Yeast *Saccharomyces cerevisiae* is a unique model for studying the molecular mechanisms of exotoxin-mediated antagonistic relationships between coexisting microorganisms. The synthesis of yeast toxins can be considered as an example of allelopathy and environmental competition. The elucidation of the role of allelopathy in the formation of microbial communities is of great interest for modern ecology. Yeast toxins are widely used in medicine, the food industry and biotechnology. The review examines the nature of exotoxins, the mechanisms of inheritance and interaction of the virus and yeast cells, as well as the prospects for their practical application.

Keywords: cytoplasmic heredity; yeast killer toxins; allelopathy.
own species and a wide range of eukaryotic and pro-
karyotic organisms [7]. Such properties of killer toxins
are of great interest for biotechnology, medicine, mo-
lecular biology, and ecology. So far, killer factors have
been detected in different species of yeasts; however,
as they are perfectly studied in the yeast S. cerevisiae,
this review pays great attention to toxins of this spe-
cies. It examines the molecular mechanisms of the ac-
tion of yeast killer factors, which synthesis is due to
the RNA-containing viruses, mechanisms of immunity
occurrence, and the ecological and evolutionary aspects
of the phenomenon.

HOW YEASTS BECOME KILLERS AND WHETHER
THE KILLER CAN BE “RE-EDUCATED”

Killer phenotypes can be stipulated by several rea-
sons. Viruses containing double-stranded RNA (dsRNA)
can be present in yeast cell cytoplasm. Besides, chro-
mosomal genes KHR and KHS coding exotoxins with
a molecular weight of 20 and 75 kDa, respectively,
were detected. These exotoxins have weak killer ac-
tivity in relation to S. cerevisiae [8–10]. Four groups of killer strains – K1, K2,
K28, and Klus – were detected in the yeast S. cerevi-
siae, for which the killer activity is stipulated by dsRNA.
Features such as peculiarities in killer toxin structure,
their genetic determinants, and the presence or ab-
scence of cross-immunity were used for classification
[6]. All these killer strains contain virus-like particles
in cytoplasm. Viruses that ensure a “killer” phenotype
are attributed to the Totiviridae family, in the mycovi-
rus class. One of these viruses is the helper virus L-A;
the other is the satellite virus M. Satellite dsRNA M
(M1, M2, M28, and Mlus) code different toxins: K1,
K2, K28, and Klus. Viruses L-A and M have their own
envelope [11, 12], and the synthesis of the envelope of
both viruses provides for virus L-A. Both viruses are
required for the synthesis of the effective killer toxin
and the formation of immunity in the host cell. Toxins
can kill sensitive cells, but killer strains are resistant
to their own toxin and the toxins of related groups.
So-called neutral strains were detected in the study of
killer strains. They did not kill sensitive cells but were
resistant to the killer factor [13]. Thus, budding yeast
contains virus-like particles in cytoplasm, and their
functioning provides a selective advantage to the host
cell in certain conditions.

Virus dsRNA never occurs in cytoplasm, and virus
transfer in yeast is only possible during the budding pro-
cess from the mother cell to the daughter cell or, in the
case of breeding, cytoduction and sporogenesis [5, 14].
Thus, sensitive yeast can become killer only as a result
of breeding with the killer strain in its natural habitat,
which is a very rare event in the natural environment.
However, it is rather easy to “re-educate” the killer; early
works demonstrate that the loss of infectiousness of killer
strains takes place under the effect of physical (high tem-
perature and ultraviolet irradiation) and chemical (5-fluo-
rouracil, acridine orange, and ethylmethane sulfonate,
etc.) agents [15].

STRUCTURE KILLER VIRUSES
AND THEIR HELPERS

The effective synthesis of virus toxins requires the
joint functioning of two types of viruses: the helper
virus, L-A, and the killer viruses, M1, M2, M28,
and Mlus [6]. Mycovirus L-A is a self-replicating hel-
per virus coding of a protein of capsid (Gag) and RNA-
dependent RNA-polymerase (transcriptase), which
are expressed as a fusion protein (GagPol). Satellite
virus M contains information about the killer toxin
and uses the proteins of L-A capsid and polymerase
GagPol. Consequently, the presence of the L-A virus
is crucial for the maintenance and replication of both
mycoviruses, whereas virus M is only responsible for
the development of the killer phenotype and its auto-
immunity [16].

L-A viruses are isometric particles with a diameter
of 39 nm; they contain a genome consisting of dsRNA
and a complete nucleotide sequence of which is deter-
mined and amounts to 4579 bp. [17]. The structure of
capsid has pores, through which nucleotides penetrate
and the mRNA virus is released. A mature virus particle
has one molecule of dsRNA and transcriptase connect-
ed to it. The process of the synthesis of the (+) RNA
chain is discussed in detail in the review [6]. During
in vitro experiments, it was demonstrated that tran-
scriptase synthesizes the (+) RNA chain with unpaired
adenin residue at the 3’-terminus. In the infected cell,
the (+) chain is released from the virus particle and
serves as the mRNA for the translation of virus cap-
sid proteins on ribosomes in cytoplasm; then, the (+)
RNA chain is packed in subvirus particles, in which
it is transcribed and forms a (–) RNA chain form-
ning dsRNA. Transcription of the dsRNA genome takes
place inside the virion; thus, the dsRNA of the virus
genome is never exposed to the cytoplasm.

