

ГЕНЕТИЧЕСКАЯ ТОКСИКОЛОГИЯ

УДК 632.95.025.8:577.153 DOI: 10.17816/ecogen14127-33

© О.В. Сундуков, И.А. Тулаева, Е.А. Зубанов

Всероссийский НИИ защиты растений, Санкт-Петербург

Дизруптивным отбором при инбредном размножении были получены чувствительные и резистентные линии обыкновенного паутинного клеща Tetranychus urticae Koch. к малатиону, бифентрину, абамектину и бромпропилату. Резистентных к малатиону клещей скрещивали с резистентными клещами других полученных линий. Самок межлинейных гибридов сравнивали по уровням смертности с клещами из гомозиготных линий, проявлявших резистентность к какому-либо из этих инсектоакарицидов. Тестирование проводили посемейно диагностическими концентрациями токсикантов. Смертность межлинейных гибридов во всех вариантах скрещиваний была в 2 раза выше, чем у гомозиготных клещей с геном резистентности только к действующему инсектоакарициду. Полученные результаты дают основание заключить, что взаимодействие генов резистентности v межлинейных гибридов паутинных клещей к инсектоакарицидам различных химических классов происходит по эпистатическому типу. Ген резистентности к действующему токсиканту оказывается гипостатическим.

ж Ключевые слова: паутинный клещ; резистентность; инсектоакарицид; генотип.

Поступила в редакцию 25.07.2015 Принята к публикации 18.03.2016

ЭПИСТАТИЧЕСКОЕ ВЗАИМОДЕЙСТВИЕ ГЕНОВ РЕЗИСТЕНТНОСТИ К АКАРИЦИДАМ У МЕЖЛИНЕЙНЫХ ГИБРИДОВ ОБЫКНОВЕННОГО ПАУТИННОГО КЛЕЩА

ВВЕДЕНИЕ

Сроки возможного использования инсектоакарицидов для борьбы с вредными членистоногими в значительной мере связаны с преодолением постоянно формирующейся к ним устойчивости у объектов, против которых эти химические средства применяются. Успешно противодействовать быстрому развитию резистентности у вредных членистоногих можно посредством познания генетических и биохимических механизмов, лежащих в основе процессов адаптивной эволюции, происходящих у них под действием химических обработок (Croft, De Baan., 1988; McKenzie, Batterham, 1994, 1998). С этой целью проведены генетические и токсикологические эксперименты с линиями обыкновенного паутинного клеща, отселектированными по факту наличия или отсутствия признака резистентности к инсектоакарицидам различных химических классов, а также с межлинейными гибридами, полученными при скрещивании клещей этих линий.

МАТЕРИАЛЫ И МЕТОДЫ

Эксперименты проведены на гомозиготных линиях обыкновенного паутинного клеща *Tetranychus urticae Koch.*, избирательно резистентных к какому-либо из выбранных инсектоакарицидов — малатиону, бифентрину, абамектину или к бромпропилату, а также на гибридах различных вариантов скрещивания клещей этих линий. Гомозиготные линии получены методом дизруптивного отбора при инбредном размножении (Сундуков и др., 2014, 2015).

Токсикологическое тестирование сопоставляемых генотипов проводили методом окунания отсчитанных и посаженных на кусочек кормового растения клещей в раствор диагностических (двукратно увеличенных значений ${\rm CK}_{95}$ для чувствительных к токсиканту клещей) весовых (в %) концентраций инсектоакарицидов, рассчитанных по действующему веществу препарата. Были использованы препаративные формы токсикантов — малатиона (50 % к. э. карбофоса), бифентрина (10 % к. э. талстара), абамектина (1,8 % к. э. вертимека) и бромпропилата (50 % к. э. неорона).

Учет смертности клещей проводили через сутки после окунания их в раствор токсиканта. На третьи сутки результат проверяли. Выживавшие после такой обработки особи считались имеющими ген резистентности к использованному инсектоакарициду.

