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% Background. An analysis of the spatial distribution of some taxonomically and ecologically related legumes in
the Ural showed a nontrivial spatial distribution of related species of the genus Oxytropis DC of the Orobia Bunge
section within the Uchalinsky uplands. Despite the similarities in ecology, these species practically do not grow
together. Explicit spatial segregation of closely related plants over a relatively small area allows this phenomenon to
be used as a convenient model for studying the effect of segregation of closely related legume species on the genetic
composition of their nodule bacteria. Materials and methods. The genetic diversity of nodule bacteria entering into
symbiosis with O. kungurensis, O. baschkiriensis, O. approximata and O. gmelinii plants was studied. In addition,
the polymorphism of their symbiotic genes has also been analyzed. Results. Phylogenetic characteristics of nodule
bacteria endemic for the Southern Ural belonging to 4 species of leguminous plants of the genus Oxytropis of the
section Orobia: O. kungurensis, O. baschkiriensis, O. approximata, O. gmelinii which are characterized by spatial
separation of the growth sites, also called plant segregation, are given. It was shown that all of them belong to the
genus Mesorhizobium despite certain phylogenetic differences of bacteria. Analysis of the symbiotic genes of the
analyzed strains revealed a lack of congruence of their phylogeny with the core part of the genome. It was found that
the microsymbionts of O. baschkiriensis plants differ in the phylogeny of nod-genes from nodule bacteria of other
plants of the Oxytropis genus and are close to microsymbionts of plants of the Lupinaster genus growing in the
Southern Urals. Conclusion. Acquisition of the property to enter into symbiosis with nodule bacteria of plants of the
genus Lupinaster may turn out to be an adaptive mechanism that arose as a result of segregation of O. baschkirien-
sis from other species of Oxytropis.
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% [lposenen ananua nosnMopchuamMa M (UJIOreHnH KJIyOEHbKOBBIX GakTepHil sHAeMHUHbIX s FOKHOro Ypasa uethbl-
pex BUAOB 6060BBIX pacteHn#l popa Oxytropis cekuuu Orobia: O. kungurensis, O. baschkiriensis, O. approximata,
O. gmelinii, XapakTepH3yIOIMXCS MPOCTPAHCTBEHHOH Pa306IIeHHOCTBIO MECT TPOM3pACTaHHs, TaKKe Ha3blBaeMOMH cer-
perauuert pactenurl. [lokazaHno, 4To HeCMOTpsl Ha orpesiesieHHble (DUIOTeHeTHUECKHe pas/Iniyus GaKkTepHii, Bce OHM OT-
Hocsitest K posy Mesorhizobium. Ananna ciMOHOTHYECKUX TEHOB HCCJIElyeMbIX ILITAMMOB Ha OCHOBAHHH CPABHUTEJNLHOTO
aHaJjiu3a rnocJjejoBaresbHocteil reHoB nifH n nodC BbisiBUI onpe/iesieHHble pasjinuus X (UJIOreHHH ¢ KOPOBOH Y4acThio
reioma. OGHapyKeHO, YTO MHKPOCUMOMOHTHI pactenuil O. baschkiriensis mo ¢unorennn rena nodC oTan4aoTCs OT
pU3061H, MOMyYeHHBIX U3 KIYOEHBbKOB APYTHX M3YyUCHHBIX BUI0B poa Oxytropis 1 6JIM3KH K MUKPOCHMOUOHTAM pacTeHHH
pona Lupinaster, npouspacratouux Ha IOxunom Ypase. [IpuoGperenne cBoicTBa BCTynaTh B CHMOHO03 ¢ KyOeHHKOBLIMU
6aKTepUsIMH, XapaKTepPHBIMU /Il pacTeHuil poaa Lupinaster, Morjio 6bITh cnefactBueM cerperaunn O. baschkiriensis ot
JIPYTUX POJACTBEHHBIX BUI0B poaa Oxytropis.
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INTRODUCTION

Nodule bacteria (rhizobia) represent an exten-
sive, genetically heterogeneous group of soil Gram-
negative microorganisms capable of entering into
intracellular symbiosis with legumes and providing
fixation of atmospheric nitrogen.

