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 ` Powdery mildew (causal agent Blumeria graminis) is a widespread and harmful fungi disease of cereal crops especially 
in the regions with humid climate. The pathogen is differentially interacting with plant host genotypes. Growing cereal 
crop varieties protected with different resistance genes is the most rational, costly and ecologically safe way of comba-
ting powdery mildew. The supply of effective genes can be increased due to studies of crop genetic resources collection, 
introgression of resistance from wild relatives, and also at the expense of mutant forms created with the use of traditional 
(induced mutagenesis) and biotechnological methods including genome editing. This causes the increasing interest to 
searching and identifying resistance genes, elucidation of their structural and functional organization, and analysis of 
molecular mechanisms of the character development. The review summarizes modern information on the identified genes 
of powdery mildew resistance of the main cereal crops – wheat, barley and oat. The list of wheat and barley genes identi-
fied at the molecular level is presented. It includes genes encoding NLR and CNL proteins (Pm2, Pm3, TaMla2, TaMla3 
genes of wheat, rye Pm8 gene, barley Mla gene), receptor-like proteins (barley Mlo gene), transport proteins and recep-
tor-like kinases (Lr34, Lr67, Pm21 of wheat).

 ` Keywords:© cereals; Blumeria graminis; parasite–plant host interaction; resistance; R-genes; proteins; structural 
and functional organization.
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 ` Мучнистая роса (возбудитель Blumeria graminis) — одно из наиболее распространенных и вредоносных гриб-
ных заболеваний зерновых культур, особенно в регионах с влажным климатом. Для патогена характерно диффе-
ренциальное взаимодействие с генотипами растений-хозяев. Наиболее рациональный, дешевый и экологически 
безопасный способ борьбы с мучнистой росой — возделывание сортов злаковых культур, защищенных разными 
генами устойчивости. Запас эффективных генов может пополняться за счет изучения коллекции генетических 
ресурсов культурных растений, интрогрессии устойчивости от диких родичей, а также за счет мутантных форм, 
созданных с помощью традиционных (искусственный мутагенез) и биотехнологических методов, включая редакти-
рование генома. В этой связи в последние десятилетия возрос интерес к поиску и идентификации генов устойчи-
вости, выяснению их структурно-функциональной организации, а также анализу молекулярных механизмов фор-
мирования признака. В обзоре обобщена современная информация об идентифицированных генах устойчивости 
к мучнистой росе основных зерновых культур — пшеницы, ячменя и овса. Приведен список идентифицированных 
на молекулярном уровне генов пшеницы и ячменя. Среди них: гены, кодирующие белки NLR и CLR (Pm2, Pm3, 
TaMla2, TaMla3 мягкой пшеницы, Pm8 ржи, Mla ячменя), рецептор-подобные белки (Mlo ячменя), транспортные 
белки и рецептор-подобные киназы (Lr34, Lr67, Pm21 пшеницы).

 ` Ключевые© слова:© злаки; Blumeria graminis; взаимодействие паразит–хозяин; устойчивость; R-гены; белки; 
структурно-функциональная организация.

introdUction
Powdery mildew is a widespread and harmful 

fungal disease of cereal crops, especially in regions 

with humid climates. This disease affects all aboveg-
round parts of the plant – leaves, leaf sheath, stem, 
glumes, and awns – in years of strong development. 

https://crossmark.crossref.org/dialog/?doi=10.17816/ecogen14530&domain=PDF&date_stamp=2020-04-13
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In the affected plants, photosynthesis in leaves is re-
duced, and physiological processes are significantly 
changed (increased water loss and breathing inten-
sity). Plants exhibit slow growth and reduced tillering 
ability, decreased grain number per spike and seed 
weight.

The causal agent of powdery mildew disease 
of cereal crops is the obligate parasite, Blumeria 
graminis DC. The species exhibits several morpho-
logically similar forms specialized for different host 
plants [1]. Several specialized forms are found on ce-
real crops: f. sp. tritici Marchal (on species of genera 
Triticum L. and aegilops L. and a number of other 
wild cereal crops), f. sp. hordei Marchal (on species 
of the genus Hordeum L.), f. sp. secalis Marchal 
(on species of the genus secale L.), and f. sp. ave
nae Marchal (on species of the genus avena L.). 
Until 2001, powdery mildew was not detected on 
triticale. The spread of this disease to triticale in Eu-
rope was a result from the emergence of new forma 
specialis triticosecale [2, 3].

Plant resistance is a primary factor limiting the 
harm caused by powdery mildew. The selection of 
resistant genotypes is an effective, inexpensive, and 
ecologically sound method to combat the disease. 
Unfortunately, differential interaction with host plant 
genotypes is typical for the pathogen [4]. This prop-
erty allows adaptive microevolution of the fungus to 
resistance genes in uniformly cultivated varieties.

The interaction of B. graminis with plants re-
flects the “gene-for-gene” relations [5]: each gene 
of resistance in the host plant corresponds to spe-
cific virulence gene in the parasite. The mutation of 
a parasite virulence gene is associated with the loss 
of effectiveness of a resistance gene in the host. Re-
sistance genes are usually dominant as they are evo-
lutionarily older; parasite (driven partner) virulence 
is controlled by recessive genes. Resistance and 
avirulence have “plus”-functions (interacting gene 
products), whereas susceptibility and virulence have 
“minus”-functions [6].