Расчет среднелетальных концентраций и ${\rm CK_{95}}$ проведен методом пробитанализа по Литчфильду и Уилкоксону (Беленький, 1959). Статистическая обработка результатов токсикологических экспериментов — определение ошибки среднеарифметических значений процента смертности, а также ко-

 [—] концентрат эмульсии.

эффициента относительного рассеивания вариант, выполнена по формулам

$$\operatorname{Sp}\left(\%\right) = \sqrt{\frac{p\left(100 - p\right)}{n}} \; ;$$

$$v = \frac{\operatorname{Sp}(\%)}{\overline{x}} \times 100 \text{ (Yp6ax, 1964)}.$$

РЕЗУЛЬТАТЫ

Тетраниховые клещи относятся к наиболее вредоносным объектам сельскохозяйственных культур. Партеногенетический способ их размножения по типу арренотокии и очень короткий срок онтогенетического развития позволяет им чрезвычайно быстро наращивать численность в осваиваемых биотопах.

Самки тетраниховых клещей спариваются только в момент их выхода из линочной шкурки с оказавшимися в этот момент около них самцами. Сперматозоиды, полученные самкой при осеменении, сохраняются в течение жизни в семяприемнике и выходят из него по мере появления очередной созревшей яйцеклетки. Из оплодотворенных яйцеклеток развиваются диплоидные самки, а из неоплодотворенных — гаплоидные самцы. Самки количественно регулируют половую принадлежность особей в воспроизводимых ими генерациях путем оплодотворения определенной части откладываемых яиц. Соотношение самок и самцов с геном резистентности к малатиону в потомстве одной самки из инбредной линии, дизруптивно отобранной по признаку 100 % устойчивости к малатиону, представлено в таблице 1.

Вариабельность количества чувствительных к токси-канту самок — без гена резистентности к малатиону —

 $Taблица\ 1$ Процентное соотношение выживающих самок и самцов при тестировании их диагностической концентрацией малатиона в семьях дочернего инбредного поколения одной резистентной к малатиону самки

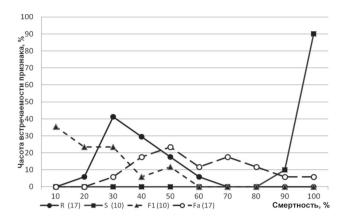
Семьи	Кол-во самок	Смертность самок (%)	Кол-во самцов	Смертность самцов (%)	
1	26	7,7	5	40,0	
2	24	4,2	6	50,0	
3	31	9,7	_	_	
4	18	16,7	9	44,4	
5	22	9,1	_	_	
6	12	8,3	_	_	
7	17	11,8	5	100,0	
8	22	0	_	_	
9	24	0	6	50,0	
10	12	25,0	12	41,7	
11	15	6,7	9	55,6	
12	19	5,3	_	_	
13	12	0	5	60,0	
14	23	13,0	5	20,0	
15	25	4,0	_	_	
16	12	8,3	17	47,1	
17	15	33,3	4	100,0	
18	19	15,8	12	58,3	
19	10	30,0	4	25,0	
20	16	6,3	6	50,0	
21	25	8,0	7	85,7	
22	12	16,7		_	
23	26	7,7	5	40,0	
24	14	14,3	_	_	
25	20	15,0	7	57,1	
26	12	25,0	_	_	
27	14	21,4	_	_	
28	11	9,1	_	_	
29	14	28,6	_	_	
	Σ522	\dot{x} =11,1±1,37 v=12,3±0,37	Σ124	\dot{x} =54,4±4,47 v=8,2±0,52	

 $Tаблица\ 2$ Процентное соотношение самок, выживающих при действии диагностической концентрации малатиона, в семьях 20-29 и 30-39 инбредных поколений дизруптивного отбора резистентной и чувствительной к нему линий обыкновенного паутинного клеща