The RNA of the L-A virus (4579 bp) contains two open
reading frames (ORF), a virus binding site, and inner en-
hancer of replication. 5’-ORF (ORF1: 2043 n.) codes the
main protein of the envelope (Gag; 76 kDa), whereas 3’-
ORF (ORF2) codes the polymerase (Pol). ORF2 is over-
lapped with ORF1 for 130 nucleotides and is synthesized
only as 180 kDa GagPol (fusion protein), formed by the
means of −1 reading frame shi during the process of
translation. The replication of the L-A of dsRNA is simi-
lar to the replication of the reovirus and complies with a
conservative mechanism [18].

Killer viruses (M1, M2, M28, and Mlus) of yeast S.
cerevisiae have their own capsid. Every virus dem-
onstrates killer activity relative to sensitive strains and killers of the other type; infected strains are resistant to their own toxin [6]. It is interesting that the M1us virus, detected in the wine strains of S. cerevisiae, can inhibit killer activity in the strains of its own type, as well as the yeast of other species: Kluyveromyces lactis and Candida albicans [19]. In natural strains, the infected cells inherit only one copy of the genome of the killer virus М-dsRNA, as the coexistence of numerous genomes with different virus specificity is excluded at the level of dsRNA replication, probably as a result of competition for the protein of the envelope and the Gag-Pol [6]. The strain with multiple resistance to killers can only be obtained [20] by means of the transformation with multicopy plasmids, which contain complementary DNA coding preprotoxins K1, K2, and K28. Despite the fact that all killer viruses are coded with different dsRNA, are different in size, and have genomes that do not have significant homology, they are characterized with a similar structural arrangement. The size of the killer viruses is half the size of the L-A virus; the virus is packed in capsid, synthesized by the helper virus. The replication cycle of the М virus depends on the L-A virus. Features of replication are studied in detail in the review [21].

The RNA of viruses М1, М2, and М28 only contains the 5'-ORF coding killer toxin and 3'-noncoding area, which play an important role in the replication and formation of the capsid. The sequencing of the 5'- and 3'-areas of their (+) RNA chains demonstrates that homology exists only within a 6-nucleotide sequence at the 5'-terminus, which is probably important for the initiation of the synthesis of the (+) RNA chain. The 5'-terminus of the М1, М2, and М28 (+) RNA chain contains initiation codon AUG in position from the 14th to 16th, from the 7th to 9th, and from the 13th to 15th nucleotide, respectively, which is the beginning of each ORF of the killer toxins [21]. Information about these killer toxins was obtained during the cloning of kDNA and its expression in sensitive non-killer strains. It turned out that, in all three systems, the kDNA expression resulted in the synthesis of the killer toxin and components of immunity; therefore, the killer toxin and the factor that ensures immunity are coded using the same ORF [16].

WEAPONS OF KILLER STRAINS

Killer yeast secretes proteins that are toxic to sensitive organisms within the environment. Toxins differ in their amino acid sequence and affect target cells in different ways. At the same time, the mechanism of synthesis, processing, and secretion are very similar. As a rule, a toxin is coded with one ORF and is synthesized as one polypeptide – a preprotoxin containing potential sites for cleavage with the proteases Kex2p and Kex1p and potential sites for N-glycosylation. Immediately after synthesis, preprotoxin is exposed to post-translational modifications, passing through the endoplasmic reticulum (ER), the Golgi system, and secretory vesicles, which result in the secretion of a mature active toxin [6, 21].

Currently, the ways that killer toxins of many types of yeast secrete and modify are known. Killer toxin K1 (19 kDa) is studied best of all and is secreted in the form of two non-glycosylated subunits: α (9.5 kDa) and β (9.0 kDa), which have a common precursor with a molecular weight of 42 kDa (protoxin). Subunits α and β are connected by a disulfide bond. Toxins K2 and K28 have a similar structure, mainly at the level of their precursor [22] (Fig. 1).

The stages of the killer toxin maturation is studied for K1 and K28 and is discussed in detail in the reviews [6, 21]. The general scheme is presented in Fig. 1.

In the case of the killer toxin K1, the precursor is translated from the RNA of virus М1 (316 a.k.); this is a preprotoxin with a molecular weight of 35 kDa (М1р). The preprotoxin includes an N-terminal leader sequence, which comprises a signal peptide (26 a.k.), followed by subunits of toxin: domain α (102 a.k.) and domain β (82 a.k.) split by central domain γ (86 a.k.), which carries three potential sites of N-glycosylation.

Directed by the leader sequence, or any part of it, preprotoxin enters ER; then, the signal peptide is removed by peptidase, which produces a protoxin by cleaving the peptide bond after ValAla26, in accordance with substrate specificity.

In ER, the γ-domain is N-glycosylated and takes a form that is ready for transportation to the Golgi system for further maturation.

The residual N-terminal segment from 27 to 44 a.k. is probably released into the Golgi system by unidentified proteases of yeast, which cleave the peptide bond after ProArg144.

The endopeptidase, coded by the KEX2 (Kex2p) gene, is responsible for cleaving the γ-domain of the precursor of the killer toxin after ArgArg149, LysArg188, and LysArg233 residues, which result in the release of the α- and β-subunits of the toxin.

The reaction of this cleaving takes place with different speed or effectiveness in the same vesicles in the late compartments of the Golgi system, probably to minimize the formation of lethal fragments or to increase the production of fragments involved in the immunity development.

Subunit β is further modified with serine carboxypeptidase, coded by the KEX1 (Kex1p) gene, which removes the arginine at the C-terminus.