Different genes of resistance to different patho-
gen populations can be expressed in the same vari-
ety. Genes of resistance can differ in the stability of 
manifestation, which depends on environmental con-
ditions and genetic background. Resistance genes 
manifested in seedlings (“juvenile genes”) act, as a 
rule, during the entire plant life cycle. At the same 

time, the expression of resistance can change during 
the plant ontogenesis.

Resistance of the host plant is associated with 
a hypersensitivity reaction – a plant’s defensive reac-
tion manifested in rapid local cell death in response 
to the penetration of a harmful organism, accompa-
nied by accumulation of toxic products in the dead 
cells. Interaction with phytopathogens involves sev-
eral stages: extraction of inducers (elicitors), recog-
nition of elicitors by the plant cell employing recep-
tors, transduction of signal to the genome, activation 
of transcription of genes of the immune response, 
and synthesis of defense compounds [7].

To prevent epiphytotic impacts of powdery mildew, 
cultivating varieties with different resistance genes 
are required. The stock of effective genes can be re-
plenished by studying the cultivated plant collection, 
introgression of resistance genes from wild relatives, 
and production of mutant forms using conventional 
genetical and biotechnological methods. Introgression 
greatly impacts the diversity of cereal crop resistance 
genes. Inheritance of resistance to powdery mildew 
is well studied for wheat and barley. However, infor-
mation on the genetic structure of loci and encoded 
products is known only for a small number of genes.

This review aimed to generalize literature data 
on the polymorphism of cereal crops and resistance 
genes for powdery mildew.

Genes controllinG cereal crop resistance 
to powdery mildew

Currently, 92 alleles in 62 loci (Pm1–Pm65) that 
control wheat resistance to powdery mildew (Table 1) 
were identified. Most genes were dominant and ex-
pressed throughout ontogenesis. About 44 alleles 
were of Triticum aestivum L., 26 alleles were trans-
ferred from different species of the genus Triticum, 
11 were from aegilops spp., 5 were from secale 
cereale L., and 6 were introgressed from Dasypy
rum villosum (L.) Borbás (synonym of Haynaldia 
villosa (L.) Schur), Thinopyrum ponticum (Podp.) 
Z.-W. Lin & R.-C. Wang, Thinopyrum intermedium 
(Host) Barkworth & D.R. Dewey, and agropyron 
cristatum (L.) Gaertn. There were more than 20 re-
sistance genes that were given temporary symbols.

Besides genes with clear phenotypic manifes-
tation, high levels of resistance to fungus (mainly 
age-specific, manifested in the phase of flag leaves) 
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Table 1
Wheat©powdery©mildew©resistance©genes

Chromosome
Resistance genes 

of T. aestivum
Resistance genes 
of related species

1A Pm3a, Pm3b, Pm3c [8, 9], Pm3d, Pm3e, Pm3f [10], 
Pm3g [11], Pm3i, Pm3j [12], Pm3l [13], Pm3m, Pm3n, 
Pm3o, Pm3p, Pm3q, Pm3r [14]

Pm3h (T. durum) [12], Pm3k (T. dicoccum) [13],  
Pm25 (T. boeoticum) [15], Pm17 (s. cereale) [16, 17]

2A Pm4c (Pm23) [18], Pm65 [19] Pm50 (T. dicoccum) [20], Pm4a (T. dicoccum),  
Pm4b (T. persicum) [21], Pm4d (T. monococcum) [22]

3A Pm44 [23] –

4A Pm61 [24] Pm16 (T. dicoccoides) [25]

5A – Pm55 (D. villosum) [26]

6A – Pm56 (s. cereale) [27], Pm21 (Pm31) (D. villosum) 
[28]

7A Pm1a [29], Pm1e (Pm22) [30], Pm9 [31], Pm59 [32] Pm1b, Pm1c (Pm18) (T. monococcum),  
Pm1d (T. spelta) [29], Pm37 (T. timopheevii) [33], 
Pm60 (T. urartu) [34]

1B Pm28 [35], Pm39 [36] Pm32 (ae. speltoides) [37], Pm8 (s. cereale) [38]

2B Pm52 [39], Pm63 [40] Pm6 (T. timopheevii) [41], Pm26 (T. dicoccoides) [42], 
Pm33 (T. persicum) [43], Pm42 (T. dicoccoides) [44], 
Pm49 (T. dicoccum) [45], Pm64 (T. dicoccoides) [46], 
Pm57 (ae. searsii) [47], Pm51 (Th. ponticum) [48], 
Pm62 (D. villosum) [49]

3B – Pm41 (T. dicoccoides) [50], Pm13 (ae. longissima) [51]

4B – Pm7 (s. cereale) [52]

5B – Pm30 (T. dicoccoides) [53], Pm36 (T. dicoccoides) [54], 
Pm53 (ae. speltoides) [55]

6B Pm11 [56], Pm14 [57], Pm54 [58] Pm27 (T. timopheevii) [59], Pm12 (ae. speltoides) [60], 
Pm20 (s. cereale) [61]

7B Pm5b, Pm5d [62], Pm5e [63], Pm47 [64] Pm5a (T. dicoccum), Pm5c (T. sphaerococcum) [62], 
Pm40 (Th. intermedium) [65]

1D Pm10 [66], Pm24a [67, 68], Pm24b [69] –

2D – Pm58 (ae. tauschii) [70], Pm43 (Th. intermedium) [71]