Резистентная линия			Чувствительная линия				
семей	самок (n)	смертность (%)	v (%)	семей	самок (n)	смертность (%)	v (%)
21	238	$18,9 \pm 2,5$		9	75	$84,0 \pm 4,2$	
31	387	$13,7 \pm 1,7$		6	49	$95,9 \pm 2,8$	
32	480	$15,2 \pm 1,6$		8	79	$86,1 \pm 3,9$	
36	557	$16,0 \pm 1,5$		8	85	$92,9 \pm 2,8$	
39	548	$20,1 \pm 1,7$		8	81	$85,2 \pm 3,9$	
41	678	$43,5 \pm 1,9$		5	55	$74,5 \pm 5,8$	
25	389	$24,1 \pm 2,2$		10	101	$66,3 \pm 4,7$	
24	359	$32,9 \pm 2,5$		8	79	$79,7 \pm 4,5$	
23	299	$52,2 \pm 2,9$		9	86	$75,6 \pm 4,6$	
29	447	$41,1 \pm 2,3$		5	50	$82,0 \pm 5,4$	
Σ301	Σ4382	$\dot{x} = 27.8 \pm 2.1$	$7,5 \pm 0,08$	Σ76	Σ740	$\dot{x} = 82,2 \pm 4,2$	$5,1 \pm 0,13$
29	551	$10,9 \pm 1,3$		8	77	$76,6 \pm 4,8$	
24	488	$14,1 \pm 1,6$		11	109	$97,2 \pm 1,6$	
37	880	$18,1 \pm 1,3$		14	135	$89,6 \pm 2,6$	
28	451	$16,4 \pm 1,7$		13	128	$82,0 \pm 3,4$	
36	704	$11,3 \pm 1,2$		10	85	100	
25	347	$16,4 \pm 2,0$		9	89	$89,9 \pm 3,2$	
27	426	37.8 ± 2.3		10	97	$99,0 \pm 1,0$	
35	585	$14,3 \pm 1,4$		9	87	$94,2 \pm 2,5$	
27	437	$18,3 \pm 1,8$	·	15	154	$92,9 \pm 2,1$	
21	329	$20,7 \pm 2,2$		13	128	$90,6 \pm 2,6$	
Σ289	Σ5198	$\dot{x} = 17.8 \pm 1.7$	$9,5 \pm 0,09$	Σ91	Σ1089	$\dot{x} = 91,2 \pm 2,4$	$2,6 \pm 0,05$

в семьях нового потомства составляла от 0 до 30 %, а у самцов — от 20 до 100 %.

Анализ распределения генов резистентности к малатиону в большой выборке клещей — 20 инбредных поколениях дизруптивного отбора показал, что общее количество самок без гена резистентности к токсиканту составляет в среднем около 20 % (табл. 2). Такое состояние гомозиготности селектируемых линий клеща вызывает необходимость экспериментировать с большими выборками и оценивать результаты по среднестатистическим показателям.


Для получения межлинейных гибридов и возможной сопоставимости их по фенотипическим показателям проявлений признака резистентности к различным токсикантам была взята в качестве базовой резистентная к малатиону линия клещей. Показатель резистентности (ПР) клещей этой линии после 40 поколений дизруптивного отбора был определен равным $1111 \pm 54,1$. Этот показатель являлся частным от деления среднелетальных концентраций для самок устойчивой $(0,5 \pm 0,01;$ n = 225) и чувствительной $(0,00045 \pm 0,00002;$ n = 238) к малатиону линий.

По результатам гибридологического анализа выяснено, что признак резистентности к малатиону у клещей является доминантным. В поколении F₁ скрещивания самок и самцов резистентной и чувствительной линий с последующим тестированием гибридных самок диагностической концентрацией малатиона распределение по уровням смертности гибридных самок было таким же, как и в резистентной родительской линии (рис. 1).

При возвратном скрещивании гибридных самок F_1 с самцом чувствительной линии в семьях поколения F_a выявлены две группы дочерних особей после тестирования их диагностической концентрацией малатиона. Такое распределение гибридных самок по уровню смертности в зонах доминантного и рецессивного наследования признака резистентности (см. рис. 1) возможно лишь при моногенном его наследовании с комбинациями гамет у самок Rs и ss.

Молекулярным маркером наличия признака резистентности к малатиону у единичных самок паутинных клещей, как было показано выше (Сундуков и др., 2014), является значительно более высокая, чем у самок чувствительной к этому токсиканту линии, активность одной из множественных молекулярных форм карбоксилэстеразы.

Полученные показатели перекрестной резистентности (ППР) клещей резистентной к малатиону линии для бифентрина и абамектина свидетельствовали о полном отсутствии сходства биохимических механизмов устойчивости к этим токсикантам. Среднелетальные концен-

Рис. 1. Гибридологический анализ распределения семей по уровням смертности самок в родительских — чувствительной (S) и резистентной (R) к малатиону линиях, а также гибридов поколения F_1 и возвратного скрещивания F_3 после обработки диагностической концентрацией малатиона. В скобках указано количество взятых семей

трации бифентрина и абамектина для самок и чувствительной (s), и резистентной (R) к малатиону линии были статистически одинаковыми (табл. 3).

Обработка клещей резистентной и чувствительной к малатиону линий набором различных концентраций бромпропилата показала некоторое сходство механизмов противодействия отравлению этим токсикантом и малатионом. Среднелетальная концентрация бромпропилата для резистентных к малатиону самок была в 30 раз более высокой, чем для клещей чувствительной к малатиону линии (см. табл. 3).

Вариантами различных комбинаций скрещивания резистентных к малатиону клещей с клещами, отселектированными по факту проявления признака резистентности к бифентрину, абамектину и бромпропилату, исследован характер взаимодействия у межлинейных гибридов генов резистентности к этим токсикантам. Сопоставление проводили по токсикологическим показателям при дифференцированной обработке получаемых генотипов клещей диагностическими концентрациями инсектоакарицидов.

Среднестатистический показатель процента смертности межлинейных гибридов с генами резистентности к малатиону и к бифентрину от диагностической концентрации малатиона (табл. 4) был в реципрокных вариантах скрещивания в 1,5—2 раза выше, чем у самок

Таблица Заповаватели перекрестной резистентности к бифентрину, абамектину и бромпропилату устойчивых к малатиону самок обыкновенного паутинного клеща

Действующий	Среднел- концентраці	Показатели перекрестной резистентности	
токсикант	линия s-малатион	линия R-малатион	$(CK_{50}R/CK_{50}s)$
Бифентрин	$0,00015 \pm 0,00005$	$0,0001 \pm 0,00003$	0.6 ± 2.7
Абамектин	$0,000085 \pm 0,000005$	$0,00015 \pm 0,00002$	$1,7 \pm 2,5$
Бромпропилат	$0,0001 \pm 0,00001$	$0,003 \pm 0,0002$	$30 \pm 3,6$

Таблица 4 Смертность межлинейных гибридных самок обыкновенного паутинного клеща с различными комбинациями аллелей резистентности в геноме от диагностических концентраций инсектоакарицидов

Действующий токсикант	Варианты скрещивания	Кол-во семей	Кол-во ♀♀	Смертность $\mathcal{Q}\mathcal{Q}$ $(\dot{x} \pm \mathrm{Sp}, \%)$	Қоэффициент вариации (v, %)
Малатион	♀ R-мал × ♂ r-биф	28	275	$26,8 \pm 5,9$	$2,7 \pm 0,26$
малатион	♀ r-биф × ♂ R-мал	28	219	$32,8 \pm 6,6$	$3,2 \pm 0,15$
F., 4	♀ R-мал × ♂ r-биф	30	252	$80,2 \pm 5,0$	$2,5 \pm 0,11$
Бифентрин	♀ г-биф × ♂ R-мал	26	241	$75,0 \pm 5,7$	$2,8 \pm 0,13$
M	♀ R-мал × ♂ R -абам	25	167	$27,1 \pm 6,0$	$3,4 \pm 0,19$
Малатион	♀ R-абам × ♂ R-мал	28	179	$38,1 \pm 6,2$	$3,6 \pm 0,19$
16000000	♀ R-мал × ♂ R-абам	22	219	$60,3 \pm 5,5$	$3,3 \pm 0,16$
Абамектин	♀ R-абам × ♂ R-мал	19	160	$67,7 \pm 6,1$	$3,7 \pm 0,20$
Mananuau	♀ R-мал × ♂ r-бром	26	203	$33,8\pm5,6$	$3,3 \pm 0,16$
Малатион	♀ г-бром × ♂ R-мал	34	268	$37,9 \pm 5,6$	$2,9 \pm 0,13$
Епомироничест	♀ R-мал × ♂ r-бром	26	194	$69,5 \pm 5,1$	$3,3 \pm 0,17$
Бромпропилат	♀ г-бром × ♂ R-мал	34	322	61.8 ± 4.8	$2,7 \pm 0,10$