In the course of the long-term joint evolution of
leguminous plants and rhizobia, a signaling system
of interaction between symbionts was formed, pro-
viding specific recognition of partners and leading
to their genetic integration [1]. Legumes of temper-
ate latitudes, inhabited by the most specialized and
evolutionarily young representatives of the subfamily
of papilionaceous plants, are characterized by highly
specific “cross-inoculation groups” interactions, in
which rhizobia of a certain species or biotype enter
into effective symbiosis with representatives of a cer-
tain genus or several closely related plant genera [2].
Such an increase in the specificity of partner interac-
tion is evolutionarily accompanied by the increases in
nitrogen-fixing activity [3] and dependence of legu-
minous plants on their microsymbionts. Therefore,
the influence of soil microbiome on the distribution
area of wild legumes in temperate zones, along with
edaphic and climatic factors, is considered due to
their close relationship with nodule bacteria and the
relatively high specificity of their interaction [4, 5].

Analyzing the aspects of the spatial distribution
of several taxonomically and ecologically related
species of legumes in the Urals, M.S. Knyazev [5]
noted a number of non-trivial cases, the explanation
of which may shed light on the spatial distribution
of these plants. The peculiarity of this phenomenon
is most distinctly manifested in the example of the
spatial distribution of closely related species of the
genus Oxytropis DC of the section Orobia Bunge
within the Uchalinsky hillocky area, which represents
a series of low submontane, slightly sloping ranges
of mountains whose foothills are covered with sparse
forests, and the tops are occupied by areas of moun-
tain steppes. Thus, the steppe species growing here,
located mostly in the hilltops, are represented by a
series of isolated populations. Uchalinsky hillocky
area is a floristically original territory; a number of
species of the Ural flora grow only or predominantly
within this region, including narrow endemics of the
Uchalinsky hillocky area. Here, only the habitats
of five species (including one hybrid) of the genus

Oxytropis of the Orobia section overlap; these spe-
cies include O. kungurensis Knjasev subsp. demi-
dovii (Knjasev) Knjasev (hereinafter O. kunguren-
sis), O. baschkiriensis Knjasev subsp. skvortsovii
Knjasev (hereinafter O. baschkiriensis), O. approx-
imata Less., O. gmelinii Fisch. ex Boriss., O. spic-
tata (Pall.) O. et B. Fedtach., and O. x lessingiana
Knjasev. These taxa are ecological twins growing in
similar communities. Despite the similarity of eco-
logy, these species hardly grow together. This phe-
nomenon has been designated with the term plant
segregation. The distribution of the localities of two
species, namely, O. baschkiriensis and O. gmelinii,
in the hillocky area, framing the right bank of the
Ural river along the 20 km of the valley to the north
of the mouth of Mindyak river, is a typical example
of segregation. Directly near the mouth of Mindyak
river, on hillocks, only O. gmelinii grows; 2 km to
the north, on Tuytube hill (575 m), under the same
conditions, only O. baschkiriensis survived; on the
hill neighboring to Tuytube, only O. approximata
proliferated; another 2—4 km to the north, where
O. gmelinii grew on a number of peaks of Ulutau
ridge [5].

Explicit spatial segregation of closely related
plants over a relatively small area enables the usage
of this phenomenon as a convenient model for study-
ing the effect of spatial separation of closely related
legume species on the genetic composition of their
nodule bacteria.

This work aimed to test the genetic differences
in the rhizobia obtained from the nodules of closely
related species of white locoweeds subject to segre-
gation.

In this regard, we studied the genetic diver-
sity and phylogeny of nodule bacteria entering into
symbiosis with O. kungurensis, O. baschkiriensis,
O. approximata, and O. gmelinii plants and ana-
lyzed the phylogeny of their symbiotic genes, namely,
nifH (encodes the structure of nitrogenase proteins)
and nodC (encodes the structure of the core part of
the Nod factor (NF) molecule involved in signaling
during nodule formation).

MATERIALS AND METHODS

Bacterial strains and cultivation conditions

In the work, we used isolates of nodule bac-
teria isolated from the nodules of O. kungurensis,
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O. baschkiriensis s. 1., O. approximata, and O. gme-
linii, growing in the Southern Urals in the area of
Uchalinsky hillocky area.

Bacteria were isolated from nodules by obtain-
ing punctures from the zone of bacterial genera-
tion and inoculating them on a nutrient agar YM
medium (0.1% yeast extract, 1% mannitol, 0.05%
K,HPO,, 0.05% MgSO,, 0.01% NaCl, and 1.5%
agar) to grow individual colonies [6]. One pure cul-
ture of bacteria was obtained from each nodule. Pre-
liminary testing of isolates belonging to the group
of nodule bacteria was checked by polymerase chain
reaction (PCR) analysis of the presence of the nifH
gene, which is characteristic of all rhizobial species.

Isolation of total DNA

DNA was isolated from bacteria by thermocoagu-
lation. A small amount of bacterial mass was placed
in 1.5 ml tubes with 100 pL 1% Triton X100 and
1% suspension Chelex100 resin (BioRad, USA) and
after suspension, incubated at 95 °C for 10 min.
Cellular debris was precipitated by centrifugation at
12,000 g for 3 min. The supernatant was used as
a template for PCR.

Genetic analysis of strains

The genetic diversity of the strains collected
was studied using random amplified polymorphic
DNA (RAPD) analysis [7] using “random” prim-
ers, namely, 1) b-gggcgoctg-3'; 2) H5-caggceccate-3';
3) 5-gcgtecatte-3". This analysis also enabled to re-
duce the number of samples by combining micro-
organisms with identical RAPD profiles into homo-
geneous groups, from which only one sample was
subsequently obtained for the work.

PCR restriction fragment length polymorphism
(RFLP) analysis [8] of the 165 rRNA gene was
performed using frequently cutting restriction endo-
nucleases Kz091 and Haelll. Universal primers D1
d-ccegggatcecaagettaaggaggtgatecagee-3' and rD1
d-ccgaattcgtegacaacagagtttgatectggetcag-3" were
used to amplify the 16S rRNA gene, flanking a
gene fragment of approximately 1500 bp. [9];
primers  RecAF  5-ggcagttcggcaagggctegat-3'
and RecAR bH-atctggttgatgaagatcaccat-3" were
used for amplification of the recA genes; NifHF
5-ttctatggaaagggcggcattggeaaget-3' and NifHR
S-atctegecggacatgacgatataaatttc-3' were used for

amplification of the nifH gene; NodCF 5-cgttt
cgtettatgeggtocte-3' and NodCR 5-cagctgegtctegtatt
gat-3" were used for amplification of the nodC
gene [10].

Nucleotide sequences were determined using an
Applied Biosystems 3500 automatic sequencer made
by Applied Biosystems, Inc. (USA), using Big Dye
Terminator v. 3.1 kits.

Phylogenetic analysis

Phylogenetic analysis of the strains under study was
performed based on multiple alignment (ClustalW)
of the sequenced fragments of 16S rRNA, recA,
nodC, and nifH genes. Phylogenetic trees were
constructed using the Megalign program from La-
sergene software package using the neighbor-joining
method (NEIGHBOR). Nucleotide sequences for
comparative analysis were obtained from the Gen-
Bank database (www.ncbi.nlm.nih.gov). The statisti-
cal significance of branching (bootstrap analysis) was
assessed using the corresponding function of Mega-
lign program based on 1,000 alternative trees.

The nucleotide sequences of the 16S rRNA, recA,
nodC, and nifH genes of the strains under study were
deposited in GenBank database under the accession
numbers of MK402237-MK402258, MK511967-
MK511971, MK511979, and MK511980.