4D Pm46 [72] –

5D Pm2c [73], Pm48 [74, 75] Pm2a (ae. tauschii) [76], Pm34 (ae. tauschii) [77], 
Pm35 (ae. tauschii) [78], Pm2b (a. cristatum) [79]

6D Pm45 [80] –

7D Pm15 [57], Pm38 [81] Pm19 (ae. tauschii) [82], Pm29 (ae. ovata) [83]

can be controlled with small genes (quantitative trait 
loci – QTL). A minimum of 119 age-specific resis-
tance QTL were mapped on 21 wheat chromosomes. 
Durable resistance of adult plants to leaf rust, yellow 
rust, and stem rust, as well as to powdery mildew, was 
provided by gene clusters Lr34/yr18/Pm38/sr57 
(chromosome 7DS), Lr46/yr29/Pm39/sr58 (1BL), 
and Lr67/yr46/Pm46/sr55 (4DL) [84].

Introgressed genes ensure a wider range of du-
rable resistance in comparison with recipient spe-
cies genes due to differences in the structure of 

coding sequences. In China, varieties protected 
by gene Pm21 from D. villosum (translocation of 
T6AL.6VS), despite extensive cultivation, were re-
sistant to the pathogen for more than 40 years. 
Currently, the new breeding material with resistance 
gene Pm40 introduced from intermediate wheatgrass 
considers as very promising [85]. However, both own 
and introgressed genes in soft wheat have different 
effectiveness and duration of useful life. The fun-
gus can overcome resistance of varieties with alien 
genes as quickly as resistance from closely related 
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species. For example, the wide use in breeding since 
the 1970s of gene Pm8 (T1BL.1RS translocation) 
and further growing of genetically uniform varieties 
on vast areas led, at the beginning of the 1990s, to 
all European fungus populations contained 100% 
clones virulent to Pm8 [86]. A rapid loss of resis-
tance can be explained by Pm8 gene suppression. 
Experiments with transient expression demonstrat-
ed the suppression of resistance in the presence of 
functional and non-functional alleles of wheat gene, 
Pm3. This process occurred in epidermal cells of 
wheat lines carrying Pm8 resistance gene from rye 
variety Pectus [87]. Unfortunately, the only reliable 
criterion for the identification of durable resistance is 
the cultivation of resistant varieties.

There are more than 100 genes known to affect 
barley resistance to powdery mildew, most of which 
are allelic variants of Mla and Mlo. These genes 
are found in accessions of different origin, most-
ly from Israel. About 30 alleles of Mla (chromo-
some 1Н) [88–90] and 40 alleles of Mlo (chromo-
some 4Н) are described [91]. Unfortunately, most 
alleles are not effective against the disease agent. 
The durable resistance of barley varieties is caused 
by mlo11 and partially by mlo9. Currently, 75% of 
modern varieties of spring barley in Europe are pro-
tected with these genes [92].

Eleven genes that control resistance of oat vari-
eties to B. graminis (DC.) E.O. Speer f. sp. ave
nae Em. Marchal during the ontogenesis period 
were identified [93]. Variety Jumbo is protected with 
a dominant gene, Pm1, localized on chromosome 
1C [94]. Pm3 was transferred to cultivated oat (va-
riety Mostyn) from avena sterilis L. var. ludovici
ana and is localized on chromosome 17А [94–96]. 
Variety Rollo, besides Pm3, also possesses a second 
dominant resistance gene, Pm8, on chromosome 
4C [94]. Resistance to the pathogen by introgression 
line Cc 6490, which is obtained with the involvement 
of a. barbata, is controlled by the Pm4 gene loca-
lized on chromosome 18D. Resistance gene, Pm5 
(chromosome 19А), was introgressed from a. mac
rostachya [94, 97, 98]. The recessive resistance 
gene, Pm6, which was localized on chromosome 
10D, was identified in variety Bruno. Breeding line 
APR122, with a. eriantha in its pedigree, is protect-
ed with dominant gene, Pm7, on chromosome 13А. 
The loca lization of Pm2, transferred into cultivated 

oat from avena hirula, is still unknown [94]. Acces-
sions of a. byzantina AVE2406 and AVE2925 carry 
one effective dominant resistance gene: Pm9 (chro
mosome 16А) and Pm10 (10D), respectively [99]. 
Effective resistance gene, Pm11, was identified in 
accession CN113536 (a. sterilis) [93].

Donors of resistance genes Pm1, Pm3, and 
Pm6, which are widely used in historical breeding 
programs in European countries [100–102], are 
strongly infected by the pathogen. The highest level 
of resistance is provided by gene Pm4. Gene Pm7 is 
less effective in Europe [103]. Markers of gene Pm4 
are available for marker-assisted selection [104].

Examination of extensive material of a. sativa 
indicates low-diversity of powdery mildew resistance 
genes [95, 100–102]. A variety Canyon from Poland 
was revealed probably protected by new resistance 
gene (genes) to the pathogen [102, 103]. The sourc-
es of resistance are seldom found among hexaploid 
oat species. Among 350 accessions of a. sterilis, 
only 10 appeared to be resistant [105]. Accessions 
CN67383 and CN113536 are the most interesting 
and likely possess new resistance genes [106]. Ac-
cessions of tetraploid species a. magna and a. mur
phyi can be effective donors of resistance to disease. 
All forms originate from the Mediterranean region 
(Morocco and Spain) [107, 108].