Ultimately, the mature toxin K1 is removed from the cell through the secretory pathway of the yeast as a dimer,
Рис. 1. Стадии созревания и механизмы действия киллерных токсинов К1 и К28. Токсины синтезируются в форме предпрепептиднов в цитоплазме, после чего они транспортируются через эндоплазматический ретикулум (ER). Разрывание сигнальной последовательности (предстведовательная), окисления дисульфидных связей и гликозилирование происходят в ER. Сформированные препептидны приходят к Гольджи-комплексу, где дальнейшее разрушение сигнальной последовательности (предстведовательная) и снятие бета-гомологичных происходит. Матурные киллерные токсины секретируются в окружающую среду. Механизмы их действия на чувствительные клетки разные. Токсин К1 в низких концентрациях начинает механизмы программированной клеточной смерти. Действуя через белки Tok1, Kre1, Yca1, и Dnm1, он в конечном итоге приводит к увеличению уровня реактивных форм кислорода (РОС) в клетке и активации апоптоза. На высоких концентрациях, токсин K1 образует каналы в мембране, что приводит к клеточной некрозе. Токсин К28 входит в клетку путем эндоцитоза, а затем движется по обратному пути по секреторному пути в цитоплазму. Здесь его разрушают на альфа и бета-подразделения. Подразделение альфа мигрирует в ядро, где его активность блокирует синтез ДНК и клеточное деление.
in which both subunits are connected by three disulfide bonds. The mature toxin K28 is also removed from the cell as a dimer, in which both subunits are connected with a disulfide bond between the cysteine residues in the α- (Cys56) and β- (Cys333) subunits. In the β-subunit, there is an intra-chain bond between residues Cys307 and Cys340 [6, 39].

RECEPTORS FOR KILLER TOXINS ON SENSITIVE CELLS AND MECHANISMS OF CELL DEATH

To penetrate the yeast cell, a killer toxin must overcome two barriers: the yeast cell wall and the plasma membrane.

At the first stage, the killer toxin interacts with the primary receptors in the cell wall. Primary receptors for killer toxin K1 are β-1,6-glucans, which are components of the yeast cell wall. It was demonstrated that strains with mutations in genes KRE1 and KRE2 were not sensitive to the toxin effect. The KRE1 gene codes the glycoprotein involved in the assembly of the β-glucans of yeast, and the KRE2 gene codes the α-1,2-mannosiltransferase involved in the mannosylation of the proteins [23, 24].

The action of the K2 toxin is similar to that of K1; the binding of toxins K2 and K1 with the yeast cell takes place in a similar manner. The K2 toxin saturates the receptors on the surface of the yeast cell for 10 min. The amount of K2 toxin that is bound with the cell of receptors on the surface of the yeast cell for 10 min. place in a similar manner. The K2 toxin saturates the binding of toxins K2 and K1 with the yeast cell takes according to this second receptors are also different. As for toxins K1 and K2, at the first stage, the energy-independent bond between toxin molecule and 1,6-β-D-glucan receptor is formed in the cell wall. After this, the killer toxins, K1 and K2, are transferred to a cytoplasmic membrane. Two strictly hydrophilic areas next to the C-terminus of the α-subunit of K1 have alpha-helical structure divided by short hydrophilic segments and can act as the membrane-penetrating domain, which is responsible for the formation of the channel on the cytoplasmic membrane [32]. To identify the secondary recepto of the killer toxin, K1, in the cytoplasmic membrane, the mutants resistant to the toxin at cell level, and the spheroplast level, are obtained for sensitive cells. This is how mutants in the KRE1 gene were obtained; whose product probably facilitates the fixation of the toxin and promotes the formation of the ion channel [33]. Formation of the energy-dependent complex between the toxin and the Kre1p receptor on the cytoplasmic membrane results in the activation of the membrane channel TOK1, which is identified as a target for the K1 toxin. Ultimately, the membrane’s permeability is increased for protons, potassium ions, and high-molecular compounds such as ATP, which cause cell death. While being a toxin receptor, Kre1p does not have any direct relationship with toxicity or immunity. This is confirmed by experiments that studied the properties of the mutants kre1A transformed with plasmid containing α-subunit of K1. The synthesis of α-subunit of K1 in the sensitive strain of yeast fully simulated the cell treatment with an exogenous toxin. The simultaneous production of protoxin resulted in the development of immunity in transformants to α-subunit of K1, despite the fact that α-subunit cannot be transported to ER and, therefore, is unable to interact with the toxin precursor. The obtained results suggest that
As already mentioned, the killer toxin, K28, is secreted as \(\alpha/\beta\)-heterodimer that kills sensitive yeast cells using a receptor-mediated way and blocks the DNA synthesis in the nucleus [42]. Yeast mutants \(end3\) and \(end4\), the cell lost receptor HDEL, and mutants with defects of protein transport from the Golgi system to ER \((end1)\) are resistant to the toxin; because of the background of these defects, the toxin cannot enter the cell and move by the secret pathway in the reverse direction. Site-directed mutagenesis confirms that the HDEL motif of the \(\beta\)-subunit of the toxin ensures the retrograde pathway. It is interesting that the HDEL motif is initially hidden with the arginine residue (HDELR) in the toxin-secreting yeast; the cleavage of this amino acid is done with Kex1p in the later cisternae of the Golgi system. The inhibition of the work of Kex1p specifies a high level of secretion of biologically inactive protein, which cannot repeatedly enter the secretion pathway. The export of the toxin from ER to cytoplasm is mediated by translocon Sec61p and requires the availability of the functional ER chaperones Kar2p and Cne1p [39]. After entering the cytoplasm, the complex \(\alpha/\beta\) dissociated and the \(\beta\)-subunit is ubiquitinated and sent for degradation in the proteasome. Subunit \(\alpha\) enters the nucleus and kills the cell causing the irreversible termination of cell cycle at the G1/S stage, inhibiting the DNA synthesis [42].

