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ABSTRACT

The review summarizes ideas about the role of polymorphic variants of redox-sensitive genes that regulate the develop-
ment of oxidative stress in obesity and associated metabolic diseases. The concept of oxidative stress, activated oxygen me-
tabolites (AOM), which include reactive forms of oxygen, nitrogen, and chlorine, is considered, and an idea of the antioxidant
system and its enzymatic link is given. The important role of gene polymorphism of AOM-producing enzymes — CYBA, CYBB,
MT-ND1/2/4L, MT-CO1/3, XOR, CYP, NOS2/3, MPO — in the induction of oxidative stress in obesity has been shown.
The dualism of AOM in obesity is emphasized: on the one hand, they are necessary for normal adipogenesis and signaling, and,
on the other hand, they play a trigger role in the development of oxidative stress. It has been demonstrated that an imbalance
in antioxidant system in obesity and metabolic disorders may be associated with variability in the genes of key antioxidant
enzymes and proteins — S0D1/2/3, CAT, GPX1-8, GSR, GSTP1, GSTM1, GSTT1, PRDX3, TXNIP, HMOX1, NQOT, NFE2L2, KEAP1.
The critical role of polymorphism in the Nrf2 transcription factor gene, the main regulator of redox homeostasis under physio-
logical conditions and in obesity, has been demonstrated. It has been demonstrated that disruption of redox homeostasis due to
genetic variability of the prooxidant-antioxidant system contributes to the development of the pathological obesity phenotype.
Understanding the genetic mechanisms underlying oxidative stress in obesity and metabolic diseases is necessary to expand
knowledge about the mechanisms of pathogenesis of these diseases and to develop effective methods for their correction.
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Ponb nonumMopgusMa peaoKc-4yBCTBUTENIbHBIX
reHoB B MeXaHW3MaX OKUCJIUTEJIbHOro cTpecca

Npy 0XXMpEeHUU U MeTabonnyeckux 3aboneBaHuaAXx
M.A. WKypar, E.B. MawkuHa, H.M. Munotuna, T.01. Wkypart

tOxHbIM depepanbHbIi yHUBepcuTeT, PocToB-Ha-[loHy, Poccus

AHHOTAUMA

B 0630pe 0606LLeHbI NpeacTaBneHMs 0 posu NoAMMOpPdU3Ma pefoKC-HyBCTBUTESNIbHBIX TEHOB, PEryNMpYIOLLMX pasBu-
TUe OKUCNIUTENBHOrO CTPecca, NPX 0XKMPEHUN M aCCOLMMPOBaHHbIX MeTabonnueckux 3aboneBanusx. PaccMoTpeHa KoHuenums
OKUC/IUTENIBHOTO CTpecca, aKTMBMPOBAHHBIX KMCNOPOAHbIX MeTabonmtoB (AKM), K KOTOpbIM OTHOCATCA aKTMBHblE (HOpMbI
KMCIOpOAa, a3oTa U XNopa, AaHo NpeacTaBneHne 06 aHTUOKCUIAHTHOM cucTeMe U ee epMeHTaTMBHOM 3BeHe. loKasaHa
Ba)kHas posib nonMMopdusMa reHos AKM-nponyumpytowmx gpepmentos — CYBA, CYBB, MT-ND1/2/4L, MT-C01/3, XOR, CYP,
NOS2/3, MPO — B MHLYKUMW OKUCIMUTENBHOTO CTpecca npu oxupenuu. Moayepkuaetcs ayanusm AKM npu oxupenmm,
C O[IHOW CTOPOHbI, HE0BXOAMMBIX 4151 HOPMAJIbHOr0 afMMoreHe3a W CUrHaauHra, a C APYroi — BbIMNOHSIOLMX TPUITEPHYIO
pofb B PasBUTUW OKUCIUTENBHOIO cTpecca. [poAeMOHCTPUPOBaHO, YTo AucHbanaHc B aHTMOKCUMAAHTHOW CUCTEME MpPU OXK-
PeHNUM 1 MeTabonMYecKUX paccTpOMCTBaX MOXKET ObiTb CBA3aH C BapuabenbHOCTbI0 FeHOB KITYEBbIX aHTUOKCUAHTHBIX dep-
MeHTOB u benkos — S0D1/2/3, CAT, GPX1-8, GSR, GSTP1, GSTM1, GSTT1, PRDX3, TXNIP, HMOX1, NQO1, NFE2L2, KEAPI.
lMoKa3aHa KpUTUYeCKas ponb nosuMopdusMa reHa daktopa TpaHckpunuum Nrf2, rnaBHoro perynsrtopa pefoKc-roMeoctasa
B (M3MONOrMYECKMX YCNOBUSAX W NPU 0XKMpeHuK. IpofeMOHCTPUPOBaHO, YTO HapyLleHue pefoKC-roMeocTasa BCleACcTBUe
BapuabenbHOCTV FeHOB CUCTEMbI OKCWAAHTBI — aHTMOKCMAAHTBI CMOCOBCTBYET PasBUTWI0 NaTONOrMYECcKoro eHoTUna oXu-
peHus. [loHMMaHWe reHeTUYECKUX MeXaHM3MOB, JIeXallux B OCHOBE OKMCITUTENTBHOr0 CTpecca Mpu 0XUPeHUW 1 MeTabonuye-
CKuX 3aboneBaHusX, HeobxoAMMO 1A paclUMpeHUs 3HaHUWA 0 MexaHU3Max naToreHe3a AaHHbIX 3aboneBaHuii U paspaboTku
3 deKTUBHBIX CNOCOBOB MX KOPPEKLIMK.

KnioueBble cnoBa: 0XXUpEHHe; MeTabonuyeckue 3ab01eBaHUS; OKUCIUTENbHbIN CcTpecc; ﬂOJ'IVIMOpCI)VBM reHoB.
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BACKGROUND

Obesity is a multifactorial chronic disease character-
ized by excessive accumulation of fat mass in the body,
which poses a health risk [1]. It is one of the most com-
mon diseases globally, which has recently reached pan-
demic levels. The prevalence of obesity has tripled over
the past four decades [1, 2]. According to World Health
Organization, almost 20% of the global population will be
obese by 2025, if this trend continues.

The etiology of obesity includes many factors, with
eating disorders (alimentary hedonism and changes in
diet), genetic predisposition, physical inactivity, adverse
environmental influences, and social factors being the
most important [1]. The heritability of obesity ranges
from 40% to70% [3]. The most common form of obesity
is polygenic, caused by many gene variants that form
the pathological phenotype of obesity. To date, due to
large-scale genome-wide association searches, more
than 1,100 loci associated with obesity have been identi-
fied, but research in this area continues [1].

Obesity usually results from energy imbalance, when
the amount of energy obtained from the food consumed
exceeds the energy expended in life processes. If case of
excess energy, lipids accumulate in adipose tissue cells,
thus leading to an increase in their mass [2]. Obesity is di-
agnosed by body mass index (BMI), which is calculated as
the ratio of body weight in kilograms to the square of height
in meters. Normal BMI ranges from 18.5-24.9 kg/m?.
BMI of 25 kg/m? and higher is classified as overweight,
whereas BMI of 30 kg/m? and higher is classified as obe-
sity.

Obesity is often accompanied by concomitant metabo-
lic disorders, the most common of them being metabolic
syndrome (MS), insulin resistance (IR), type 2 diabetes
mellitus (T2DM), cardiovascular diseases, dyslipidemia,
reproductive disorders, chronic liver and kidney dis-
eases, arthrosis, and some types of cancer [4]. Chronic
oxidative stress (0S) plays a critical role in the patho-
genesis of obesity and associated metabolic disorders
[5, 6].