Cross-inoculation experiments

The nodulation ability of the strains on the roots of
the studied plant species was analyzed by presowing
seed inoculation. The seeds treated with a suspen-
sion of bacteria (3—7 x 108 CFU/ml) were planted
in separate pots with sterile sand. After 30—40 days,
the plant roots were analyzed visually for the pres-
ence of nodule formation. The experiments were con-
ducted with five repetitions.

RESULTS AND DISCUSSION

Nodules were collected from the roots of the stud-
ied plants growing in the Southern Urals, from which
pure cultures of rhizobia were isolated, to study the
genetic diversity of microsymbionts. In total, 32 pure
bacterial cultures were obtained from the nodules of 19
O. approximata plants, 56 from the nodules
of 28 O. baschkiriensis plants, 16 from the nodules of 8
O. kungurensis plants, and 6 from the nodules of 4
0. gmelinii plants. The ratios of the numbers of pure
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cultures and plants were due to the limited number
of nodules (no more than 2—3) on the roots of each
plant. Subsequently, one pure culture of bacteria was
obtained from each nodule. The study of the genetic
diversity of the obtained isolates by RAPD analysis
revealed a certain polymorphism in the DNA of sam-
ples under study, which formed 27 genetically ho-
mogeneous groups. Thus, the isolates obtained from
the nodules of O. approximata belonged to 7 geneti-
cally homogeneous groups, those from the nodules of
0. baschkiriensis s. |. belonged to 13 groups, those
from O. kungurensis s. 1. belonged to 6 groups,
and those from nodules of O. gmelinii belonged to
1 group (Fig. 1).

Preliminary phylogenetic analysis conducted
with the use of 16S-RFLP revealed that the strains
formed eight monophyletic groups. Accordingly, the
strains of rhizobia from the nodules of O. kunguren-
sis formed 2 groups, those of O. baschkiriensis s. 1.,
3 groups; those of O. approximate, 2 groups, and
those of O. gmelinii, 1 monophyletic group.

The sequencing of conserved genes (/16S rRNA
and recA) and their comparative analysis with other
similar genes deposited in GenBank were performed
to determine the phylogenetic affiliation of the rep-
resentatives of the identified groups of microorgan-
isms. The results showed that the studied strains of
rhizobia, despite exhibiting certain phylogenetic dif-
ferences, all belong to the genus Mesorhizobium.
For the 165 rRNA gene, the similarity of the strains
ranged from 98.4% to 99.8%, and for the recA gene,
the value ranged from 89.7% to 96.7%. The degree
of phylogenetic relationship of the strains was in-
dependent of whether they were symbionts of the
same or different plant species, given that in plants
of the same species, nodules contained bacteria with
greater phylogenetic differences than those isolated
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Fig. 1. Foregram of RAPD analysis of DNA of rhizobia iso-
lated from nodules of O. kungurensis. The digits indicate
the numbers of genetically homogeneous groups. M: 100 bp
marker

from nodules of different Oxytropis species (Figs. 2
and 3). Thus, the spatial separation and the absence
of joint growth of plants under study cannot be ex-
plained by the influence of species composition and
phylogenetic differences of their rhizobia.

Products of specialized sym-genes caused the
interaction with macrosymbionts in nodule bacteria.
These products include nif-genes, which are respon-
sible for nitrogen fixation and encode the synthesis
and regulation of nitrogenase enzyme; nod-genes
encoding the synthesis of NFs, which are responsi-
ble for the initiation and specificity of the symbiosis
formed; fix-genes are necessary for nitrogen fixation
and often linked to nif-genes but are not homolo-
gous to them [11, 12].