The fate of the sensitive cell after the interaction with the toxin is determined by the features of its action. Killer K1 toxin in the sensitive cells of yeast disturbs the function of the cytoplasmic membrane through the formation of lethal ion channels; K28 causes cell death by blocking the replication of DNA [42]. Regarding the mode of action for K28, two dose-dependent mechanisms were identified. The low concentration of the toxin (<1 pM) causes apoptosis with typical markers: DNA fragmentation, chromatin condensation, and the appearance of phosphatidylcholine on the outer side of the cytoplasmic membrane. This toxin action depends on the yeast caspase (Yca1p) and is accompanied by the appearance of reactive forms of oxygen. Toxin concentration can be increased in laboratory conditions (>10 pM), which results in the necrosis of cells and the blocking of the cell cycle at the G1/S stage; the cells have a middle-size bud with one nucleus in the mother cell and 1n of DNA. As it was already mentioned, the K28 toxin irreversibly disturbs the DNA synthesis [42–44]. In natural conditions, cells deal with the low concentration of the toxin, and apoptosis is the main mechanism of cell death.

THE NATURE OF THE IMMUNITY OF KILLER STRAIN CELLS

The genome of the M virus ensures the synthesis of the toxin that determines the toxicity in relation to sensitive cells and immunity in relation to its own to-
to killer toxins and the host cell’s response
effect of the killer toxin, K1, on the gene expression of
with the sensitivity towards the killer toxin, K1, which is bonded
genome of yeast to killer viruses
which is further exposed to polyubiquitination and sent
of the toxin forms a complex with unprocessed precursor,
ro-translocation in the cytoplasm, the
own killer toxin when enters the host cell. After the ret-
Killer strains have a quick degradation mechanism of
promote the advanced release of cytotoxic
of Pdi1p, the
promote toxin transfer to the cytoplasm. In the absence
additional unknown structural changes in К28, which can
ative structure and has a decisive value for the secretion
of some proteins. It is supposed that Pdi1p induces some
process of the formation of disulfide bonds stabilizes the na-
tative structure and has a decisive value for the secretion
some proteins. It is supposed that Pdi1p induces some
process of the formation of disulfide bonds stabilizes the na-
process of the formation of disulfide bonds
includes the number of sequential thiol—disulfide exchange
reactions, in the course of which the temporary complexes of protein disulfide isomerases with processed proteins are formed. At least two protein disulfide isomerases, Ero1p and Pdi1p, are involved in closing of the S-S bonds of secretory proteins of yeasts. At the first stage, Ero1p interacts with Pdi1p and oxidizes it; then, the oxidized form of Pdi1p binds to the protein-substrate, and oxidizing it initiates the formation of disulfide bonds.
The correct closing of disulfide bonds stabilizes the native structure and has a decisive value for the secretion of some proteins. It is supposed that Pdi1p induces some additional unknown structural changes in K28, which can promote toxin transfer to the cytoplasm. In the absence of Pdi1p, the α/β-heterodimer oligomerizes, which may promote the advanced release of cytotoxic α-subunit.
Killer strains have a quick degradation mechanism of own killer toxin when enters the host cell. After the retro-translocation in the cytoplasm, the α/β-heterodimer of the toxin forms a complex with unprocessed precursor, which is further exposed to polyubiquitination and sent for degradation.

GENETIC CONTROL OF YEAST SENSITIVITY TO KILLER TOXINS AND THE HOST CELL’S RESPONSE TO KILLER VIRUSES

An original work was devoted to the analysis of the effect of the killer toxin, K1, on the gene expression of genome of yeast *S. cerevisiae* [48]. To study the sensitivity towards the killer toxin, K1, which is bonded with the β-glucans of the cell wall, and forms pores in the cytoplasmic membrane, the deleted mutants of 5718 genes were used. Sensitive and resistant mutants were detected with a more-or-less expressed effect. Pleiotropic effects were detected in some mutants that were resistant to toxins: sensitivity to detergents, hygromycin and Calcofluor-White, fluorescent dye bonded with the chitin of the cell wall. Genes, for which mutations affected the sensitivity towards the killer toxin, K1, controlled the synthesis of the glucans and mannoproteins of the cell walls, secretory pathways, biosynthesis of lipids and sterols, and signal transduction [48].

An interesting approach was used by Santos et al. to study a transcriptional response of cells of yeast *S. cerevisiae* to killer toxin PMKT *Pichia membranifaciens*. It turned out that the yeast cells’ response to toxin action is very similar to the response of the cell, which adapts to ionic or osmotic stress. The signal was transmitted through the high osmolarity glycerol (HOG) pathway, and the phosphorylation of Hog1p took place in response to the toxin action, which indicated the existence of the common mechanisms of cell response to killer toxins and the regulation of the ion homeostasis [49].

It is known that the yeast killer toxin, K28, and ricin and the cholera toxin are attributed to the family of A/B toxins, which penetrate cells by means of endocytosis with a further retrograde toxin transfer to the cytoplasm. For this reason, the study of the genetic control of the yeast cell response to the K28 toxin is of special interest for medicine. In 2000, the search for mutants resistant to the K28 toxin resulted in the detection of mutants *sla2* and *erd2* [37]. Protein Erd2, as previously mentioned, is an integral protein of the membrane and directs toxin transportation from the Golgi system to the ER of the target cells, whereas Sl2a2p is an adaptor protein, which binds the actin, clathrin, and the endocytosis process. Sl2a2p is involved in the assembly of cytoskeleton, the polarization of cells, and is presented in actin cortical patches in the emerging bud. In the later work by Carroll et al., more than 5,000 deletion and ts-mutations of resistance and hyper-sensitivity to the K28 toxin were analyzed. Mutations that result in the resistance to K28 occurred in genes controlling the biogenesis of the cell wall (33 genes), of the plasmic membrane (18), the endocytosis (21), the transport (16), the mitochondria (14), and the cell cycle (13). Mutations that resulted in hypersensitivity occurred, as a rule, in the genes involved in the formation of ribosomes and translation (53 genes), RNA processing and RNA transport, transcription, and ionic homeostasis. It was detected that the deletions in the genes that coded all four subunits of the clathrin’s AP2 adaptor (*apl1Δ*, *aps2Δ*, *api3Δ*, and *apm4Δ*) resulted in resistance to K28. Thus, sensitive cells can, or at least try to, resist the killer toxin action [50].
To obtain a response to the question of how viruses in the cell affect the host gene’s expression, the changes in the transcriptome of strains with the L-A and M1 viruses were compared with strains without viruses. Special attention was paid to the genes, which mutations affected such processes as the antiviral system required for the degradation of dsRNA viruses, the control of the replication of dsRNA, protein processing, secretion, the synthesis of proteins of the cell wall and signaling, and the inhibition of apoptosis [51]. It turned out that the presence or absence of the L-A and M viruses in the cell insignificantly affected the expression of the genes of the host cell. Similar results were obtained in the study of the transcriptome of the strain of the S. cerevisiae lost virus M2 and retained virus L-A and of the strain that lost both viruses. Overall, 486 genes were identified; the expression of which changed after the loss of the M2 virus; the expression for 715 genes changed as a result of loss both viruses. The expression of the major part of the genes was increased or reduced a minimum of one and a half time but, as a rule, not more than four times. A transcription of only 12% of the differentially expressed genes of the strain without the M2 virus, as well as the strain that lost both viruses, was changed four times or more. These genes controlled the biogenesis of ribosomes, the functions of the mitochondria, the stress-response, and the biosynthesis of lipids and amino acids, which probably indicated a change in energy consumption for the protein and RNA synthesis in strains without viruses [52].

EVOLUTION OF KILLER SYSTEMS

The L-A virus is required to support the satellite virus M, which contains information about the toxin in its genome and ensures the immunity of the host cell. From the evolutionary point of view, such relationships can be a system of “auto selection,” i.e., the selection of microorganisms in terms of adaptation properties. Killer cells obtain advantages due to virus presence; however, these advantages are relative. The death of adjacent cells requires the high concentration of the killer cells compared with the concentration of sensitive cells. If toxin-coding elements provide selective advantages to the host cell, such relationships shall be fixed during evolution and widespread in the population. However, killer strains in natural populations are few; therefore, toxin-coding elements are not very effective. It is likely that only the absence of the RNA-interference system allows them to be kept; viruses are selected in hosts that, for any reason, have lost RNA interference [53]. It turns out that the killers’ phenotypes are kept only in cells in which SKI genes are disturbed. Proteins Ski2p, Ski3p, and Ski8p block expression of non-polyadenylated mRNA, such as virus dsRNA [54]. It is known that evolutionary-conservative 5′3′-exonuclease Xrn1p (Sk1p) together with exosome is involved in the eukaryotes’ degradation of cellular mRNA. As virus mRNAs do not have canonical sequences at the end of molecules, such as cap and poly-A-tail, they can be exposed to degradation by these exonucleases. Yeasts use this mechanism as a tool for protection against viruses. Rowley, along with co-authors, detected a high accurate mechanism of specific interactions between virus L-A and exonuclease Xrn1p in different types of yeast. They demonstrated that under the effect of natural selection, the sequence of the XRN1 gene in the yeast of the Saccharomyces species diverged and significantly differs across various species. Changes of the sequence of gene XRN1 specify different interactions of exonuclease with the L-A virus. Every variation of Xrn1p is adapted to a certain virus. The authors suppose that Xrn1p coevolved with totiviruses, increasing its antivirus activity and limiting the reproduction of viruses in yeasts. Further research demonstrated that Xrn1p interacts with the protein Gag of viruses’ envelopes. This fact certifies more complicated interaction between the yeast cell and virus rather than the simple nuclease cleavage of the RNA virus [55, 56]. Thus, the absence of the RNA-interference system in yeasts is probably compensated during the process of evolution with other mechanisms. A probable mechanism of eliminating viruses in yeasts was proposed in the work by Suzuki et al.; they discovered the prion-like element [KilD] in the cell, which contained the M virus and resulted in the hypermutability of virus genome and its inactivation. The nature of this phenomenon has not yet been studied [64].

At the same time, the role of killer systems in the formation of species diversity under conditions of geographic isolation (sympatric speciation), within one ecological niche, is minimal [21]. The coevolution of the L-A and M viruses is of special interest. When nucleotide sequences of the dsRNA of L-A were studied, at least four natural variants were detected. Analysis demonstrated that they were 24% different from each other [58]. The authors demonstrated that the selection of effective pairs of helper viruses and killer viruses resulted from coevolution, and the viruses’ pairs are specifically adapted to each other. Thus, in the wine killer strain, K2, only the L-A-2 virus was required for the reproduction of the M2 virus; no other form of L-A virus or L-A-2 ensured the development of the M2 virus at the same genetic background. The genome of other totiviruses, L-BC, which are frequently observed with L-A, is less variable (only 10% of the nucleotides are different). Thus, the “killer” phenotype depends on two types of dsRNA viruses, while each helper L-A virus, coding proteins of capsid for the M virus is specific for its own killer virus, which proves their coevolution. Many authors consider the interaction of yeast cells and mycoviruses as
a form of symbiotic relationship. However, we, as other authors [59], believe that the use of such terminology in this case is disputable because, so far, there is no uniform opinion about whether the viruses are living creatures or not. Besides, the number of issues need to be resolved. What is the method of evolution for the L-A virus and the M1, M2, and M28 viruses, which are almost parasitized on the helper virus? Why are viruses that produce toxins not completely eliminated from the population if they are easily lost and can only be recovered as a result of crossbreeding, which is very seldom for yeasts in natural conditions? Is the availability of the virus in the cell an advantage? Is it connected with the absence of the RNA interference in the yeasts?

THE SYSTEM OF RNA INTERFERENCE AND RNA-CONTAINING VIRUSES

The system of RNA interference is one of the most important systems involved in the regulation of gene expression, as well as cell protection against foreign nucleic acids. RNA interference is based on the suppression of gene expression at the stage of transcription or translation with the active involvement of small RNA molecules. These RNAs generally belong to two main classes: microRNAs (miRNAs) and small interfering RNAs (siRNA).

The molecular mechanisms of RNA interferences modulated by miRNAs were studied in detail in nematodes Caenorhabditis elegans [60]. It was demonstrated that miRNAs can be coded in the genome of the organism in the form of individual genes, as well as within the introns of other genes. The synthesis of miRNAs from appropriate genes is usually carried out by RNA-polymerase II. The other mechanisms of miRNAs-production are by means of RNA-polymerase III or from RNA fragments cut during intron splicing [61]. The main pathway of miRNAs biogenesis comprises several stages and starts with the synthesis of the primary transcript (primiRNA), which contains one or several double-stranded hairpins. At the next stage, the ends of transcript are shortened by means of the complex, of which the main components are RNase III (also known as Drosha) and RNA-binding protein (DGCR8 of human, Pasha in C. elegans, and D. melanogaster) [62]. The shortened hairpins (premiPHK) are exported through the nuclear membrane to cytoplasm. Other RNase III (Dicer) interacts with them here, and cuts short double-stranded fragments from hairpins. After the strands are split by helicase, the formed miRNA is included in the complex called RISC (RNA-Induced Silencing Complex). The main components of such complexes are proteins of the Argonaute family, which demonstrate endonuclease activity. The specific binding of the RISC complex with the mRNA-target, which is ensured by miRNA, results in the termination of translation processes on this mRNA but seldomly relates to its cleavage [63].

In contrast to miRNA, the biogenesis of small interfering RNAs is connected to the enter of foreign nucleic acids into the cell enter to RNA-containing viruses. dsRNA, synthesized in the process of viruses replication, is cut into short fragments by one of the components of the RNA-interfering system: the endonuclease Dicer. Small interfering RNAs, formed in the process of the cleavage of these fragments, interact with the RISC. In this case, virus RNAs are effectively cleaved by RISC, preventing replication of the virus in the cell. The participation of small interfering RNAs in the regulation of genes at a transcription level by remodeling the chromatin is demonstrated (in particular, in Schizosaccharomyces pombe). The original dsRNA is synthesized on an mRNA basis through the RNA-dependent RNA-polymerase (RdRP) coded in genome of S. pombe [63].

The system of RNA interference probably arose among the early ancestors of eukaryotes and is rather conservative in fungi. However, the comparative analysis of fungi genomes demonstrates that all budding yeasts lost one or several genes encoding components of the system [64]. The yeasts S. cerevisiae, Candida glabrata, K. lactis, and Ashbya gossypii, among the analyzed species of budding yeasts, lost all gene-coding homologues to Argonaute, Dicer, and RdRP. At the same time, representatives of the other yeast species such as Saccharomyces castelli, Klyuyveromyces polysporus, C. albicans, and Candida tropicalis have the genes encoding protein Argonaute, whereas there are no gene-coding Dicer homologues in these species. The introducing of the genes encoding the proteins of the RNA-interference system into genome of S. cerevisiae results in its partial recovery [64]. The presence of RNA interference in yeast S. cerevisiae probably allows the existence and functioning of killer viruses in their cells, which can ensure the competitive advantage of the host cell.

The human system of RNA interference is involved in the regulation of 30% of genes at a minimum [65]; therefore, the possibility of losing such a system in living organisms in the process of evolution, as in the ancestors of budding yeasts, is of great interest. The absence of RNA interference in the S. cerevisiae yeast makes it a unique model for the examination of molecular pathways of virus transfer and their action in eukaryotes cells [66].

ROLE OF KILLER STRAINS IN NATURAL POPULATIONS

Toxic interactions are probably common and ecologically important for microbes. The excretion of antimicrobial compounds acting against related or associated species is known for bacteria and yeast. So far, the killer strains have been detected among representatives of different
yeast species within the living environment. Eleven species of killer toxins that were identified, are produced by representatives of species such as Hanseniaspora, Pichia, Saccharomyces, Torulaspora, Ustilago, and Williopsis, which take various ecological niches [21].

Marine yeast, Mutchnikozia bicuspidata WCY, acts as a pathogen in crab mariculture, Portunus trituberculatus, but can be eradicated by killer toxins. Screening of sea water, sediments and silt, intestines of sea fish and marine algae, revealed 17 yeast strains, which secreted a toxin into the environment and were capable of killing pathogenic yeast. The strains with highest killer activity were classified as Williopsis saturnus WC91-2, Pichia guilliermondii GZ1, Pichia anomala YF07b, Debaryomyces hansenii hcx-1, and Aureobasidium pullulans HN2.3. Killer toxins of these yeasts acted against the yeast M. bicuspidata WCY, which is pathogenic for crabs. It was demonstrated that the best temperatures for the killer toxin production coincide with natural conditions of the crabs’ living environment. The best pH range varied from 4.5 to 6.0. However, the maximum level of toxin synthesis in the analyzed killer strains was observed at different NaCl concentrations. Thus, the change in salt balance, pH, and temperature probably provides advantages to killer strains in their struggle to find an ecological niche [67].

Killer strains comprise a significant part of yeast communities living in rotting plant stems and fruits. Conditions including low pH and high sugar content promote this. When microbial communities are formed, especially at the early stages, the weapon of the killer yeast provides a selective advantage as it prevents the development of competitive microorganisms. The concentration of the toxin produced by strains in natural conditions is low; therefore, it can be supposed that the death of sensitive cells under effect of the toxin takes place mainly through apoptosis [68].

It is known that virus transfer in yeasts can go vertically, in the case of budding, as well as horizontally, in the case of crossbreeding or cytoduction. Yeast viruses are never emitted into the environment. Infected cells are transferred by different species of animals within the area. The safekeeping of killer yeasts in natural conditions is promoted by reduced ambient temperatures in relation to the best temperature for living yeast. It is interesting that many isolates of killer yeasts extracted from fruits quickly lose their killer phenotype, probably due to their cultivation in laboratory conditions at higher temperatures [69]. In natural communities, killer strains and strains sensitive to them coexist, which evidences the spatial splitting of local habitats and the temporary splitting of the development stages, despite the use of the common substrate [70]. The elimination of the competitor usually means its death or the reduction of its viability through the locking of the cell cycle or damage to the membrane’s integrity. The availability of the toxin can be an advantage in the struggle between populations with similar ecological demands; the killer strain is then predominant in the community and fully displaces the sensitive strain. However, in nature, these strains successfully coexist and this requires explanation. Toxin production is an example of interference competition. This is a type of ecological relationship, when one or different species do not directly interact; the active suppression of the competing population takes place rather than the simple depletion of common limiting resources. Active interference from a biochemical point of view allows the toxin-producing population to use a significant amount of common resources. Toxin production can be decisive in the fight between populations that require similar living conditions. In certain conditions, killer yeasts can become predominant. At the same time, different outcomes of such relationships are observed in nature: sometimes killer strains are predominant, and sometimes sensitive strains displace killers [71]. It can be supposed that each type of strain has its own niche that is limited to appropriate living conditions. This case can be explained by the rule of competitive exclusion that was formulated by G.F. Gauze for ecologically close species; however, it can be used for this particular case. Experiments demonstrate that when competition for the main resources cannot be avoided, weaker competitors are removed from the community. In the case of the coexistence of sensitive and killer strains, this does not happen probably due to the adaptation of sensitive strains to higher temperatures and environment acidity. It should be considered that some killer strains lose the RNA virus at a high temperature and become either a non-killer or a neutral yeast.

PRACTICAL USE OF KILLER TOXINS

Killer toxins are widely used in the food industry, in agriculture and aquaculture as a bioprotective agent, and in medicine. The yeast S. cerevisiae is traditionally used in the food industry. For the first time, killer toxins (mycotoxins) were detected in strains of the yeast species that were used for brewing. Killer yeasts frequently occur among those strains that exist in conditions of high cell density and tough competition for substrates, for example, during grape juice fermentation and olive pickling. Under these conditions, the killer toxin is aimed at the wide range of unrelated microorganisms. Killer yeast is used as the starter culture in wine production; the yeast propagates itself and suppresses the growth of pathogenic and other harmful microorganisms. Some yeasts, such as Kluyveromyces wickerhamii, produce killer toxins against Dekkera and Brettanomyces yeasts, which cause the unpleasant...
smell during wine fermentation. In the milk industry, killer yeast is used as the starter culture to prevent damage to cheese, yogurt, and other dairy products. This review presents the detailed use of killer yeast within the food industry [72]. Killer yeast can be also useful within aquaculture. Killer toxins of marine yeast can be used to effectively fight crab disease have a negative effect on the pathogenic yeast, as well as on the crabs [67].

Killer factors are used for plant protection. A significant problem here are the diseases related to citrus plants, which are caused by the fungus pathogen Geotrichum citriaurantii. As the chemical compounds that are certified for fighting this pathogen are absent, harvest loss can be considerable. Killer toxins can become an alternative method of fighting against this pathogen. Among the yeast isolated from the surface of leaves and citrus fruits, growth of pathogen was most effectively suppressed by strains of Rhodotorula minuta, Sporobolomyces koi, Candida asyn, S. cerevisiae, Rhodotorula mucilaginosa and Aureobasidium pullulans, which synthesized killer toxins. The active mechanism of these killer toxins has not been studied yet; however, preliminary data state that its target is the component of the cell wall of G. citriaurantii [73].