0S is defined as an imbalance in the oxidants <> anti-
oxidant system, accompanied by high free radical oxida-
tion against the antioxidant system dysfunction, which
leads to damage to biomolecules and cell structures [7, 8].
The most important inducers of 0S are highly reactive
intermediates that are formed during metabolism as a
result of redox reactions or by electron excitation with
the participation of molecular oxygen [8]. Depending
on the nature of the reactive atom (oxygen, nitrogen,
or halogens), reactive species are grouped into reac-
tive oxygen species (ROS, 0,~, H,0,, OH', '0,), reactive
nitrogen species (RNS, NO', NO,", ONOO"), and reactive
halogen species (RHS, HOCL, HOBr, HOI) [8]. Generally,
all these compounds are prooxidants and called activated
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oxygen metabolites (AOM), i.e., a class of highly reactive
oxygen compounds of radical and nonradical nature [9].
The maintenance of redox homeostasis is ensured by the
antioxidant system including enzymatic and nonenzymatic
antioxidants [9, 10]. By definition [11], “an antioxidant is
any substance that, when present in low concentrations
compared to the oxidized substrate, delays significantly
or prevents its oxidation.”

The regulation of OS is under strict genetic and epi-
genetic control, which maintains redox homeostasis of
the body as a necessary condition for normal function-
ing [12, 13]. Any uncompensated imbalance in the re-
dox system contributes to the development of 0S and
various pathological conditions [7]. 0S is classified into
eustress and distress [8]. During oxidative eustress, the
increase in AOM levels does not exceed physiological
limits, which ensures signal transmission and protec-
tion against pathogens. In contrast, oxidative distress is
accompanied by a significant increase in of AOM levels,
which leads to irreversible oxidative modification of mac-
romolecules, cell death, and the initiation of pathological
processes.

The leading processes associated with obesity, along
with 0S, include inflammation and hypoxia [14, 15].
Additionally, obesity is accompanied by 0S, and 0S can
initiate the development of obesity by stimulating the de-
position of white adipose tissue, an increase in differen-
tiation of preadipocytes, proliferation of adipocytes, and
an increase in the size of mature fat cells [5].

The most important molecular mechanisms that in-
duce the production of AOM and systemic 0S in obe-
sity include hyperglycemia and autoxidation of glucose,
dyslipidemia, high activity of oxidants that leads to
overproduction of AOM, antioxidant system deficiency,
mitochondrial and endothelial dysfunction, chronic in-
flammation, and hyperleptinemia [16—18]. The seve-
rity of systemic 0S positively correlates with BMI and
obesity [6].

Among the various determinants of obesity associated
with 0S, the most important role is played by genetic
factors, namely, polymorphism of genes that regulate 0S
and epigenetic regulation. Figure 1 presents the com-
position of redox-sensitive genes and their role in the
development of OS in obesity and metabolic pathologies.
Redox-sensitive genes that control the development of
0S are represented by two groups with oppositely di-
rected functions, namely, genes of AOM-producing en-
zymes that contribute to the development of OS (CYBA,
CYBB, MT-ND1/2/4L, MT-C01/3, XOR, CYP, N0S1/2/3,
and MPO0) and genes of antioxidant enzymes (S0D1/2/3,
CAT, GPX1-8, GSR, GSTPI, GSTMI, GSTTI, PRDX3,
TRX, TXNIP, HMOX1, and NQOT), as well as proteins of
Nrf2-dependent signaling system (NFE2L2 and KEAPT),
which counteract oxidative distress, i.e., the state
of acute 0S.
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Fig. 1. Composition of redox-sensitive genes and their role in the development of oxidative stress in obesity and metabolic

diseases

Puc. 1. Cocras PeAOKC-4yBCTBUTEJIbHbIX TEHOB U UX POJib B PasBUTUN OKUC/IUTEJIbHOIO CTpecca NMpu O0XXWpeHun u MeTabonnyecKux

3aboneBaHMAX

Accordingly, this review aimed to examine the char-
acteristics of the influence of polymorphism of genes of
AOM-producing and antioxidant enzymes on changes in
the redox balance leading to OS in obesity and concomi-
tant metabolic diseases.

POLYMORPHISM OF GENES CODING
AOM-PRODUCING ENZYMES IN OBESITY
AND METABOLIC DISEASES

The most important sources of AOM in obesity are
prooxidant enzymes that produce ROS, RNS, and RHS
[14, 19, 20]. Additionally, dysfunction of prooxidant en-
zymes due to polymorphism of coding genes can modulate
the formation of AOM, thereby increasing or decreasing
the level of 0S [12, 13]. AOMs are effectively generated
by the family of NADPH oxidases, enzyme complexes of
the electron transport chain (ETC) of mitochondria, xan-
thine oxidase (X0), the family of cytochrome P 450 iso-
forms (CYP), and NO synthases, myeloperoxidase. [9, 10].
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NADPH oxidase and mitochondrial ETC play a leading
role in generating ROS in obesity and associated metabolic
disorders [21, 22]. NADPH oxidase (NOX) is a multisubunit
protein complex that generates 0,7/H,0, by transferring
electrons from cytosolic NADPH to molecular oxygen [23].
The structure of NOX consists of six heterogeneous sub-
units, two of which are membrane-bound (gp91phox
and p22phox) and four are cytosolic (p47phox, p40phox,
p67phox, and Racl/2). NADPH oxidases form a family
that includes seven homologous isoforms (NOX1-NOX5,
Duox1 and 2) [23, 24]. The membrane subunits of the
enzyme complex, p22phox (a-subunit) and gp91phox
(B-subunit), form a heterodimeric flavohemoprotein
cytochrome b-245, which forms the catalytic electron
transport oxidase system [23]. After cellular activation,
cytosolic components are transferred to the membrane
and associate with cytochrome b-245, resulting in the
formation of a functionally active NADPH oxidase.

The expression of various NOX isoforms is charac-
terized by tissue specificity, as Nox4 is predominantly
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localized in adipocytes, whereas Nox2, Nox4, and Duox1,2
are predominantly localized in muscle tissue [25].
Additionally, depending on the stage of obesity, the
mechanism of 0,7/H,0, generation has its own charac-
teristics [25]. The main contribution to the generation of
ROS in adipocytes is Nox4 at the early stage of obesity,
and Nox2 at the intermediate stage, due to the infiltra-
tion of adipose tissue by macrophages and leukocytes.
At the later stages of obesity, the mitochondrial ETC plays
a key role in generating ROS, which, due to hyperglyce-
mia and dyslipidemia, experiences an overload, leading
to electron leakage from the ETC and the reduction of
molecular oxygen with the formation of 0,7/H,0,. ROS
generated by NADPH oxidases can induce the formation
of mito-ROS by mitochondria and vice versa, which forms
a vicious circle and increases the development of 0S
in obesity [22].

In obesity, ROS play a dual role. They are necessary
for adipogenesis and are the most important secondary
messengers in adipocyte signaling cascades, but when
overproduced, they contribute to hypertrophy and hyper-
plasia of adipose tissue, i.e., its dysfunction and various
metabolic disorders [26].

Many allelic variants in the genes of NADPH oxidase
subunits can affect enzymatic activity and ROS produc-
tion [12]. Subunit p22phox functions as a scaffold that
stabilizes cytochrome b-245, and promotes the initiation
of superoxide production by NOX1-NOX4 isoforms [23].
It is encoded by the CYBA (cytochrome b-245 alpha chain)
gene located on chromosome 16q24.2.