To date, a large number of studies have indicated
the high mobility of sym-genes and susceptibility
of their horizontal gene transfer (HGT) [13—18].
Such process is an integral part of the evolution of
legume—rhizobial relationships [19—22] and often
leads to the appearance of strains with altered host
specificity or inclusion of new types of microorgan-
isms to the group of nodule bacteria [23]. The par-
ticipation of HGT in the evolution of rhizobia is con-
firmed by the localization of sym-genes on mobile
genetic elements (plasmids or chromosomal islets
bounded by IS-like elements) and by their charac-
teristic panmictic population structure [24]. The wide
expansion of sym-genes in plant-associated bacterial
communities by means of HGT is considered to be
the most probable method for the formation of the
modern diversity of rhizobia and manifests itself in
different phylogenies of symbiotic genes and consti-
tutive genes [ 14, 25]. Therefore, the analysis of sym-
biotic genes is an integral part of research on the
diversity of nodule bacteria.

In this work, the phylogeny of symbiotic genes
of the strains was studied based on a comparative
analysis of the sequences of nodC and nifH genes
with similar sequences of other nodule bacteria ob-
tained from GenBank database (Figs. 4 and 5, re-
spectively).

The study of the phylogeny of the nifH gene of
all the bacteria analyzed showed their similarity to
analogous genes that are mainly found in bacteria of
genus Mesorhizobium. At the same time, the differ-
ences in nifH nucleotide sequences of all the bacteria
analyzed were insignificant. The greatest difference
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Fig. 2. Phylogenetic tree of nodule bacteria constructed on the basis of the comparative analysis of 16S rRNA gene sequences.
The strains of microorganisms studied in this work are marked bold; the strains isolated from the nodules of L. pentaphylius and
L. Albus are underlined
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Fig. 3. Phylogenetic tree of nodule bacteria constructed on the basis of the comparative analysis of recA gene sequences. The strains
of microorganisms studied in this work are marked bold; the strains isolated from the nodules of L. pentaphyllus and L. Albus
are underlined
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was revealed between the sequences of the nifH
gene of two strains, namely, Oku 3.2 and Oku 2.1,
which were symbiosis with O. kungurensis plants.
Nevertheless, the similarity between them was 92 %,
which indicates the conservation of the nitrogenase
genes of these bacteria.

Investigation of nod-gene sequences revealed in-
teresting patterns. PCR-RFLP analysis of the nodC
gene of the representatives of all homogeneous
groups of microorganisms under study revealed the
division of bacteria into two groups based on the
similarity of bands on the foregram. Group 1 con-
sisted of microorganisms isolated from the nodules
of O. baschkiriensis, whereas Group 2 included
microorganisms isolated from the nodules of other
studied plants (data not presented). When analyzing
the phylogeny of the nodC gene based on the com-
parative analysis of nucleotide sequences, the nodu-
le bacteria of O. baschkiriensis plants for the nodC
gene differed significantly from the rhizobia of other
representatives of Oxyfropis growing in Southern
Urals (similarity 74.5%—78%). At the same time,
they exhibited 99% or more similarity with micro-
symbionts of plants, which were studied earlier [26],
of the genus Lupinaster Fabr. (L. pentaphyllus
u L. albus), which grows together with Oxytropis
species (Fig. 4). At present, the systematic position
of plants of the genus Lupinaster is disputable, and a
consensus on this issue has not been formed. Earlier,
we discovered that these plants enter into symbiosis
with the bacteria of genus Mesorhizobium, which is
not typical for the plants of tribe Trifolieae, to which
they are attributed [26]. However, despite the con-
troversial situation with the systematic position of
genus Lupinaster, these plants are not related to
the plants of genus Oxytropis. The presence of nodC
gene in the genome of the nodule bacteria O. basch-
kiriensis, which is almost identical to the analogous
genes of rhizobia of Lupinaster plants, indicates sev-
eral adaptive evolutionary processes. Studies should
still determine whether the preference of O. basch-
kiriensis to enter into symbiosis with nodule bacteria
with nodC genes, which is not typical for other spe-
cies of white locoweed plants growing in Southern
Urals, causes segregation or is a consequence of the
spatial separation of this species from other species
of white locoweed. A certain pattern of differences
in the composition of nodule bacteria of segregating