Killer factors are used for plant protection. A significant problem here are the diseases related to citrus plants, which are caused by the fungus pathogen Geotrichum citriaurantii. As the chemical compounds that are certified for fighting this pathogen are absent, harvest loss can be considerable. Killer toxins can become an alternative method of fighting against this pathogen. Among the yeast isolated from the surface of leaves and citrus fruits, growth of pathogen was most effectively suppressed by strains of Rhodotorula minuta, Sporobolomyces koi, Candida asyn, S. cerevisiae, Rhodotorula mucilaginosa and Aureobasidium pullulans, which synthesized killer toxins. The active mechanism of these killer toxins has not been studied yet; however, preliminary data state that its target is the component of the cell wall of G. citriaurantii [73].

Toxins produced by yeast can be used in medicine. When the killer activity of natural variants of wild yeast was studied, it was determined that 5–30% of strains can kill the standard sensitive strain of Candida glabrate [70]. Deep knowledge of mechanisms of the activity of killer toxins allows the creation of a new generation of antimicrobial agents, which will fight microbial infections resistant to antibiotics and other standard medicines. Medicines based on killer toxins can be useful for the treatment mycoses of humans and animals. The principle of the action of such medicines consists in the hydrolysis of the β-1,3-glucan of the cell wall of pathogenic yeast. However, the direct use of killer toxins can be limited. As they are glycoproteins, they can be antigens and cause an immune response. The pH for the best activity of the killer toxin from different sources does not always coincide with the pH within the body; therefore, the search for natural killer toxins with a wide range of activity, working with a different pH, continues.

A new prospective area of use for killer toxins is the attainment of an anti-idiotype antibody. Anti-idiotype antibodies reproduce a configuration of antigenes and can be considered as their analogues. Thus, biological activity of fragments of killer toxin PaKT was studied, which demonstrated antimicrobial activity against C. albicans, Pneumocystis carinii, etc. It was not possible to use a killer toxin directly for treatment as it demonstrated activity within a narrow range of pH and temperature, which differed from the physiological values and was toxic and immunogenic. Monoclonal antibodies were obtained, which could neutralize killer toxin activity. This was the basis for the production of anti-idiotype antibodies that could compete with killer toxins for binding sites and activity related to C. albicans. These so-called antibibodies (antibioticlike antibodies) had a direct anti-fungal effect without any additional factors; they operated at pH and temperature physiological values and had no immunogenicity or toxicity. Antibodies are prospective class of compounds for the treatment of different human diseases [74].

CONCLUSIONS

Antagonism is widespread among microorganisms and is specified by the production of different antimicrobial substances. The ability to synthesize and secrete toxin proteins was detected in many yeast species. The structure and properties of toxins and the mechanisms of their actions can differ within species. The study of the phenomenon of killer activity in the model organism, yeast S. cerevisiae, resulted in significant progress in many areas of biology. It allowed to obtain important information about the mechanisms of the interaction of the virus and cells of yeast, the system of virus support in individual cells, and in the population, and revealed the issues of the evolution and co-evolution of biological systems. As the killer toxins resemble natural secreted proteins or glycoproteins, the detailed analysis of their structure and synthesis have significantly expanded our understanding of the mechanisms of the post-translational modification of eukaryotic proteins during the secretion process. The analysis of the receptor-mediated mode of killer toxin action appeared to be an effective tool for the study of molecular structures and the assembly in vivo of the cell walls of yeast. The prospective area of use of the yeast killer toxins is the production of new medicines for the treatment of fungal diseases caused by pathogenic strains of yeast C. albicans. Besides, killer strains and yeast killer-toxins are used within the food industry as an effective tool to fight pathogenic microorganisms in the process of wine production, brewing, and baking. Considering that a major part of the currently known killer yeasts are not examined in detail; it is likely that new properties and areas of use for yeast killer toxins will be determined.

Acknowledgement

The work was supported by the Russian Foundation for Basic Research (project No.18-04-01057). Section “System of RNA interference and RNA-containing viruses” was written within the project of the Russian Foundation for Basic Research (project No. 18-34-00750).

REFERENCES

Authors and affiliations

Dmitriy M. Muzaev — engineer. Saint Petersburg State University, St. Petersburg, Russia. E-mail: dmmuzaev@yandex.ru.

Andrey M. Rumyantsev — junior research assistant. Saint Petersburg State University, St. Petersburg, Russia. SPIN: 9335-1184. E-mail: rumyantsev-am@mai.ru.

Marina V. Padkina — Associate Professor, Professor of the Department of Genetics and Biotechnology. Saint Petersburg State University, St. Petersburg, Russia. SPIN: 7709-0449. E-mail: mpadkina@mail.ru.

Дмитрий Михайлович Музаев — инженер. ФГБОУ ВО «Санкт-Петербургский государственный университет», Санкт-Петербург. E-mail: dmmuzaev@yandex.ru.

Андрей Михайлович Румянцев — младший научный сотрудник. ФГБОУ ВО «Санкт-Петербургский государственный университет», Санкт-Петербург. SPIN: 9335-1184. E-mail: rumyantsev-am@mai.ru.

Марина Владимировна Падкина — доцент, профессор кафедры генетики и биотехнологии. ФГБОУ ВО «Санкт-Петербургский государственный университет», Санкт-Петербург. SPIN: 7709-0449. E-mail: mpadkina@mail.ru.