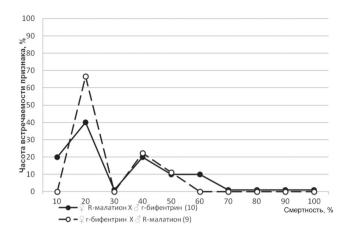


Рис. 2. Распределение по уровням смертности межлинейных гибридных самок с генами резистентности к малатиону и к бифентрину после обработки диагностической концентрацией малатиона. В скобках указано количество взятых семей

родительской линий с геном резистентности только к малатиону (см. табл. 2).

При действии на таких же гибридных самок диагностической концентрацией бифентрина их среднестатистическая смертность увеличивалась более чем в 2 раза (см. табл. 4), по сравнению с уровнем смертности самок ($28,9\pm5,0\%$) в линии клещей с признаком резистентности только к бифентрину (Сундуков и др., 2015).

Увеличение процента смертности межлинейных гибридных самок от диагностических концентраций токсикантов по сравнению с клещами гомозиготных линий, проявлялось также при совмещении в их геноме аллелей резистентности к малатиону и абамектину, малатиону и бромпропилату (см. табл. 4). Среднестатистическое значение процента смертности самок от диагностической концентрации абамектина в линии клещей с геном резистентности только к этому токсиканту составляло 29.4 ± 4.0 %, а при действии бромпропилата в отселектированной на устойчивость к нему линии — 26.6 ± 2.3 % (Сундуков и др., 2015)

Уровень смертности гибридных самок различался в зависимости от того, совмещались ли в геноме клещей доминантные аллели резистентности (к малатиону) с рецессивными аллелями химически неродственного по механизму действия токсиканта (см. табл. 3) — бифентрина или с доминантными аллелями резистентности также совершенно неродственного по токсическому действию соединения — абамектина. Процент смертности гибридных самок с генами резистентности к малатиону и к бифентрину от диагностической концентрации бифентрина был существенно выше, чем от диагностической концентрации абамектина у гибридов с генами резистентности к малатиону и к абамектину (см. табл. 4).

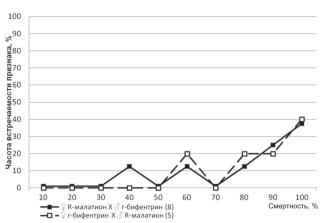


Рис. 3. Распределение по уровням смертности межлинейных гибридных самок с генами резистентности к малатиону и к бифентрину после обработки диагностической концентрацией бифентрина. В скобках указано количество взятых семей

Достоверных различий в проценте смертности межлинейных гибридных самок от диагностических концентраций токсикантов в вариантах реципрокных скрещиваний, когда одни и те же аллели резистентности оказывались в геноме гибридных особей от диплоидных самок или от гаплоидных самцов, не выявлено (см. табл. 4).

Графический анализ количественного распределения по уровням смертности гибридных самок с совмещенными аллелями резистентности к малатиону и к бифентрину выявил различия в проявляющейся у них ответной физиологической реакции на отравление отдельно каждым из этих токсикантов. При обработке таких межлинейных гибридов диагностической концентрацией малатиона основная масса выживающих самок располагалась в зоне доминантного наследования признака (рис. 2), как в поколении F_1 гибридологического скрещивания клещей чувствительной и резистентной к этому токсиканту линий (см. рис. 1).