The —930A>G substitution (rs9932581) in CYBA oc-
curs in a potential binding site for transcription factors
C/EBP (CCAAT/enhancer-binding proteins). The —9306 al-
lele increases the affinity of C/EBP for the promoter [27]
and increases gene expression by 30% [28]. Accordingly,
the GG CYBA genotype promotes high enzyme levels
and high ROS production, which is associated with the
development of 0S, higher BMI, HOMA-IR and insulin
levels, the risk of insulin resistance, and hypertension
(21, 27, 28].

A substitution in the CYBA gene (rs4673 His72Tyr)
at the 242C>T locus also affects NOX activity [29, 30].
The 242T allele is associated with low stability and acti-
vity of the enzyme complex and low levels of ROS produc-
tion [31]. However, the CC genotype provides protection
against obesity and diabetes mellitus and is associated
with lower plasma glucose levels and visceral fat in pa-
tients with hypertension [30].

Yu. Azarova et al. [32] reported that, in the Russian
population, the AA genotype of the CYBA gene (rs4673,
G>A) in the general group was associated with a high
risk of developing T2DM and high BMI. The association of
rs4673 a high risk of T2DM and high MBI occurred only
in women. The 242C>T substitution is associated with the
development of metabolic syndrome in Iranian men, as
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the T allele was associated with a low risk of developing
MS in men, but not in women [33]. Additionally, this sub-
stitution in the CYBA gene significantly affects endothelial
function in T2DM patients, and the T allele has a pro-
tective effect [34]. Patients with T2DM and the CT or TT
genotype have significantly lower BMI values and insulin
concentrations than patients with the CC genotype [35].

In central Russia, rs1049255 640A>G CYBA is as-
sociated with the development of IHD only in men and
is not associated with a predisposition to the disease in
women [36]. This single-nucleotide substitution, localized
in the 3'UTR region of the CYBA gene, does not lead to
an amino acid substitution; however, the AA genotype
is associated with a 30% higher ROS production than
in GG homozygotes [37], suggesting that the G allele is
protective. Analysis of mQTL (methylation quantitative
trait locus) revealed that the risk allele A rs1049255
CYBA is associated with cis-mQTL associated with
a decrease in DNA methylation in peripheral blood.
Thus, carriage of the A allele may contribute to high
CYBA expression through mQTL-associated decrease
in methylation.

In Slavic population, single-nucleotide substitu-
tions in CYBB introns (beta chain of cytochrome b-245,
gp91phox), rs5963327 G>T and rs6610650 G>A are as-
sociated with a high risk of T2DM [38]. CYBB is located
on the short arm of the X chromosome at position 21.1
and contains 13 exons. The mechanism of relationship
between these allelic variants and the disease involves a
more intense synthesis of CYBB in carriers of the minor
alleles, which manifests as an increase in the concen-
tration of ROS and a prooxidant shift in redox homeo-
stasis in the blood plasma. Among all the subunits of
NADPH oxidase (nicotinamide adenine dinucleotide
phosphate, reduced form), only gp91phox contains bind-
ing sites for the cofactors NADPH, FAD (flavin adenine
dinucleotide), and two heme molecules, crucial for the
catalytic activity of the enzyme and electron trans-
port that results in the formation of superoxide anion
radical [23].

Increasing evidence suggests the role of mitochon-
drial dysfunction in the pathogenesis of obesity and as-
sociated metabolic disorders [14, 39]. Metabolic overload
of mitochondria in obesity leads to lipo- and glucotoxic-
ity, 0S, and mitochondrial damage. Recent studies have
shown a decrease in the number of mitochondria, sup-
pression of the activity of mitochondrial enzymes, and
dysregulation of mitophagy in patients with obesity,
T2DM, or MS [16, 40].

Mitochondrial dysfunction in obesity can be caused by
single-nucleotide substitutions in genes encoding pro-
teins of the mitochondrial respiratory chain [41-43]. In an
association search to identify genetic markers associated
with high BMI and obesity, 984 mitochondrial single-nu-
cleotide substitutions (mtSNPs) were tested in a sample
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of 6528 adults aged from 24 to 85 years [42]. The authors
identified three mtSNPs (mt3336T>G, mt4851C>T, and
mt10550A>G) localized in the genes of subunits of ETC
complex I, NADH dehydrogenase (MT-ND1, MT-ND2, and
MT-NDA4L) and two mtSNPs (mt6663A>G and mt9698T>C)
located in genes encoding subunits of complex 1V, cyto-
chrome-c-oxidase (MT-CO1 and MT-C03), as being as-
sociated with obesity. Disruption of the structure of ETC
complexes is accompanied by inhibition of the electron
transport function of the ETC, electron leakage, and one-
electron reduction of 0, with the formation of ROS, which
initiates the development of mitochondrial 0S [44].

The 3497C>T (Ab64V) substitution in the NADH de-
hydrogenase subunit 1 gene (ND1) is associated with
obesity and reduces the functional activity of complex I,
increasing the production of ROS [41]. More than 11 ROS
generation sites have been identified in mitochondria,
which, under physiological conditions, can produce up
to 2-3% of 0,7/H,0,, whereas under pathological condi-
tions, including obesity, the intensity of ROS formation
can increase ten-fold, creating a conducive environment
for the development of 0S [44].

Prooxidant enzymes involved in the generation of ROS
include X0, an isoform of xanthine oxidoreductase (XOR).
XOR is encoded by the XOR gene (XDH, 2p23.1) and is
involved in the catabolism of purines to uric acid; is rep-
resented by two isoforms, namely, dehydrogenase (XD)
and oxidase (X0) [45]. Conversion of XD to X0 post-trans-
lationally and can be reversed by oxidation of cysteine
residues (Cys535 and Cys992), but can be rendered ir-
reversible through limited proteolysis of a fragment of
the XD polypeptide chain [45]. The transformation of XD to
X0 can also be a consequence of the XOR gene polymor-
phism [46]. Nonsynonymous single-nucleotide substitu-
tions are decisive in the XD/X0 ratio. With His1221Arg
and Ile703Val substitutions, the oxidase isoform of the
enzyme predominates over the dehydrogenase isoform,
which makes a significant contribution to the develop-
ment of 0S in obesity.

In a study of 118 overweight/obese individuals, it was
revealed that high X0 activity is closely associated with
obesity [47].

The polymorphism of the XOR gene determines the
different role of the enzyme in obesity, as XOR has vari-
ous types of activity [45]. Additionally, with all types of
XOR activity, uric acid is formed, and, as a result of oxi-
dase activity, 0,7'/H,0, is also produced, and with nitrite/
nitrate reductase activity, nitric oxide is produced.

An important ROS source in the body is the cyto-
chrome P450 (CYP) superfamily, which is represented by
57 functionally active genes [48]. The CYP superfamily is
a diverse group of heme-containing monooxygenases that
are involved in the metabolism or biotransformation of
xenobiotics and drugs and in the biosynthesis of endoge-
nous molecules, such as sterols, fatty acids, eicosanoids,
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and vitamins. CYPs are expressed and localized on the
cytoplasmic side of the endoplasmic reticulum (50 CYPs)
and luminal side of the inner mitochondrial membrane
(7 CYPs) of cells in most tissues [48]. However, during
the functioning of CYP, ROS can be formed during the
catalytic cycle and its uncoupling [49]. Particularly, the
substitutions Ile269Phe (CYP2C8*2) and Arg139Lys with
Lys399Arg (CYP2C873) of epoxygenase are localized not
in the active site but in the apoenzyme, which affects
the interaction with redox partners (cytochrome P450
reductase) in the catalytic cycle. This increases the rate
of electron transfer and substrate turnover, which is ac-
companied by excess production of hydrogen peroxide
and other ROS [50]. Modulation of CYP activity in obe-
sity, associated with polymorphism of coding genes, is
involved in disruption of the catalytic cycle and increasing
generation of ROS [51].