Oat also possesses age-specific resistance to 
powdery mildew. Moreover, adult plants of nine 
landraces and two commercial varieties were highly 
resistant [109].

strUctUral and fUnctional diversity 
of Genes controllinG cereal crop resistance 
to powdery mildew

Two types of protection against the pathogen are 
available at the cell level – external and internal. 
External protection is based on transmembrane pat-
tern recognition receptors on cell surfaces that can 
recognize conserved pathogen-associated molecular 
patterns, such as lipopolysaccharides, peptidogly-
cans, and bacteria proteins. Primary transmembrane 
receptors include receptor-like kinases (RLK) and 
receptor-like proteins (RLP). Internal protection in-
volves cytoplasmic receptors, most of which are co-
ded by resistance genes, or Rgenes, and assigned to 
the conserved family of proteins, NLR, characterized 
by the availability of nucleotide-binding sites (NBS) 
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and leucine-rich repeat (LRR) domains. Effector 
proteins are directly recognized by NLR receptors or 
indirectly via modification of host plant proteins as-
sociated with NLR [110–113].

In the molecular identification of Rgenes, posi-
tional cloning and comparative and mutation genom-
ics are used [114]. However, the number of resis-
tance genes of cereal crops cloned and sequenced 
to date is still small and limited to wheat and barley.

Rgenes coding NLR-type receptors are typically 
members of multigene families. Cluster structure 
in genomes and a high level of variability are typi-
cal, due to segmental duplications, recombinations, 
unequal crossover, point mutations, and divergent 
selection [115]. A series of alleles are described for 
Rgenes Pm3 [12] and Mla of wheat [116, 117] and 
barley [90], respectively.

Genes of effectors are probably characterized 
by higher variability in comparison with resistance 
genes. Such variability is demonstrated for causal 
agents of powdery mildew in wheat and barley. Their 
effectors of virulence evolve more rapidly than many 
other genes, allowing pathogens to overcome effects 
of related NLR genes [118]. Protective responses are 
a result of interactions among various genes, pro-
teins, and regulatory molecules. A formal picture of 
these interactions in wheat was developed as a re-
constructed gene network describing groups of func-
tionally related genes involved in the development of 
immune responses to pathogenic fungi [119].

Currently, nine R genes are identified in wheat at 
a molecular level. These genes control wheat resis-
tance to powdery mildew. One gene is cloned and 
sequenced from barley and rye. Genes Pm2, Pm3, 
and Pm60 of wheat, Mla of barley, and Pm8 of rye, 
respectively, code proteins assigned to the family of 
NLR receptors. Durable resistance is determined 
by genes coding for proteins with kinase activity 
or transport functions, introgressed from Haynaldia 
villosa Pm21, as well as loci with pleiotropic ef-
fects, in cluding Lr34/yr18/sr57/Pm38 and Lr67/
yr46/sr55/Pm46. The biochemical function of 
MLO, a product of locus Mlo (a negative regulator 
of immune response), is still not studied [120–132] 
(Table 2).

Genes of loci Lr34/yr18/Pm38/sr57 and Lr67/
yr46/Pm46/sr55 were sequenced to ensure si-
multaneous adult resistance to several pathogens, 

including leaf, yellow, and stem rust and powdery 
mildew. Multiple resistance to fungi in carriers of 
genes Lr34/yr18/Pm38/sr57 and necrosis of leaf 
tips (marker Ltn1) are specified by the effects of 
gene Lr34 localized in the short arm of chromo-
some 7D near locus Xgwm295. This gene is iden-
tical to yr18, Pm38, and sr57 [124]. The product 
of gene Lr34 belongs to class ABCG of the ATP-
binding cassette (АВС) transporters. It includes 
1401 amino acid residues. The protein possesses 
two cytosolic nucleotide-binding domains and two 
hydrophobic transmembrane domains. Lr34 alleles 
from sensitive and resistant genotypes are character-
ized by two polymorphic sites changing the structure 
of one transmembrane domain [124]. Gene Lr34 is 
involved in the remodeling of the cell plasmalemma, 
accompanied by inner-cell accumulation of phospha-
tidic acid and an increase in the removal of phos-
phatidylserine. Redistribution of phospholipids under 
the control of gene Lr34 affects the composition 
of membrane proteins and responses to stress fac-
tors, resulting in the accumulation of neutral lipids in 
Lr34transgenic barley plants [133].

The product of gene Lr67 also exhibits a pleiotro-
pic effect. This protein is a supposed hexose trans-
porter STP13 of the H+-monosaccharide symporter 
class. The product contains 514 amino acid residues, 
with 12 transmembrane coils, and transports glu-
cose through the cell membrane. Proteins from re-
sistant (Lr67res) and sensitive (Lr67sus) genotypes 
differ only in two amino acid residues, which are 
conserved in STP-like hexose transporters. Protein, 
Lr67sus, and related proteins coded by homoalleles 
function as high-affinity glucose transporters. Al-
lele Lr67res exerts dominant-negative effect. Protein 
Lr67res interacts with the products of homoalleles 
producing heterodimers, resulting in a reduction of 
glucose digestion and slow growth of pathogenic fun-
gi [125]. Experimental confirmation of the conserved 
status of resistance mechanisms determined by gene 
Lr67 was shown. Resistance allele, Lr67res, from 
wheat determines the resistance of transgenic barley 
plants to barley leaf rust and powdery mildew. It also 
induces upregulation of genes connected with patho-
genesis, PR1, PR2, and PR3. However, contrary to 
wheat, resistance is evident in seedlings, likely as 
a result of the differences in the level of expression 
of this gene in different genetic backgrounds [134].
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Table 2
List©of©sequenced©genes©for©powdery©mildew©resistance©of©cereal©crops