При обработке таких же гибридных самок с аллелями резистентности к малатиону и к бифентрину диагностической концентрацией бифентрина процентные градации выживающих в семьях особей (рис. 3) соответствовали расположению кривой поколения F_1 , получаемого от скрещивания резистентностых и чувствительных к бифентрину клещей (Сундуков и др., 2014), в области рецессивного наследования признака.

Эти результаты позволяют заключить, что характер физиолого-биохимической ответной реакции на отравление гибридных самок обыкновенного паутинного клеща с совмещенными в геноме аллелями резистентности к инсектоакарицидам различного механизма действия зависит только от того, какой из токсикантов действует на них в каждом конкретном случае. Присутствующие в геноме межлинейных гибридов аллели резистентности к инсекто-

акарициду с другим физиологическим механизмом токсического эффекта подавляют фенотипическое выражение гена устойчивости к действующему токсиканту.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Чередование применяемых для защиты сельскохозяйственных культур от вредных членистоногих инсектоакарицидов с различными механизмами токсического действия считается способом, затрудняющим формирование резистентных к ним популяций. Такая антирезистентная стратегия по устоявшемуся представлению, приводит к появлению мультиустойчивых форм вредителей с кумулятивным эффектом устойчивости ко всем компонентам системы в ротационной схеме химических обработок (Leeuwen et al., 2004; Roush, McKenzie, 1987).

Как свидетельствуют полученные экспериментальные данные, взаимодействие аллелей резистентности в геноме межлинейных гибридов обыкновенного паутинного клеща является не комплементарным, а эпистатическим. Во всех скомбинированных совмещениях генов резистентности к токсикантам различного механизма действия как минимум в полтора раза увеличивается смертность межлинейных гибридов при отравлении их любым инсектоакарицидом, аллели резистентности к которому присутствуют в геноме гибридных клещей, по сравнению с гомозиготными особями, имеющими ген резистентности только к этому токсиканту.

Экстраполируя полученные сведения на проводимые в сельскохозяйственной практике защитные мероприятия можно утверждать, что при замене используемого против членистоногих инсектоакарицида на препарат с другим механизмом токсического действия первоначально всегда будет выявляться ожидаемый удовлетворительный токсический эффект. Высокий уровень резистентности к какому-либо из токсикантов проявится при существенном сдвиге популяционного баланса генотипов в сторону увеличения количества гомозиготных по этому признаку особей. Быстрота такого генотипического преобразования популяции будет зависеть от числа проводимых каждым инсектоакарицидом обработок и количества сезонных генераций вида, против которого направлены истребительные мероприятия. Биология и партеногенетический способ размножения тетраниховых клещей дают им преимущества по сравнению с другими членистоногими для быстрого наращивания численности и ускоренного развития устойчивости к любому пестициду.

ЛИТЕРАТУРА

1. Беленький М.Л. Элементы количественной оценки фармакологического эффекта. Рига: АН Латв. ССР, 1959. [Belenkiy ML. Elements of quantitative estimate