A study of the Russian population examined the as-
sociation of single-nucleotide substitutions in genes en-
coding the subfamily of cytochrome P450 CYP2C enzymes
involved in the metabolism of arachidonic acid to form
various vasoactive products with the risk of IHD deve-
lopment [52]. A protective effect of the CYP2C1972 al-
lele (rs4244285) against the risk of IHD was revealed.
This 681G>A substitution in exon 5 creates an aberrant
splice site that changes the reading frame of the mRNA
and leads to the formation of a truncated, nonfunc-
tional protein. The CYP2C19*2 variant is associated with
a partial loss of function, a decrease in enzyme activity,
thereby leading to a decrease in ROS production by cyto-
chrome P450, which, to a certain extent, protects against
0S characteristic of IHD.

The source of RHS is the enzyme myeloperoxi-
dase (MPO), a hemoprotein that is abundantly expressed
in neutrophils and, to a lesser extent, in monocytes and
macrophages. It is involved in inflammatory response ini-
tiation in adipose tissue [53]. The prooxidant enzyme MPO
(MPO, 17923.1) catalyzes the formation of RHS (HOCI,
HOBr, etc.), which have a bactericidal effect and are early
biomarkers of inflammation [54]. When produced exces-
sively, RHS damages various macromolecules, causing
halogenation stress [54]. The number of neutrophils and
peripheral blood level of MPO are significantly increased
in the plasma of obese patients, which indicates a posi-
tive correlation between MPOQ activation and metabolic
disorders associated with obesity [55].

A functionally significant substitution, 463G>A
(rs2333227), was identified in the MPO gene promoter [56].
The presence of guanine at position —463 creates a bind-
ing site for the SP1 transcription factor in the MPO gene
promoter, which increases transcription of the gene
25-fold. However, MPO expression level depends on the
cell type [57]. The GA genotype is characterized by 1.6—
2.5 times higher MPO mRNA levels than the GG genotype
in human peripheral blood mononuclear cells; however,
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in macrophages, the GG genotype is associated with
4.6-7 times higher levels of MPO than the GA genotype.

A study [58] revealed that the —463GA and AA MPO
genotypes are associated with an increased risk of ar-
terial hypertension in patients with obesity and T2DM.
In [59], in examination of 97 obese children with MS,
it was established that the GG genotype at rs2333227 of
the MPO gene contributed to the greatest risk of develop-
ing OS and IR.

In a population in central Russia, an association of
rs2333227-463G>A MPO with the development of isch-
emic heart disease has been reported [36]. Allele A is
protective, whereas the functionally more active allele
G contributes to high risk of developing IHD and 0S due
to increased generation of RHS. Hypochlorite (HOCL), the
most important product of the MPO reaction, in the pres-
ence of Fe?" generates a highly toxic hydroxyl radical
(OH"), which initiates lipid peroxidation (LPO) and causes
oxidative damage to hiomembranes and hiomolecules
[9, 10].

Another important source of AOM in obesity is the
family of NO synthases (NOS), which, in a monooxygen-
ase reaction, produce nitric oxide (NO), a precursor of
RNS (NO,’, ONOO-, etc.) [60]. NO is formed by the oxi-
dation of the guanidine group of L-arginine with oxygen
involving NO synthases. Moreover, L-citrulline is formed
in the reaction. NO synthase, which is a dimeric flavo-
hemoprotein, is represented by three isoforms, namely,
NOS1 (neuronal), NOS2 (inducible), and NOS3 (endo-
thelial), each of which is encoded by a separate gene.
These three NOS isoenzymes may influence the etiology
of obesity through the production of NO, which plays an
important role in regulating obesity, energy expenditure,
and insulin sensitivity [60].

NO is one of the central factors that regulate obe-
sity and systemic metabolism [60, 61]. The role of
NOS3 gene polymorphism (7q36.1) in obesity and associ-
ated metabolic disorders has been extensively studied
[60, 62]. Clinical and experimental studies have reported
a decrease in NO bioavailability in individuals with obe-
sity owing to an imbalance between the synthesis and
elimination of nitric oxide, post-translational modifica-
tions of the enzyme, and the presence of single-nu-
cleotide substitutions in NOS3 [62]. A genetic study of
the African-American population showed that carriers
of the Asp allele with the Glu298Asp NOS3 substitu-
tion (rs1799983) had a higher BMI, waist circumference,
and the amount of subcutaneous fat than those who
did not, which may indicate a predisposition to obesity
[63]. The 894G>T substitution of NOS3 leads to a change
in the enzyme primary structure, which weakens the
binding of NOS3 to caveolin-1 in caveolar rafts of en-
dothelial cell membranes and reduces the availability
of NOS3, thus leading to reduced enzyme activity and
NO production [64].
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A genetic analysis of apparently healthy Russian in-
dividuals in the Moscow region revealed a relationship
between the GG genotype (894G>T) of the NOS3 gene
with endothelial dysfunction and metabolic status [65].
Presence of the GG genotype is associated with high le-
vels of blood pressure, total cholesterol, and low-density
lipoprotein cholesterol, high incidences of endothelial
dysfunction, albuminuria, and IR.

As predisposition to obesity manifests itself at an
early age, an analysis of NOS3 gene markers in children
and adolescents was performed [66, 67]. The study re-
vealed that the 4aka polymorphism genotype in NOS3
intron 4 and the C-T-G-C haplotype (NOS3-tagSNPs
rs3918226, rs3918188, rs743506, and rs7830) are as-
sociated with obesity in children and adolescents. VNTR
sequences (27 bp long) in intron 4 of the NOS3 gene
regulate the gene post-transcriptionally, influencing the
formation of microRNAs, which, when interacting with
the mRNA of the target gene, lead to its degradation.
The most common are alleles with five (4b) or four (4a)
repeats [68].

The antiobesogenic role of NOS3 has been confirmed
in many experimental studies [62]. Mice with a triple
knockout of the eNOS, nNOS, and iNOS genes exhibit high
visceral obesity, hypertension, hypertriglyceridemia, and
impaired glucose tolerance [69]. In contrast, mice over-
expressing eNOS in the vascular endothelium have an
antiobesogenic phenotype associated with a high meta-
bolic rate on a high-fat diet, resistance to the accumula-
tion of white adipose tissue, hyperinsulinemia, and low
levels of free fatty acids and triglycerides in the blood
plasma [70].

The NOS3 gene genotype influences susceptibility to
metabolic disorders associated with obesity [66, 67]. In-
deed, the CC —786T>C NOS3 genotype is associated with
MS in children and adolescents [71]. Haplotype C-4b-Glu
(-786T>C, 4b/4aVNTR, Glu298Asp) has been associated
with hypertension in obese children and adolescents and
with lower NO levels in adults with the obesity phenotype
in various ethnic groups [60, 71].

In the Iranian population, a single-nucleotide substi-
tution in the inducible NO synthase gene, NOS2 1823C>T
(rs2297518), is associated with susceptibility to meta-
bolic syndromes in the general group and in women [72].
The T allele and CT+TT genotypes demonstrated an as-
sociation with obesity and the risk of MS. Substitution
of an amino acid in the enzyme structure (Ser608Leu),
localized in the catalytic domain, increases the activity of
NOS2, leads to overproduction of nitric oxide, and creates
the preconditions for the development of nitrosyl stress
and the formation of cytotoxic RNS.

Table 1 presents the influence of single-nucleotide
substitutions in the genes of AOM-producing enzymes
on the development of 0S in obesity and metabolic dis-
orders.
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Table 1. Single-nucleotide substitutions in the genes of AOM-producing enzymes regulating the development of oxidative stress in obesity
and metabolic diseases

Ta6bnuua 1. OnHoHyKIe0TUAHbIE 3aMeHbl B reHax AKM-npozyumpyiolmux GepMeHToB, perynmpytoLLmx pasBuTie OKUCUTENBHOO CTpecca,

MpU O3KMPeEHUN N MeTabonnyecKux 3abonieBaHusAX

nl?cl?gcifi;je Gene, [;i?isi;)frxgﬁ'g:é;l?é}ig? Effects of single—_nucleotide Population, gender, Refe-
- chromosome substitution age (years) rences
substitution 0S level
-930A>6 CYBA Allele -9306G: CYBAT, Allele —9306 and genotype —930GG Spaniards [21]
(rs9932581) 169.24.2 NOXT, ROST, 0ST are associated with high BMI, (m/f, 20-60).
HOMA-IR, insulin resistance, Caucasians [27]
and hypertension (m/f, 48-56).
Spaniards [28]
(m/f, 58-60)
242C>T CYBA 242C>T (72His>Tyr The T allele reduces the risk of Iranians [33]
(rst673) 169.24.2 in p22phox): metabolic syndrome in Iranian men. (m, 48-60).
NOXJ, ROSJ, 0S{ Protective role of the T allele: Poles [34]
640A>G 640 AA (3'UTR CYBA): CT or TT genotypes are associated (m, 56-60).
(rs1049255) NOXT, ROST, 0ST with low BMI and low insulin Japanese [35]
levels in T2DM. The AA genotype is (m/f, 50-64)
associated with a high risk of Russians [32]
T2DM and high BMI in the general (m/f, female,
group and in women. 54-68).
The AA genotype is associated with Russians [36]
the development of IHD in men. (m, 61)
Allele G is protective.
G>T CYBB rsb963327T, rs6610650A Minor alleles T and A Russians [38]
(rs5963327) Xp21.1 (introns CYBB): are associated with a high risk (m/f, 54—68)
G>A CYBBT, ROST, 0S?T of T2DM
(rs6610650)
mt33367>G MT-ND1 NADH-dehydrogenasel, Associated with obesity Japanese [41]
mt4851C>T MT-ND2 ROST, 0ST (m/f, 58 £ 5).
mt10550A>G MT-ND4L Germans [42]
(m/f, 24-85).
Spaniards [43]
(m/f, 51 £ 15)
mt6663A>G MT-C01 Cytochrome-c-oxidase!, Associated with obesity Japanese [41]
mt9698T>C MT-C03 ROST, 0ST (m/f, 58 £ 5).
Germans [42]
(m/f, 24-85).
Spaniards [43]
(m/f, 51 £ 15)
Ile703Val XOR (XDH),  Amino acid substitutions in Associated with obesity, Japanese [46]
(rs17011368) 2p23.1 XOR: X0T 0,1, NO*T, 0ST  cardiovascular diseases in different (m/f, 50-60).
3662A>G populations Montenegrins [47]
His1221Arg (m/f, 55 + 15)
CYP2C8*2 CYP2C8 Amino acid substitutions Associated with high Norwegians [51]
(Ile269Phe) 10924 increase turnover prevalence of BMI and (m/f, 20-62)
CYP2C8*3 of substrates: ROST, 0ST metabolic disorders
(Arg139Lys)
CYP2C19%2 CYP2CI19 Synonymous substitution Protective effect against Russians [52]
681G>A 10g23.33  in exon 5: occurrence of an the risk of IHD (m, 62+9)
(rss244285) aberrant splicing site, loss

of function, CYP2C19*24,
ROS{, 0SY
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Table 1 (continued)
Okonuarue mabauypl 1
nuscl?gcigzie Gene, 2%&3%?3:&553&? Effects of single-_nucleotide Population, gender, Refe-
o chromosome substitution age (years) rences
substitution 0S level
-463G>A MPQ, Allele -463G: activity The —463GG MPO genotype Turks [59]
(rs2333227) 17923.1 of MPOT, HOCL?T, 0S?T is associated with the risk of deve- (m/f, children,
Allele —463A: activity loping 0S and insulin resistance in 12+2)
of MPOJ, RHS{, 0S children with obesity Chinese [58]
and metabolic syndrome. (m/f, 69 +0,7)
The —463GA and AA MPO genotypes
are associated with a high risk of Russians [36]
hypertension in obese (m/f, 55-69)
individuals with T2DM.
The -463G allele is associated with
a high risk of IHD and the develop-
ment of S, the A allele is protective
1823C>T NOS2 Substitution of Ser608Leu Allele 7823T is associated Iranians [72]
(rs2297518) 17q11.2 in the catalytic domain of with T2DM and obesity (m/f, 50-60)
NOS2: NOS2T, NOT,
nitrosyl stress T
894G>T Substitution of Glu298Asp The Asp298 allele is associated African Americans [63]
(rs1799983) in NOS3 disrupts the with a predisposition to obesity (b/g, 11-29)
binding of the enzyme to  (high BMI, large waist circumference
caveolae, the activity and amount of subcutaneous fat)
NOS3 of NOS3{, NO*
7936.1 _ . o
—786T>C Allele —786C leads The -786CC genotype is associated Brazilians [66, 67,71]
(rs2070744) to a decrease in promoter  with metabolic syndrome in children (b/g, 12 £ 3)

activity and gene transcrip-
tion: NOS3{, NO*

and adolescents. Haplotype C-Glu
(-786T>C, Glu298Asp) is associated

with hypertension in children and
adolescents, obesity and low NO

levels

Note. T — increase in gene expression, enzyme activity, level of activated oxygen metabolites (AOM) and oxidative stress (0S) relative to
normal; + — decrease in the above-mentioned indicators relative to the control; m/f — males/females, b/g — boys/girls; BMI — body
mass index; IHD — ischemic heart disease; T2DM — type 2 diabetes mellitus; XOR — xanthine oxidoreductase; MPO — myeloperoxidase;

RHS — reactive halogen species

Thus, polymorphism in the genes for enzymes pro-
ducing ROS, RNS, and RHS, makes a significant contri-
bution to the development of 0S associated with obesity
and metabolic disorders. AOMs exhibit a dual role, at low
concentrations they participate in regulatory signaling
cascades in adipocytes and cells of other tissues, and
at high concentrations, they cause cytotoxic effects and
initiate the development of 0S.

POLYMORPHISM OF ANTIOXIDANT
SYSTEM GENES IN OBESITY AND
METABOLIC DISEASES

The antioxidant system (AOS), providing a balance
between the production and elimination of AOM, plays a
critical role in maintaining redox homeostasis in obesity.

DOl https://doiorg/10.17816/ecogen62714

There is an imbalance in functioning of AOS in obesity and
associated metabolic disorders, related to variability in
the genes of key antioxidant enzymes [5, 7, 73].

In the functioning of AQS, a major role is played by enzy-
matic antioxidants (superoxide dismutase, catalase, gluta-
thione peroxidase, glutathione-S-transferase, glutathione
disulfide reductase, heme oxygenase 1, NAD(P)H: qui-
none oxido-reductase 1, peroxiredoxins, paraoxonase 1),
whose activities can be regulated at transcriptional, post-
transcriptional, and post-translational levels. Impaired
antioxidant mechanisms in obesity have been revealed
both in humans and in animal models [74].

Superoxide dismutase (SOD), which neutralizes the su-
peroxide anion radical (0,™) forming H,0, and 0,, is repre-
sented in humans by three isoforms, namely, cytosolic SOD1
(S0D1, 21922.11), mitochondrial SOD2 (S0D2, 6q25.3),
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and extracellular SOD3 (S0D3, 4p15.2) [75]. The ac-
tive centers of SOD1 and SOD3 contain Cu?* and Zn%*
ions, whereas that of SOD2 contains Mn** ions.

The -2571A>G (rs2070424) substitution of SODT, oc-
curring in intron 3, may be associated with obesity in
Mexican women, as the prevalence of GA+GG genotypes
was significantly higher in the obese group than in the
healthy group and was accompanied by a decrease in
the enzyme activity [76]. Additionally, individuals with
single-nucleotide substitutions —-251A>G SOD1, 47A>G
S0D2, and —262C>T CAT were characterized by higher
accumulation of visceral fat.

Several studies have investigated the association of
the AlaléVal (47C>T) substitution in human SOD2 with
obesity [77, 78]. This substitution modifies the sequence
encoding the N-terminal MTS (Matrix Targeting Signal)
peptide, which directs the enzyme into the mitochondrial
matrix. The SOD2 precursor containing Ala in the signal
peptide is transported into mitochondria 30%-40% more
efficiently, which contributes to higher enzyme activity.
The Val variant of SOD2 has less activity, which causes
high production of superoxide and other ROS [79]. In pa-
tients with the TT SOD2 genotype, the probability to de-
velop obesity was two times higher than in individuals
with the CC or CT genotypes [78]. The CT genotype occurs
in 90% of obese individuals, and the TT genotype is as-
sociated with low overall SOD activity [77].

A single-nucleotide substitution in the SOD3 gene
172A>G (rs2536512) plays a role in obesity and related
disorders in a Middle Eastern population [73]. Addition-
ally, the protective effect was associated with allele 4,
whose carriers were less likely to develop obesity.
This single-nucleotide substitution causes the Ala58Thr
amino acid substitution, which increases the activity of
the SOD3 extracellular isoform. Activation of SOD3 in the
extracellular compartment of endothelial cells enhances
superoxide neutralization and blocks the formation of
peroxynitrite, which is implicated in impaired endothe-
lium-dependent vasodilation and the development of
obesity-induced hypertension [73].

Catalase (CAT, 11p13), a peroxisomal heme-contain-
ing enzyme, plays a key role in OS by cleaving hydroper-
oxide to H,0 and 0,, which prevents the formation of the
highly toxic hydroxyl radical from H,0, in the presence of
Fe?*/Cu* ions. Catalase gene polymorphism is associated
with obesity and metabolic disorders [80]. Particularly,
in T2DM patients, there was a fourfold increase in the
concentration of H,0, relative to that of healthy people
against a decrease in catalase activity in blood cells. CAT
variants, namely, —262C>T (rs1001179) and -844A>G
(rs769214), are closely associated with T2DM. These sub-
stitutions in the promoter region of the gene have con-
siderable functional significance, influencing the expres-
sion of CAT and the concentration of catalase in blood
cells [80]. The presence of rare CAT variants rs769214
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(—844A>G), rs7943316 (—89T>A), and rs1049982 (-20C>T)
was associated with prepubertal obesity in children
[12, 81, 82]. Additionally, rs769214 is associated with
high weight, BMI, and adipocyte fatty acid-binding protein
(A-FABP) levels, without a significant effect on eryth-
rocyte catalase activity. However, some studies in the
Swedish population, reported that catalase levels are
significantly higher in carriers of the T allele of rs1001179
than in individuals homozygous for the C allele [82].

A different contribution of the —262C>T substitution of
the CAT gene (rs1001179) to the formation of arterial hy-
pertension was reported in populations of adolescents of
two ethnic groups (Russians and Buryats) [83]. In Buryat
adolescents, the C allele is associated with a predisposi-
tion to hypertension. However, such association was not
revealed in Russian adolescents.

Thus, CAT gene expression and catalase activity are
involved in the mechanisms of protection against 0S in-
duced by obesity and metabolic disorders, whereas CAT
polymorphism may reduce the efficiency of antioxidant
protection in obesity.

The glutathione peroxidases (GPx) family is an impor-
tant component of AQS involved in protecting cells from
hydrogen peroxide and various organic hydroperoxides
through reduction mediated by glutathione. The family
includes eight isoenzymes encoded by different genes
and with different tissue localizations and substrate
specificity; isoforms GPx1-4 and 6 are selenoproteins,
i.e., they contain selenocysteine (Sec) in the active center
[84, 85].

Data on the activity of GPx isoforms in blood and adi-
pose tissue are very contradictory. Most studies report
a decrease in enzyme activity in obesity and associated
pathologies; however some studies report of GPx acti-
vation, which is considered an adaptive response [86].
GPX polymorphism makes a major contribution to changes
in enzyme activity. The GPXT gene (3p21.31) is expressed
in almost all tissues. The missense mutation 594C>T
(Pro198Leu; rs1050450) is known for it. The Leu (7)
allele is associated with more severe 0S, obesity, and
IR, with some gender differences [12]. Screening of the
GPX1 gene in 184 Japanese patients with T2DM revealed
four variants of changes (-602A>G, +2C>T, Ala(5)/Ala(6),
and Pro198Leu) [12]. The in vitro analysis showed that
the Ala6/198Leu combination led to a 40% decrease in
enzyme activity, and the 602G/+2T substitution combi-
nation led to a 25% decrease in transcriptional activity.
Additionally, functionally significant variants of the GPX1
gene are associated with an increased risk of atheroscle-
rosis in T2DM patients.

An association of rs4902346 (A>G) of the GPX2 gene
with a high risk of developing T2DM in men was re-
ported in a Russian population [87]. The minor allele G
of rs4902346 is associated with a decrease in the ex-
pression of the GPXZ2 gene in subcutaneous and visceral
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adipose tissue, liver, and other tissues, which is accom-
panied by the accumulation of enzyme substrates (hy-
drogen peroxide, peroxynitrite, and lipid hydroperoxides)
and, consequently, disruption of redox homeostasis [87].
In women, rs4902346 was associated with a low con-
tent of reduced glutathione, which is an important
low-molecular-weight antioxidant, in the blood plasma
and a disturbance in redox homeostasis. These as-
sociations indicate the presence of sexual dimorphism
in the relationship of the GPX2 gene with the studied
phenotypes [87].

An analysis of single-nucleotide substitutions in the
GPX genes in Mexican children and adolescents revealed
two haplotypes associated with obesity based on BMI in
GPX3, GPX5, and GPXé, and a haplotype based on the
percentage of body fat mass (PBFM) in GPX3 [88]. How-
ever, a protective effect of rs922429 GPX3 and rs2074451
GPX4 in Mexican children and adolescents was reported
according to the criterion of PBFM.

A study [12] that examined 59 single-nucleotide
substitutions in the GPX 1-7 genes established that
rs757228 and rs8103188 (GPX4) correlated negatively,
and rs445870 (GPX5) and rs406113 (GPXé) correlated
positively with obesity in Spanish children.

In conjunction with glutathione peroxidase, glutathi-
one-S-transferase (GST) plays a significant role in cel-
lular redox-dependent processes. GST belongs to the su-
perfamily of phase Il detoxification enzymes. These are
multifunctional proteins that use reduced glutathione for
conjugation and elimination of hydrophobic xenobiotics
and neutralization of free radical intermediates and lipid
peroxidation products, such as 4-hydroxynonenal [9, 10].
GSTs are classified into three families, namely, cytosolic,
mitochondrial, and microsomal. Cytosolic GSTs represent
the largest family and are divided into seven classes,
namely, alpha (A), mu (M), omega (0), pi (P), sigma (S),
theta (T), and zeta (2).

Genetic variability of GST (16 genes) plays a key role
in disrupting cell protection from pollutants, carcino-
gens, 0S products, and a wide range of xenobiotics, and
is associated with a risk of predisposition to obesity and
metabolic disorders [89].

Common variants of changes in the GSTM1 and GSTT]
genes include extended deletions GSTMI del/del and
GSTT1 del/del, which are associated with a lack of en-
zyme synthesis, which prevents conjugation of xenobiotic
metabolites with glutathione (GSH).

When replacing 3134>G (rs1695, Ile105Val) of the
GSTP1 gene, the active site of the enzyme, which in-
teracts with reactive electrophiles, partially loses its
substrate-binding ability and thermostability, which de-
creases its activity.

In a Russian population of the Central Black Earth
Region [90], the GSTPI 105lle/Val and 105Val/Val geno-
types are associated with T2DM and obesity in women,
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whereas in men the GSTT 1 del/del genotype is associ-
ated with the pathology.

In a Brazilian population, an association of GSTP!
rs1695 with overweight and obesity in old age (=60 years)
was reported [91]. Regardless of gender, elderly patients
with at least one G allele were 2.4 times more likely to
be obese than those with the AA genotype. However, in
a Korean population, there was no significant association
between GSTMT rs1056806 and rs3815029 and the devel-
opment of obesity [92]. In a Polish population, the GSTP7
Val/Val genotype, which leads to a decrease in the level of
the active enzyme, was two times more common in T2DM
patients under the age of 40 years than in healthy peo-
ple [93]. There was a higher frequency of the GSTPT Val/Val
genotype and homozygous deletion of GSTT! del/del
and GSTMT del/del in patients diagnosed with T2DM be-
fore 40 years of age than in patients who became ill later
as well as in healthy controls. A decrease or loss of the
functional activity of glutathione-S-transferases, which
is the most important family of antioxidant enzymes, due
to genetic variability can make a significant contribution
toward the development of 0S in obesity and related pa-
thologies.

The redox balance of the body largely depends on the
ability of cells to maintain a pool of the universal water-
soluble antioxidant, reduced glutathione (L-y-glutamyl-
L-cysteinylglycine, GSH), which are generated from the
oxidized form (GSSG) by glutathione disulfide reductase
(GSR). The GSH tripeptide is not only associated with the
control and maintenance of cell redox homeostasis by
reducing ROS and is a cosubstrate of glutathione-de-
pendent enzymes, but is also involved in the processes
of detoxification, signal transduction, proliferation, dif-
ferentiation, and cell death [9, 10]. Changes in the GSH/
GSSG ratio are noted in many pathological conditions
associated with 0S, including obesity and metabolic
disorders.

A relationship between three single-nucleotide sub-
stitutions rs2551715 (C>T), rs2911678 (T>A), rs3757918
(T>C) in the introns of the glutathione disulfide reductase
gene GSR with a reduced risk of developing T2DM was
reported in a Russian population, indicating the involve-
ment of the gene in pathogenesis of this disease [94].
The CT-TT genotypes of the rs2551715 variant were
significantly associated with a reduced risk of T2DM.
However, no statistically significant differences were re-
corded in the genotypes of the rs2911678 and rs3757918
loci.

Bioinformatics analysis showed that minor alleles of
the three single-nucleotide substitutions increase the ex-
pression of GSR in the pancreas, nervous system, subcu-
taneous, and visceral adipose tissue [94]. Additionally, the
protective effect of minor alleles was noted only in patients
with normal body weight (BMI < 25 kg/m?), whose diet in-
cluded a sufficient amount of fresh vegetables and fruits.
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The T/T rs2551715 genotype was 2.5 times less com-
mon in T2DM patients than in the controls; genotype A/A
rs2911678 was six times less common; and geno-
type C/C rs3757918 was 2.7 times less common in T2DM
patients than in the controls. The protective effect of
GSR on T2DM risk was not observed in patients who did
not consume a plant-based diet or in those with a BMI
higher than 25. The authors believe that polyoxyphenols
in plant foods activate the expression of the redox-
sensitive transcription factor Nrf2, which activates the
expression of key antioxidant enzymes in response to
0S and suppresses the proinflammatory effects of the
NF-kB factor [9].

A vital role in maintaining redox homeostasis in the
cell is played by the family of redoxins, which contain
highly reactive cysteines and are involved in the removal
of hydrogen peroxide, organic peroxides, and in the thi-
ol-disulfide exchange of target proteins [95]. Redoxins
include peroxiredoxins (PRX), thioredoxins (TRX), and glu-
taredoxins (GRX).

PRX represent a family of multifunctional antioxi-
dant thioredoxin-dependent peroxidases that regulate
intracellular peroxide levels and play an important role
in redox signaling, participating in cell proliferation and
differentiation, immune response, and apoptosis [95].
A special role in protection against 0S is played by PRX3,
which is localized in mitochondria and reduces up to 90%
of H,0, formed during functioning of the ETC. The level
of PRX3 decreases in the adipose tissue of experimental
animals and humans with obesity [96]. Additionally, PRX3
knockout mice had increased fat mass and developed an
obesity phenotype, as well as an increase in 0S markers
and impaired mitochondrial biogenesis.

A nutrigenomic study revealed that four allelic vari-
ants of the PRDX3 gene, namely, rs3740562 (A/G),
rs2271362 (C/T), rs7768 (G/C), and rs3377 (A/C), are as-
sociated with high BMI and obesity in a Japanese popula-
tion in combination with a high-fat diet [97]. Additionally,
the T-G-C-C-C haplotype showed a significant association
with an increase in BMI, whereas the A-A-T-G-A haplo-
type showed a significant association with a decrease
in BMI. Overall, these results suggest a critical role of
PRDX3 genetic variants and fat intake in modulating BMI
and obesity risk.

A major component of AOS is the thioredoxin (Trx)
system, consisting of NADPH, thioredoxin reductase
(TrxR) and thioredoxin 1/2 (Trx 1/2), which protects
cells from OS due to its disulfide reductase activity [98].
A negative regulator of Trx 1/2 is thioredoxin-interact-
ing protein (TXNIP), which inhibits Trx reductase activity
through disulfide exchange. The Trx/Txnip redox com-
plex, called the redoxisome, is a critical regulator of
intra- and extracellular redox signaling involved in the
pathogenesis of various diseases, including metabolic
disorders [98].
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Genetic mapping detected a nonsense mutation in the
TXNIP gene as the cause of a familial combined hyper-
lipidemia-like phenotype in Hcb-19 mutant mice [99].
The mutation causes a truncation of Txnip in a critical
region that mediates the binding of Txnip to Trx1, which
impairs redox status and lipid metabolism.

In a Brazilian population, carriers of genetic variants
of TXNIP exhibit high expression of Trx-interacting pro-
tein, early signs of impaired glucose homeostasis, and
high susceptibility to chronic metabolic pathologies such
as diabetes and hypertension [100]. The mutants rs7211
(C/T) and rs7212 (C/G) TXNIP were associated with phe-
notypes associated with hyperglycemia and elevated
blood pressure. The Trs7211/Grs7212 TXNIP haplotype
is associated with diabetes. Carriers of the G allele of
rs7212 TXNIP exhibit higher levels of Txnip expression
than individuals with the CC genotype of rs7212.

TXNIP variants rs7212 and rs7211 were associated
with a high risk of ischemic heart disease in a Chinese
population, and their cumulative effect correlated with
the severity of coronary atherosclerosis [101].

In the Mexican population the rs7211 (C>T) mark-
er of the TXNIP gene is associated with obesity [102].
Additionally, the presence of at least one T allele reduces
the risk of obesity in women, i.e., this allele is consid-
ered protective, and the authors believe that changes
in the expression or function of Txnip will ensure that
thioredoxin exhibits an antioxidant effect [102]. S. Das et
al. [103] came to a similar conclusion that in Euro-Amer-
ican and African-American subjects living in the USA, the
T allele is also associated with low BMI and high density
lipoprotein cholesterol concentrations in obese and non-
diabetic subjects [103].