Gene Protein
Species, 
genotype

References

Wheat

Pm2 NLR T. aestivum, line CI12632/8 
(from variety Chancellor)

[120]

Pm3b CNL T. aestivum, landrace Chul,  
line Chul/8*Chancellor

[121, 122]

Pm21a (stpkv) Serine/threonine kinase H. villosa, amphidiploid T. durum – H. villosa, 

T. aestivumH. villosa T6VS.6AL translocation line, 

T. aestivum lines with additional H. villosa chromosomes

[123]

Lr34/yr18/sr57/Pm38 АВС-transporter T. aestivum, lines Thatcher Lr34, Avocet Lr34, Forno, 
Chinese Spring

[124]

Lr67/yr46/sr55/Pm46 Hexose transporter T. aestivum, line Thatcher Lr67 [125]

Pm60 NLR T. urartu, accessions from Lebanon and Turkey [34]

TmMla1 NLR T. monococcum, line DV92 [126]

TaMla2 CNL T. aestivum, line TAM104R with translocation 6BS.6RL [127]

TaMla3 CNL T. aestivum, line TAM104R with translocation BS.6RL [127]

Rye

Pm8 CNL s. cereale, line from variety Petkus [122]

Barley

Mla CNL H. vulgare, variety Morex [128]

Mlo (wild type) Calmodulin-binding 
protein

H. vulgare, variety Ingrid [129]

mlo1, mlo3, mlo4, mlo5, 
mlo7, mlo8, mlo9, mlo10, 
mlo13, mlo17, mlo26

Calmodulin-binding 
protein

H. vulgare, induced mutants of varieties Haisa, Maltera 
Heida, Foma, Carlsberg II, Diamant, Plena

[129]

mlo12, mlo16,
mlo27, mlo28,
mlo29, mlo30

Calmodulin-binding 
protein

H. vulgare, induced mutants of wild-type allele carriers 
and variety Sultan 5 Mlo

[130]

mlo11 Calmodulin-binding 
protein

H. vulgare, spontaneous mutation, wild barley acces-
sions from Ethiopia. Lines H. vulgare var. spontaneum 
from Israel, Turkey and Iran

[131]

mlo11 (cnv2) Calmodulin-binding 
protein

H. vulgare, spontaneous mutation, Ethiopean barley 
accession Eth295

[132]

Pm3 and Pm8 genes, localized in syntenic re-
gions of chromosomes 1AS of wheat and 1RS of rye, 
respectively, are orthologs. The identified products of 
gene candidates Pm3b (1415 amino acid residues) 
and Pm8 (1375 amino acid residues) are charac-
terized by significant similarity. Their protein se-
quences share 81% of identical amino acid residues. 
The most polymorphic sites are in the same leucine-
rich repeats contacting with cytosol. Sequences ho-
mologs of two genes in the different genera of the 
tribe Triticeae are complexes of the same haplotypes. 
This finding indicates that the genes evolved inde-
pendently following the divergence of wheat species 

from a common ancestor about 7.5 million years ago, 
yet retained a common function [122].

Locus Mla (mildew resistance locus a) that de-
fines race-specific resistance of barley to powdery 
mildew is in the short arm of chromosome 1Н. The 
gene have a series of more than 30 alleles [89]. Mla
coded NLR proteins are characterized by an exclu-
sively high level of functional diversity (race specifi-
city). They contain the coiled coil (СС), NBS, and 
LRR domains (CNL receptors). These genes were 
introgressed into the genome of cultivated barley from 
different sources, including wild species H. sponta
neum. The Mlaspecified response is characterized 
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by the rapid development of the hypersensitivity re-
sponse [135]. Mla alleles are highly polymorphic. 
Each allele likely recognizes gene avRa, coding for 
an effector for avirulence in B. graminis. Transcrip-
tome analysis of 17 isolates of B. graminis contain-
ing different avRa genes, identified variants avRa1 
and avRa13 encoding presumptive effectors, which 
are recognized by immune receptors of barley coded 
by alleles Mla1 and Mla13 [115]. Several investiga-
tors reported on the structural arrangement of bar-
ley Mla locus. In particular, locus Mla from variety 
Morex contains a cluster of CNL-coding genes be-
longing to three divergent subfamilies of homologs 
of R genes (resistance gene homologs, Rgh). Re-
sistance is controlled by allelic variants of subfamily 
Rgh1 [89, 128, 136]. These conclusions were con-
firmed by examining the transcriptome of 50 acces-
sions of H. spontaneum representing nine popula-
tions cultivated in the Fertile Crescent. The diversity 
of Mla transcripts was not associated with the ac-
cession origin. However, depending on the structure 
of two N-terminal coiled-coil signal domains able to 
mediate the cell death, all identified transcripts were 
grouped into two subfamilies, one of which included 
all known variants of receptor MLA that determine 
resistance to B. graminis [137].

Bioinformatic analysis resulted in the detection of 
175 genes, CNL, in the barley genome attributed 
to three phylogenetic groups. The majority of identi-
fied clusters were localized in extra-pericentromeric 
areas associated with a high degree of recombination 
required for rapid divergence [138].