plant species has been revealed, which may help to
determine the endemicity of several species of legu-
minous plants. Notably, not a single case of devia-
tion from the segregation rule has been revealed for
O. baschkiriensis on the Uchalinsky hillocky area,
whereas for other white locoweed plants, isolated
cases have been revealed (for example, the joint
growth of O. kungurensis s. I. and O. approximata).
O. baschkiriensis was isolated relatively recently [27]
from the widespread species O. ambigua (Pall.)
DC. s. 1. (Eastern Europe up to the Vologda Region
in the west, Western and Eastern Siberia, Mon-
golia) and differed in terms of nonessential traits.
Perhaps, such a vast habitat of O. ambigua s.1.
(including O. baschkiriensis s. str.), which is un-
characteristic of the species of the Orobia section, is
associated with the genetic similarity of Lupinaster
pentaphyllus s. 1. rhizobia, which are also charac-
terized by wide distribution (from Eastern Europe to
Mongolia and the Far East) [28, 29]

The comparative analysis of nucleotide sequences
revealed significant differences between the symbi-
otic nod-genes of nodule bacteria of O. baschkirien-
sis and Lupinaster plants from all known nod-genes
previously described in the bacteria of genus Meso-
rhizobium. Thus, these plants formed a separate
clade on the phylogenetic tree (Fig. 4). At the same
time, the symbionts of O. baschkiriensis, L. pen-
taphyllus, and L. albus plants have 99% or more
similarities with each other for this gene, regardless
of the bacterial phylogeny. This finding suggests that
these plants should have a high and unique speci-
ficity with their microsymbionts. Most likely, these
plants belong to different groups of cross-inoculation
with other plants entering into symbiosis with the
bacteria of Mesorhizobium.

Our research confirmed this assumption. Experi-
ments on the cross inoculation of O. baschkirien-
sis and O. approximata with nodule bacteria iso-
lated from the nodules of these plants showed that
numerous pink (active) nodules formed only in the
case of plant interaction with strains isolated from
the nodules of the same species; when plants were
inoculated with the rhizobia of another species, nod-
ules were not formed, or small white nodules were
formed, which indicate the low functionality of these
nodules. At the same time, the cross inoculation of
O. baschkiriensis, L. pentaphyllus, and L. albus
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plants with their microsymbionts led to the formation
of active nodules in all combinations, which indicates
that the above species belong to the same group of
cross inoculation.

The differences in the phylogeny of nod- and
nif-genes of the strains analyzed were observed
probably because the polymorphism of nod-genes
is more correlated with the taxonomy of host plants
than with the core elements of its genome. Further-
more, the genes responsible for nitrogen fixation,
given the conservative function of the proteins that
they encode, are less variable, and their polymor-
phism often has a strong correlation with the di-
vergence of the core part of the bacterial genome.
Both groups of genes can only jointly impart the
properties of symbiotic nitrogen fixation to bacteria;
in the genome, they form islets of symbiosis in Me-
sorhizobium bacteria and are therefore also trans-
mitted together during HGT. This condition affects
their evolution and leads to incomplete coincidence
of the phylogeny of nif-genes and the core part of
the genome [30, 31].

We have shown that the segregation of closely re-
lated leguminous plants can lead, in certain cases, to
changes in the genetic composition of their nodule
bacteria, which render their cross-inoculation impos-
sible. For O. baschkiriensis plants, the acquisition of
the ability to enter into symbiosis with native strains
of the nodule Mesorhizobium bacteria containing
unique nod-genes, which are detected nowadays
only in the nodule bacteria of legumes of Southern
Urals, can become an adaptive mechanism that can
contribute to the fixation of O. baschkiriensis in new
areas.

This work was financially supported by the Rus-
sian Foundation for Basic Research grant No. 17-
44-020201.
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