- of pharmacological action. Riga: AN Latv. SSR; 1959. (In Russ).]
- 2. Сундуков О.В., Тулаева И.А., Зубанов Е.А. Наследование признаков резистентности к акарицидам в инбредных линиях обыкновенного паутинного клеща // Экол. генетика. 2014. Т. 12. № 3. С. 43—51. [Sundukov OV, Tulaeva IA, Zubanov YA. *Ecol. Genetics*. 2014;12 (3):43-51. (In Russ).]
- 3. Сундуков О.В., Тулаева И.А., Зубанов Е.А. Проявление признаков резистентности к инсектоакарицидам в инбредных линиях обыкновенного паутинного клеща при дизруптивном отборе // Экол. генетика. 2015. Т. 13. № 3. С. 76—84. [Sundukov OV, Tulaeva IA, Zubanov Y A. Ecol. Genetics. 2015;13(3):78-84. (In Russ).]
- 4. Урбах В.Ю. Биометрические методы. М.: Наука, 1964. [Urbah VY. Biometrical methods. Moscow: Nauka; 1964. (In Russ).]
- Croft BA, De Baan HE van. Ecological and genetic factors influencing evolution of pesticide resistance in tetranychid and phytoseid mites. *Exp Appl Acarol*. 1988;4:277-300. doi: 10.1007/BF01196191.
- 6. Leeuwen T van, Stillatus V, Tirry L. Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). *Exp Appl Acarol.* 2004;32:249-261. doi: 10.1023/B:APPA.0000023240.01937.6d.
- 7. McKenzie JA, Batterham P. The genetic, molecular and phenotypic consequences of selection for insecticide resistance. *Trends Ecol Evol.* 1994;9:166-169. doi: 10.1016/0169-5347(94)90079-5.
- 8. McKenzie JA, Batterham P. Predicting insecticide resistance: mutagenesis, selection and response. *Philos Trans Royal Sos Lond B.* 1998;353:1729-1734. doi: 10.1098/rstb.1998.0325.
- 9. Roush RT, McKenzie JA. Ecological genetics of insecticide and acaricide resistance. *Ann Rev Entomol.* 1987;32:361-380. doi: 10.1146/annurev. en.32.010187.002045.

EPISTATIC INTERACTION OF RESISTANCE GENES TO ACARICIDES IN INTERLINE HYBRIDS OF TWO-SPOTTED SPIDER MITE

O.V. Sundukov, I.A. Tulaeva, E.A. Zubanov

SUMMARY: Background. Study of the genetic bases of pesticide resistance of arthropods for sustainable rational pest control is important. **Materials and methods.** The disruptive selection cycles were conducted with inbred arrhenotokous reproduction of two-spotted spider mites Tetranychus urticae Koch. The resistant and susceptible lines of two-spotted spider mites to malathion, bifenthrin, abamectin and bromopropylate were obtained. The tests were performed by diagnostic concentrations of toxicants. **Results.** The resistant spider mites to malathion were crossed with resistant spider mites to bifenthrin, abamectin and bromopropylate. Mortality of interline hybrids

in all variants of crosses were 2 times higher than mortality of spider mites with the gene resistance only to the current toxicant. **Conclusion.** The interaction of resistance genes to various toxic compounds in interline hybrids of spider mites is the type of epistasis. The resis-

tance gene to the current pesticide in heterogeneous spider mites is hypostatic.

® KEYWORDS: spider mite *Tetranychus urticae*; resistance; pesticide; genotype.

🕸 Информация об авторах

Олег Вениаминович Сундуков — канд. биол. наук, старший научный сотрудник, лаборатория экотоксикологии. Всероссийский научно-исследовательский институт защиты растений (ФГБНУ ВИЗР). E-mail: Sunduckov.oleg@yandex.ru.

Ирина Анатольевна Тулаева — канд. биол. наук, научный сотрудник, лаборатория экотоксикологии. Всероссийский научно-исследовательский институт защиты растений (ΦГБНУ ВИЗР). E-mail: zubanov63@yandex.ru.

Евгений Александрович Зубанов — канд. биол. наук, старший научный сотрудник, лаборатория экотоксикологии. Всероссийский научно-исследовательский институт защиты растений (ФГБНУ ВИЗР). E-mail: zubanov63@yandex.ru.

Oleg V. Sundukov — PhD, Senior scientist, Laboratory ecotoxicology. All-Russian Institute of Plant Protection (FSBSI VIZR). E-mail: Sunduckov.oleg@yandex.ru.

Irina A. Tulaeva — PhD, scientist, Laboratory ecotoxicology. All-Russian Institute of Plant Protection (FSBSI VIZR). E-mail: zubanov63@yandex.ru.

Evgeniy A. Zubanov — scientist, Laboratory ecotoxicology. All-Russian Institute of Plant Protection (FSBSI VIZR). E-mail: zubanov63@yandex.ru.