The family miR9863 of microRNA in genomes 
of barley and wheat are involved in the initiation of 
immune response by barley Mla gene. Four mem-
bers of this family performed differential cleavage of 
Mla transcripts and suppressed synthesis of MLA1 
protein in the heterologous nicotiana benthamiana 
Domin expression system. The specificity of interac-
tions was determined by single-nucleotide polymor-
phism of mature miR9863, as well as by two SNPs 
in miR9863-binding site sequences of Mla, depend-
ing on which alleles were attributed to the three 
groups [139].

Genes of Mla locus are linked with Hor1 and 
Hor2 genes controlling the synthesis of horde-
ins C and B, the main storage proteins of barley 
seeds [140]. The Pm3 locus in wheat is bound with 

complex locus Glu3/Gli1 coding for seed storage 
proteins, low-molecular-weight glutenin subunits, 
and reserve gliadins [122].

Orthologs of Mla gene are detected in genomes 
of different genera of cereal grasses that diverged 
millions of years ago. The genome of diploid wheat 
T. monococcum contains functional homologs of bar-
ley Mla gene (TmMla1). The amino acid sequences 
of proteins TmMLA1 and HvMLA1 of barley have 
78% identical amino acid residues. The hybrid pro-
tein TmMLA1, in which the LRR domain is replaced 
with that of HvMLA1 appeared to be functional and 
determined resistance to a previously unknown race 
of B. graminis [126]. Hexaploid wheat contains or-
thologs of Mla genes, sr33 and sr50, introgressed 
from genomes of rye and a. tauschii, respectively. 
These genes provide resistance to stem rust (Puccin
ia graminis f. sp. tritici) [141, 142]. Two Triticum 
aestivum Mla orthologs, TaMla2, and TaMla3 were 
cloned and sequenced. These genes encode CNL 
proteins and are presented with numerous copies in 
the genome [127].

The nonspecific durable resistance of barley to 
B. graminis is related to the mutations of Mlo lo-
cus (Mildew locus o), which is located on the long 
arm of chromosome 4 [143]. The Mlo gene contains 
12 exons. The encoded RLP protein has a molecu-
lar weight of 60 kDa and contains seven transmem-
brane domains and a calmodulin-binding site located 
in the intracellular C-terminus [129, 143]. Wild-type 
Mlo genes, are expressed in different organs, tis-
sues, and cell types and play significant roles in the 
protection against premature cell death. They are 
also involved in the reactions to biotic and abiotic 
stressors. However, with infection, Mlo-coded pro-
teins suppress defensive reactions to pathogen pen-
etration through Ca2+-dependent interaction with 
calmodulin. This action prevents damage to the epi-
dermis and mesophyll with hydrogen peroxide. Thus, 
MLO prevents oxidative burst and thus suppresses 
cell death reaction [144, 145]. In plants homozy-
gous for recessive alleles, MLO is absent (loss-of-
function mutations), and unspecified resistance to 
B. graminis is observed. Complete resistance is ob-
served in the presence of two other genes, Ror1 and 
Ror2 (required for mlo resistance) [146]. In resistant 
mlo mutants, the sites of fungus penetration show 
remodeling and strengthening of cell walls through 
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rapid oxidative crosslinking of hydroxyproline-rich 
glycoproteins [135]. Leaf damage is typical for mlo 
mutants. The manifestation of symptoms of prema-
ture cell death following apposition of epidermis cell 
walls (callose sediments on adult leaves) is observed 
even without the pathogen [147]. A number of re-
strictions from negative pleiotropic effects of the gene 
lead to a yield reduction (e.g., premature leaf wilting) 
and to mlo mutant sensitivity to the fungus Ramu
laria collocygni Sutton & Waller. The use of mlo 
alleles in the breeding ensured stable durable pro-
tection of barley against B. graminis in areas with 
a moderately humid climate [148]. Mutations in the 
Mlo gene result in the inactivation of functional do-
mains and the appearance of terminating codons. 
The high frequency of intragenic recombinations is 
typical for mlo alleles. Recombinations lead to rever-
sions and recovery of wild-type sequences [129].

To date, more than 40 recessive loss-of-function 
alleles have been identified at the Mlo locus. These 
alleles are characterized by different resistance le-
vels, from partial (e. g., alleles mlo12 and mlo28 
obtained with chemical mutagenesis) to complete 
(allele mlo11). Most mutations are caused by the 
substitution of a single amino acid residue, seldom 
by deletions. The phenotypic effects indicated that 
12 out of 14 mutants exhibited durable resistance to 
powdery mildew, and two mutants exhibited reduced 
sensitivity by reduced binding with calmodulin [144]. 
Comparative sequence analysis of individual alleles 
revealed clustered mutations, i. e., their occurrence 
in the certain exons [130, 131]. Spontaneous mlo11 
mutation, detected initially in barley landrace collect-
ed in Ethiopia in 1930, confers durable resistance 
to all races of B. graminis. The mutation is widely 
distributed among European spring barley varieties. 
Haplotype mlo11 is characterized by the availabil-
ity of a complex tandem repeat of 11–12 repeated 
units located upstream the wild-type gene [131]. 
The repeated unit includes 3.5 kb of the 5’-regula-
tory sequence, as well as 1.1 kb fragment of coding 
area containing the sequences of the first five exons. 
Aberrant transcripts of this sequence disturb the ac-
cumulation of Mlo transcripts and wild-type MLO 
protein that probably determines resistance. Muta-
tion that led to the appearance of allele mlo11 likely 
occurred after the domestication of barley [131]. Ac-
cession Eth295 of Ethiopian barley landrace (H. vul

gare convar. deficiens var. nudideficiens) from the 
collection of the Leibniz Institute of Plant Genetics 
and Crop Plant Research (Gatersleben, Germany) 
recently displayed another variant of allele mlo11 
characterized by a change in the number of re-
peats – mlo11(cnv2) [132]. Mutation mlo11(cnv2) 
confers partial resistance of seedlings and complete 
resistance of adult plants. The mutation exhibits no 
negative pleiotropic effects associated with cell wall 
apposition or necrosis. Also, no loss of photosynthet-
ic activity is observed. Resistance associated with the 
mutation, assessed by the number of colonies and 
their growth rate, was quantitative. The manifesta-
tion of resistance to fungal penetration in the carri-
ers of standard and variant mlo11 alleles differs on 
a histological level. The mlo11(cnv2) genotype in 
epidermal cells in contact with areas of successful 
fungal penetration forms appositions of cell walls and 
show the absence of necrosis and collapse of meso-
phyll cells. Differences in the repeat methylation lev-
els between standard and variant mlo11 alleles are 
correlated with the manifestation of resistance. The 
allelic variant of mlo11(cnv2) probably originated 
through natural selection from an ancestral variant 
of mlo11 as a result of recombination between re-
peated elements and the 3’-terminal of an adjacent 
area containing a Stowaway-like transposon [132].

Sequences of polymorphic mlo alleles were 
the basis for the development of molecular mar-
kers [129, 131] which are successfully used for the 
screening of breeding material [147] and for searches 
for the carriers of mutant alleles among collection 
accessions [149, 150].

MLo genes were detected in plants and green 
algae. They are represented in small multigene 
families in higher plants, including cereal grasses 
and dicotyledons [148]. HvMlo homologs in barley 
were detected in syntenic regions of soft wheat and 
rice genomes. In soft wheat, homologs TaMloa1, 
TaMloB1, and TaMloD1 are localized on chromo-
somes 4BL, 4DL, and 5AL, respectively. They en-
code three related proteins that are 88% identical 
to MLO from barley. These proteins likely originat-
ed from three initial ancestral wheat genomes. The 
Mlo ortholog in the rice genome, osMlo2 (linkage 
group 3), induced sensitivity of barley mlo mu-
tants to B. graminis in transient expression experi-
ments [151]. Twelve possible members of the MLo 



67

` ecological genetics 2020;18(1)   eISSN 2411-9202

ГЕНЕТИЧЕСКИЕ ОСНОВЫ ЭВОЛЮЦИИ ЭКОСИСТЕМ

family were detected in the rice genome [152]. The 
authors combined the metadata for expression, tran-
scriptome, and phylogenetic analyses to determine 
their functions. The members of the family differ in 
tissue specificity and participate in various physi-
ological functions, including the reactions of stress-
ors. The expression of osMLo3 by infection with rice 
blast causal agent (Magnaporthe oryzae (T.T. He-
bert) M.E. Barr) indicated the participation of the 
gene in protective reactions [152].

Genome of the model species Brachypodium dis
tachyon (L.) P. Beauv. (purple false broom) contains 
11 conserved BdMLo genes distributed on five chro-
mosomes. BdMLo genes code for seven conserved 
transmembrane domains and calmodulin-binding 
sites. One gene is a probable candidate for resistance 
to powdery mildew [153]. The number of MLo ho-
mologs in the genomes of other plant species varies 
from 12 to 19 [154]. MLo genes of both monocoty-
ledonous and dicotyledonous plants are characterized 
by several specific features apparently resulting from 
negative selection. At the same time, the results of 
the heterologous complementation experiments (ex-
pression of sensitivity alleles of one species in the 
resistant genotype of another) indicate the availabil-
ity of conserved functional features that interact with 
powdery mildew [154].

Various approaches to obtaining new variants 
of mlo were discussed, including suppression of 
the wild-type Mlo allele by RNA interference, us-
ing methods without transgenesis (TILLING), 
and using genome editing systems, TALEN, and 
CRISP/CAS9) [148]. Practical implementation of 
the TILLING technology for the modification of 
homologs TaMloa1, TaMloB1, and TaMloD1 
of soft wheat variety Cadenza is reported by (Ace-
vedo-Garcia et al. [155]). The authors obtained 
16 missense mutations, each caused by the single 
amino acid substitutions. Lines developed based 
on triple and, in some cases, double mutants were 
characterized by resistance to B. graminis and did 
not exhibit negative pleiotropic effects of recessive 
mlo alleles.

The effectiveness of induced mutations was de-
pendent on their position in Mlo genes; mutations 
in the second and third cytoplasmic loops of the 
membrane protein exhibited the highest effect [156]. 
Ingvardsen et al. [157] reported differences in the 

effectiveness of induced mutations in homologous 
genes. Using the TILLING technology, the authors 
obtained a series of mutations in homeologs Mlo
a1 and MloB1 of the durum wheat variety Kronos. 
The effects of mutations in MloB1, in general, were 
more dramatic compared with those of the mutations 
in Mloa1; however, the best result was observed in 
genotypes carrying mutations in both Mloa1 and 
MloB1.

