA methylation and cellular reprogramming //Trends Cell Biol. 2010. Vol. 20 (10). P. 609-17.
  53. Wolffe A.P., Hayes J.J. Chromatin disruption and modification // Nucleic Acids Res. 1999. Vol. 27 (3). P. 711-20.
  54. Huangfu D., Maehr R., Guo W. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds // Nat Biotechnol. 2008. Vol. 26 (7). P. 795-97.
  55. Huangfu D., Osafune K., Maehr R., et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2 // Nat Biotechnol. 2008. Vol. 26 (11). P.1269-75.
  56. Ebert A.D., Yu J., Rose F.F. Jr., et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009. Vol. 457 (7227). P. 277-80.
  57. Marchetto M.C., Carromeu C., Acab A., et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010. Vol. 143 (4). P. 527-39.
  58. Rodriguez-Antona C., Donato M.T., Boobis A., et al. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica. 2002. Vol. 32 (6). P. 505-20.
  59. Greenbaum L.E. From skin cells to hepatocytes: advances in application of iPS cell technology. J Clin Invest. 2010. Vol. 120 (9). P. 3102-5.
  60. Dambrot C., Passier R., Astma D., Mummery C.L. Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models. Biochem J. 2011. Vol. 434 (1). P. 25-35.
  61. Bataller R., Brenner D.A. Liver fibrosis. J Clin Invest. 2005. Vol. 115 (2). P. 209-18.
  62. Lazaro C.A., Rhim J.A., Yamada Y., Fausto N. Generation of hepatocytes from oval cell precursors in culture. Cancer Res. 1998. Vol. 58 (23). P. 5514-22.
  63. Czyz J., Wiese C., Rolletschek A., et al. Potential of embryonic and adult stem cells in vitro. Biol Chem. 2003. Vol. 384 (10-11). P. 1391-1409.
  64. Song Z., Cai J., Liu Y., et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res. 2009. Vol. 19 (11). P. 1233-42.
  65. Sullivan G.J., Hay D.C., Park I.H. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology. 2010. Vol. 51 (1). P. 329-35.
  66. Hanna J., Wernig M., Markoulaki S., et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007. Vol. 318 (5858) P.1920-23.
  67. Chin M.H., Mason M.J., Xie W. et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures // Cell Stem Cell. 2009. Vol. 5 (1). P. 111-23.
  68. Ghosh Z., Wilson K.D., Wu Y., et al. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells // PLoS One. 2010. Vol. 5 (2). P. 8975-84.
  69. Doi A., Park I.H., Wen B., et al. Differential methylation of tissueand cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts // Nat Genet. 2009. Vol. 41 (12). P. 1350-53.
  70. Lister R., Pelizzola M., Kida Y.S., et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells // Nature. 2011. Vol. 471 (7336). P. 68-73.
  71. Polo J.M., Liu S., Figueroa M.E., et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells // Nat Biotechnol. 2010. Vol. 28 (8). P. 848-855.
  72. Brambrink T., Hochedlinger K., Bell G., et al. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable // Proc. Natl. Acad. Sci. U S A. 2006. Vol. 103 (4). P. 933-38.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Казаченко К.Ю., 2013

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 38032 от 11 ноября 2009 года.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах