OBTAINING AND APPLICATION PERSPECTIVESOF GENETICALLY MODIFIED PLURIPOTENT STEM CELLS

Cover Page

Abstract


This review considers genetic modelling of pluripotent stem cells, the problems of experimental studies and prospects of practical application.

ПОЛУЧЕНИЕ И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ГЕНЕТИЧЕСКИ МОДИФИЦИРОВАННЫХ ПЛЮРИПОТЕНТНЫХ СТВОЛОВЫХ КЛЕТОК

K Yu Kazachenko

Email: infirmus100@yahoo.com

  1. Lavker R.M., Sun T.T. Epidermal stem cells: properties, markers, and location // Proc Natl Acad Sci USA. 2000. Vol. 97(25). P. 13473-75.
  2. Uchida N., Buck D.W., He D. Direct isolation of human central nervous system stem cells // Proc Natl Acad Sci USA. 2000. Vol. 97(26). P. 14720-25.
  3. Vessey C.J., de la Hall P.M. Hepatic stem cells: a review // Pathology. 2001. Vol.33(2). P.30-41.
  4. Mueller W.E. The stem cell concept in sponges (Porifera): Metazoan traits // Semin Cell Dev Biol. 2006 Vol. 17(4). P. 481-91.
  5. Bode H.R. The interstitial cell lineage of hydra: a stem cell system that arose early in evolution // J Cell Sci. 1996. V. 109 (6). P. 1155-64.
  6. Agata K., Watanabe K. Molecular and cellular aspects of planarian regeneration // Semin Cell Dev Biol. 1999. V.10(4). P. 377-83.
  7. Kuern U., Rendulic S., Tiozzo S. et al. Asexual propagation and regeneration in colonial ascidians // Biol Bull. 2011. V. 221(1). P. 43-61.
  8. Shukalyuk A.I., Golovnina K.A., Baiborodin S.I. et al. Vasa-related genes and their expression in stem cells of colonial parasitic rhizocephalan barnacle Polyascus polygenea (Arthropoda: Crustacea: Cirripedia: Rhizocephala) // Cell Biol Int. 2007. Vol. 31 (2). P. 97-108.
  9. Andrews P.W., Matin M.M., Bahrami A.R. et al. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin // Biochem Soc Trans. 2005. Vol. 33 (6). P. 1526-30.
  10. Kleinsmith L.J., Pierce G.B. Multipotentiality of single embryonal carcinoma cells // Cancer Res. 1964. V.24. P. 1544-51.
  11. Wang N., Trend B., Bronson D.L., et al. Nonrandom abnormalities in chromosome 1 in human testicular cancers // Cancer Res. 1980. Vol. 40 (3). P. 796-802.
  12. Niwa H. Mouse ES cell culture system as a model of development // Dev Growth Differ. 2010. Vol. 52 (3). P. 275-83.
  13. Nagy A., Gocza E., Diaz E.M., et al. Embryonic stem cells alone are able to support fetal development in the mouse // Development. 1990. Vol. 110 (3). P. 815-21.
  14. Lehman J.M. Studies of teratomas in mice: possibilities for the future production of animal models // Am J Pathol. 1980. Vol. 101 (3 Suppl.). P. 33-40.
  15. Doetschman T.C., Eistetter H., Katz M., et al. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium // J Embryol Exp Morphol. 1985 Vol. 87 (1). P. 27-45.
  16. Hooper M., Hardy K., Handyside A., et al. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells // Nature. 1987. Vol. 326 (6110). P. 292-95.
  17. Jaenisch R. Transgenic animals. Science. 1988. Vol. 240 (4858). P. 468-74.
  18. Bronson S.K., Smithies O. Altering mice by homologous recombination using embryonic stem cells // J Biol Chem. 1994. Vol. 269 (44). P. 27155-58.
  19. Capecchi M.R. The new mouse genetics: altering the genome by gene targeting // Trends Genet. 1989. Vol. 5 (3). P. 70-76.
  20. Capecchi M.R. Altering the genome by homologous recombination // Science. 1989. Vol. 244 (4910). P. 1288-92.
  21. Gurdon J.B., Elsdale T.R., Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei // Nature.1958. Vol. 182 (4627). P. 64-65.
  22. Elsdale T.R., Gurdon J.B., Fischberg M. A description of the technique for nuclear transplantation in Xenopus laevis // J Embryol Exp Morphol. 1960. Vol. 8. P. 437-44.
  23. Wilmut I., Schnieke A.E., McWhir J., et al. Viable offspring derived from fetal and adult mammalian cells // Nature. Vol. 385. P. 810-13.
  24. Wakayama T., Perry A.C., Zuccotti M., et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei // Nature. 1998. Vol. 394 (6691). P. 369-74.
  25. Zhou Q., Renard J.P., Le Friec G., et al. Generation of fertile cloned rats by regulating oocyte activation // Science. 2003. Vol. 302 (5648). P. 1179.
  26. Polejaeva I.A., Chen S.H., Vaught T.D., et al. Cloned pigs produced by nuclear transfer from adult somatic cells // Nature. 2000. Vol. 407 (6800). P. 86-90.
  27. Campbell K.H., McWhir J., Ritchie W.A., et al. Sheep cloned by nuclear transfer from a cultured cell line // Nature. 1996. V. 380 (6569). P. 64-66.
  28. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S. et al. Embryonic stem cell lines derived from human blastocysts // Science. 1998. Vol. 282 (5391). P.1145-47.
  29. French A.J., Adams C.A., Anderson L.S., et al. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts // Stem Cells. 2008. Vol. 26 (2). P. 485-93.
  30. Hall V.J., Compton D., Stojkovic P., et al. Developmental competence of human in vitro aged oocytes as host cells for nuclear transfer // Hum. Reprod. 2007. Vol. 22 (1). P. 52-62.
  31. Stojkovic M., Stojkovic P., Leary C., et al. Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes // Reprod. Biomed. Online. 2005. Vol.11 (2). P. 226-31.
  32. Chung Y., Bishop C.E., Treff N.R., et al. Reprogramming of human somatic cells using human and animal oocytes // Cloning Stem Cells. 2009. Vol. 11 (2). P. 213-23.
  33. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. 2006. Vol. 126 (4). P. 663-76.
  34. Okamoto K., Okazawa H., Okuda A., et al. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells // Cell. 1990. Vol. 60 (3). P. 461-72.
  35. Mitalipov S.M., Kuo H.C., Hennebold J.D., et al. Oct-4 expression in pluripotent cells of the rhesus monkey // Biol. Reprod. 2003. Vol. 69 (6). P. 1785-92.
  36. Palmieri S.L., Peter W., Hess H., et al. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. // Dev Biol. 1994. Vol. 166 (1). P. 259-67.
  37. Tanaka T.S., Kunath T., Kimber W.L., et al. Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity // Genome Res. 2002. Vol. 12 (12). P. 1921-28.
  38. Niwa H., Miyazaki J., Smith A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells // Nat Genet. 2000. Vol. 24 (4). P. 372-76.
  39. Nichols J., Zevnik B., Anastassiadis K., et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 // Cell. 1998. Vol. 95 (3). P. 379-91.
  40. Liu K., Lin B., Zhao M. et al. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis // Cell Signal. 2013. Vol. 25 (5). P. 1264-71.
  41. Rizzino A. Sox2 and Oct-3/4: a versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells // Wiley Interdiscip Rev Syst Biol. Med. 2009. Vol. 1 (2). P. 228-36.
  42. Mueller R., Bravo R., Burckhardt J., et al. Induction of c-fos gene and protein by growth factors precedes activation of c-myc // Nature. 1984. Vol. 312 (5996). P. 716-20.
  43. Luescher B., Eisenman R.N. New light on Myc and Myb. Part I. Myc //Genes Dev. 1990. Vol. 4 (12A). P. 2025-35.
  44. Cole M.D. The myc oncogene: its role in transformation and differentiation //Annu Rev Genet. 1986. Vol. 20. P. 361-84.
  45. Rowland B.D., Bernards R., Peeper D.S. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene // Nat Cell Biol. 2005.Vol. 7 (11). P. 1074-82.
  46. Zhang W., Geiman D.E., Shields J.M., et al. The gut-enriched Kruppel-like factor (Kruppel-like factor mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter // J Biol Chem. 2000. Vol. 275 (24). P. 18391-98.
  47. Kane N.M., Nowrouzi A., Mukherjee S., et al. Lentivirus-mediated reprogramming of somatic cells in the absence of transgenic transcription factors // Mol Ther. 2010. Vol. 18 (12). P. 2139-45.
  48. Mah N., Wang Y., Liao M.C. et al. Molecular insights into reprogramming-initiation events mediated by the OSKM gene regulatory network //PLoS One. 2011. Vol. 6 (8). P. 24351-67.
  49. Okita K., Nakagawa M., Hyenjong H. et al. Generation of mouse induced pluripotent stem cells without viral vectors // Science. 2008. Vol. 322 (5903). P. 949-53.
  50. Stadtfeld M., Nagaya M., Utikal J., et al. Induced pluripotent stem cells generated without viral integration //Science. 2008. Vol. 322 (5903). P. 945-49.
  51. Smith Z.D., Meissner A. DNA methylation: roles in mammalian development // Nat Rev Genet. 2013. Vol. 14 (3). P. 204-20.
  52. De Carvalho D.D., You J.S., Jones P.A. DNA methylation and cellular reprogramming //Trends Cell Biol. 2010. Vol. 20 (10). P. 609-17.
  53. Wolffe A.P., Hayes J.J. Chromatin disruption and modification // Nucleic Acids Res. 1999. Vol. 27 (3). P. 711-20.
  54. Huangfu D., Maehr R., Guo W. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds // Nat Biotechnol. 2008. Vol. 26 (7). P. 795-97.
  55. Huangfu D., Osafune K., Maehr R., et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2 // Nat Biotechnol. 2008. Vol. 26 (11). P.1269-75.
  56. Ebert A.D., Yu J., Rose F.F. Jr., et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009. Vol. 457 (7227). P. 277-80.
  57. Marchetto M.C., Carromeu C., Acab A., et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010. Vol. 143 (4). P. 527-39.
  58. Rodriguez-Antona C., Donato M.T., Boobis A., et al. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica. 2002. Vol. 32 (6). P. 505-20.
  59. Greenbaum L.E. From skin cells to hepatocytes: advances in application of iPS cell technology. J Clin Invest. 2010. Vol. 120 (9). P. 3102-5.
  60. Dambrot C., Passier R., Astma D., Mummery C.L. Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models. Biochem J. 2011. Vol. 434 (1). P. 25-35.
  61. Bataller R., Brenner D.A. Liver fibrosis. J Clin Invest. 2005. Vol. 115 (2). P. 209-18.
  62. Lazaro C.A., Rhim J.A., Yamada Y., Fausto N. Generation of hepatocytes from oval cell precursors in culture. Cancer Res. 1998. Vol. 58 (23). P. 5514-22.
  63. Czyz J., Wiese C., Rolletschek A., et al. Potential of embryonic and adult stem cells in vitro. Biol Chem. 2003. Vol. 384 (10-11). P. 1391-1409.
  64. Song Z., Cai J., Liu Y., et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res. 2009. Vol. 19 (11). P. 1233-42.
  65. Sullivan G.J., Hay D.C., Park I.H. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology. 2010. Vol. 51 (1). P. 329-35.
  66. Hanna J., Wernig M., Markoulaki S., et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007. Vol. 318 (5858) P.1920-23.
  67. Chin M.H., Mason M.J., Xie W. et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures // Cell Stem Cell. 2009. Vol. 5 (1). P. 111-23.
  68. Ghosh Z., Wilson K.D., Wu Y., et al. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells // PLoS One. 2010. Vol. 5 (2). P. 8975-84.
  69. Doi A., Park I.H., Wen B., et al. Differential methylation of tissueand cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts // Nat Genet. 2009. Vol. 41 (12). P. 1350-53.
  70. Lister R., Pelizzola M., Kida Y.S., et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells // Nature. 2011. Vol. 471 (7336). P. 68-73.
  71. Polo J.M., Liu S., Figueroa M.E., et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells // Nat Biotechnol. 2010. Vol. 28 (8). P. 848-855.
  72. Brambrink T., Hochedlinger K., Bell G., et al. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable // Proc. Natl. Acad. Sci. U S A. 2006. Vol. 103 (4). P. 933-38.

Views

Abstract - 108

PDF (Russian) - 123

PlumX


Copyright (c) 2013 Kazachenko K.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.