Resistance to powdery mildew can be increased 
by the mutations in other genes involved in protec-
tive functions. Using the CRISP/CAS9 technology, 
Zhang et al. [158] obtained mutations of homeologs 
of the conserved Taedr1 gene (enhanced disease re-
sistance) localized on chromosomes 1AS, 1BL, and 
1ВL of soft wheat. TaEDR1 is a negative regulator of 
resistance, and triple Taedr1 mutants were resistant 
to powdery mildew.

Only two of more than 40 known mutant mlo al-
leles, spontaneous mlo11 and induced mlo9, were 
used in barley breeding in the 1970s and the begin-
ning of the 1980s. Currently, immunity of more than 
half of the varieties of spring barley cultivated in the 
Central Europe is conditioned by mlo alleles [91].

The information accumulated to date for the ge-
netic diversity of cereal crop resistance to B. grami
nis confirms the “laws of natural immunity of plants 
to infectious diseases” formulated by Vavilov [159]. 
The number of identified primary resistance genes to 
powdery mildew is large, and the list is constantly ex-
panding. Genes determining race-specific resistance 
of cereal crops exhibit a common type of structural 
organization characteristic of NLR receptors for im-
mune response. This structure helps ensure co-evo-
lution with parasite genes. This finding is consistent 
with the first law, which assumes that higher parasite 
specialization is correlated with a higher probability 
of finding resistant forms.

“The second law for finding immune varieties and 
species among the cultivated plant is the availability 
or absence of strong genetic divergence. The greatest 
contrasts in terms of resistance are cytogenetically 
strongly differentiated in different species” [159]. The 
data discussed in the article support this statement. 
Cultivated species of the genus Triticum display 
complex genomic composition and are characterized 
by a high level of polymorphism. To the contrary, cul-
tivated barley is characterized by a rather low level of 
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genetic diversity. Large numbers of powdery mildew 
resistance genes on different chromosomes (mainly 
genomes A and B) are identified in wheat, but only 
two loci (Mla and Mlo) with large numbers of alleles 
are found in barley.

Immunity responses reflect plant ecological type, 
and significant differences in resistance are detected 
in contrasting environmental conditions. N.I. Vavilov 
considered that immunity is developed only under 
conditions that promote the development of infec-
tion (the third law) [159]. According to Wolfe and 
McDermott [160], the probable origin of B. graminis 
f. sp. hordei is centered in the Mediterranean region 
and Near East. All allelic variants of Mla and Mlo 
genes that determine race-specific and durable resis-
tance to B. graminis are detected only in accessions 
from East Africa and Near East.

Group or complex resistance is widespread in na-
ture (the fourth law) [159]. Data on structure and 
function of genes associated with resistance enable 
the understanding of resistance mechanisms. Age 
resistance to several pathogens – powdery mildew 
and leaf, yellow, and stem rust in wheat genotypes 
carrying clusters of genes Lr34/yr18/Pm38/sr57 
and Lr67/yr46/Pm46/sr55 – is specified by the 
pleiotropic effects of one gene coding for transport 
protein, ABC-transporter (Lr34) and hexose trans-
porter (Lr67).

These regularities prompted Vavilov to formulate 
the fifth and sixth laws. “Knowing the evolutionary 
history of the cultivated plant, <…> one can fore-
see, to a significant extent, the location of immune 
forms interesting for a breeder, and ecological and 
geographical associations for the detection of immu-
nity are common and inherent for plants assigned 
to different genera and even families” [159]. These 
regularities are consistent with the information in 
this review. For example, the most resistant forms 
of oat (genus avena) and barley (genus Hordeum) 
came from the Mediterranean region and North Af-
rica [107, 108].

conclUsion
Cereal crops are characterized by wide genetic di-

versity for resistance to powdery mildew. The speci-
ficity of the parasite-host relationship causes rapid 
loss of the effectiveness of many genes, leading to 
a constant search for new resistance genes. The 

genetic pool of cultivated species is rather poor in 
resistant forms. Recent introgression of resistance 
from wild relatives has become important for re-
plenishing the stock of effective genes. Thus, among 
92 identified alleles of resistance to B. graminis in 
soft wheat, 48 were transferred from the genomes 
of wild relatives, including aegilops sp., secale sp., 
Dasypyrum (Haynaldia sp.), Thinopyrum sp., and 
agropyron. New sources of resistance can be ob-
tained through traditional methods of mutagenesis 
(e.g., numerous mlo alleles of barley), and by target-
ed changes of gene sequences using the TILLING 
and CRISP/CAS9 technologies. Information on the 
structural and functional organization of resistance 
genes and molecular resistance mechanisms is still 
limited and available only for wheat and barley. Soft 
wheat genes, Pm2, Pm3, and TmMla1; wild einkorn 
T. urartu gene, Pm60; rye gene, Pm8; and barley 
gene, Mla, are identified at the molecular level to 
code for proteins NLR and CLR. Barley Mlo encodes 
receptor-like proteins, and wheat genes, Lr34, Lr67, 
and Pm21, code for transport proteins and receptor-
like kinases.

This research was performed under financial sup-
port of the Russian Foundation for Basic Research 
(Project No. 18-016-00075) and within the frame-
work of state task (Budgetary Project No. 0662-
2019-0006).
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