Enzymes that play a leading role in the modulation of
metabolic disorders and redox state include heme oxy-
genase (HO), which occurs in the form of inducible (HO-1)
and constitutive (H0-2) isoforms, which are encoded by
the HMOXT and HMOXZ genes [104]. HO degrades heme,
a powerful prooxidant, to form carbon monoxide (CO),
iron, and biliverdin, which is then converted into bilirubin.
The induction of HO-1 reduces obesity, reduces elevated
heme levels, suppresses 0S, and participates in the lo-
cal and systemic maintenance of homeostasis through
the regulation of the functions of adipocytes and adipose
tissue [104, 105]. HO-1 exhibits pleiotropic effects in
obesity, reducing inflammation, vasoconstriction, and 0S
levels.

Two polymorphic sites have been detected in the
5'-flanking region of the HMOXT gene (22q12), namely,
the polymorphism in the number of dinucleotide repeats
(GT), (rs3074372) and single-nucleotide substitution
—413T>A (rs2071746). The number of repeats (GT), ranges
from 12 to 45 [106]. Alleles with less than 25 repeats are
designated as short (S); those with more than 25 (GT), are
classified as long (L). Short alleles correspond to higher
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transcriptional activity of the gene than L alleles. In an
Asian population, T2DM patients with high BMI carry-
ing longer (>32) repeats (GT), had high 0S and a high
risk of ischemic heart disease and atherosclero-
sis [106]. Patients exposed to IHD risk factors associ-
ated with obesity (hyperlipidemia, diabetes), but with
shorter (<27) repeats (GT), had a reduced risk of the
disease.

A functionally significant single-nucleotide substitu-
tion in the HMOXT promoter, 413T>A (rs2071746), has
been detected, which affects the gene activity [107].
In vitro experiments have shown that the activity of the
HMOX1 gene promoter increases in the presence of A
at position —413. The AA genotype of rs2071746 can re-
duce the incidence of IHD, myocardial infarction, and an-
gina pectoris, which is due to the high level of expression
of HO-1 [106].

An important role in the development of obesity and
associated metabolic complications is played by NAD(P)
H, namely, quinone oxidoreductase (NQO1), a flavopro-
tein that catalyzes the two-electron reduction of highly
reactive endogenous and exogenous quinones and their
derivatives. NQO1 (NQOT, 16q22.16) performs various
functions in the cell, such as detoxification of quinone
compounds, maintaining the reduced form of endogenous
antioxidants and superoxide reductase activity, protein
stabilization, and protection against proteasomal deg-
radation, NAD* generation, and control of mRNA trans-
lation [108]. Activation of NQO1 through NADH/NADPH
oxidation protects against obesity, dyslipidemia, impaired
glucose tolerance, hypertension, and MS.

NQO1 is widely expressed in various human tissues,
such as adipocytes. Additionally, NQO1 expression in
adipose tissue decreases during diet-induced weight
loss, and expression levels are positively correlated with
obesity, dyslipidemia, glucose tolerance, and markers of
liver dysfunction. These findings indicate the role of NQO1
in obesity and associated metabolic disorders [109].

More than 20 single-nucleotide substitutions were
detected in NQOT, including 609C>T NQOT (rs1800566)
as the most common, designated as the NQO7*2 al-
lele [109]. The primary structure of NQO1, proline is
replaced by serine (P187S), which is accompanied by
a decrease in enzyme activity due to instability and prote-
asomal degradation. Consequently, the enzyme activity in
NQO17%2/*2 homozygotes is almost undetectable, whereas
in NQOT*1/%2 heterozygotes the level of enzyme activity
occupies an intermediate position between the homozy-
gous substitution genotype and the wild type (NQQT*1/*1)
[108]. Another common single-nucleotide substitution of
NQOT is 465C>T (rs4986998), NQO1*3 (Arg139Trp), which
can lead to deletion of exon 4 and the formation of a pro-
tein lacking quinone substrate-binding sites and low en-
zymatic activity [108]. All of these NQOT variants lead
to disruption of redox homeostasis, the development of
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0S, and are detected in obesity and related metabolic
disorders [110].

The key regulator of the cellular response to 0S is the
transcription factor Nrf2 (Nuclear factor erythroid 2-re-
lated factor 2), encoded by the NFE2L2 gene (2q31.2),
and the redox-sensitive signaling system Keap1/Nrf2/
ARE [111]. Nrf2 belongs to the Cap’n’Collar (CNC) family,
a subfamily of leucine zipper (bZIP) transcription factors
that controls the expression of various genes encoding
antioxidant enzymes and cytoprotective proteins [111].

Nrf2 is at the center of a complex regulatory network,
including the expression of more than 1000 genes (1 to
10% of the genome) containing antioxidant response ele-
ments (ARE, antioxidant response element, 5'-A/GTGAC/
TnnnGCA/G 3') in their promoters [111].

Under homeostatic conditions, Nrf2 is localized in
the cytoplasm, where it is associated with the repres-
sor protein Kelch-like ECH-associated protein 1 (KEAPT,
19p13.2), which ensures the ubiquitinylation of Nrf2 and
its proteasomal degradation. In the presence of oxida-
tive/electrophilic stress, the Keap1-Nrf2 complex disso-
ciates, resulting in Nrf2 migrating into the nucleus, where
it interacts with ARE sequences in the promoters of
Nrf2-dependent genes, stimulating their transcription
[102, 112-114]. Activation of Nrf2 increases the expres-
sion of genes for antioxidant and detoxifying enzymes
containing ARE sequences in their promoters, including
S0D1, CAT, GPX1, GST, PRX, TRX, TRXR, HMOXI, and
NQo1T.

Regulation of the Keap1/Nrf2/ARE signaling system
includes the presence of ARE sequences in the promoter
of the NFE2L2 gene, which ensures its own transcription
and autoregulation of the gene [115].

Nrf2 is a major target of obesity and associated
metabolic disorders [105]. Controlled activation of Nrf2
alleviates obesity and associated metabolic disorders,
decreases ROS production and 0S levels, moderates
lipid accumulation during adipogenesis, decreases syn-
thesis of proinflammatory cytokines, and improved glu-
cose homeostasis [116, 117]. In contrast, continuous and
excessive activation of Nrf2 under obese conditions can
dramatically increase lipid accumulation and initiate lipid
peroxidation, which in turn causes tissue damage [117].
There is no doubt that the most important role in 0S reg-
ulation in obesity and related pathologies belongs to the
polymorphism of the Nrf2 genes and other components
of the Keap1/Nrf2/ARE signaling system. However, de-
ficiency in Nrf2 activity in various organs, demonstrated
in experimental models and clinical studies, leads to the
development of pathological conditions associated with
0S [112].

According to the NCBI SNP database, 2107 single-nu-
cleotide substitutions were detected in the human NFEZ2L2
gene; 85 of them are localized in the protein-coding re-
gion, and the rest are localized in the promoter region,
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introns, and 5'- or 3'-noncoding regions. Suppression
of the Nrf2-dependent signaling pathway has been re-
ported under conditions with a high risk of cardiovascular
diseases, diabetes, hypertension, chronic inflammation,
aging, and other metabolic disorders, caused by genetic
polymorphisms [116]. In various pathological conditions,
including those associated with obesity, the substitu-
tion —617C>A (rs6721961) in the ARE sequence of the
NFEZL2 gene promoter has been most studied. It leads
to poor binding of Nrf2 to the ARE and a decrease in
the expression of the NFE2L2 gene and Nrf2-controlled
genes [117]. In various populations, NRF2 rs6721961
was significantly associated with 0S, antioxidant status,
obesity, and the risk of associated metabolic pathologies
(112, 113].

The C>A substitution (rs11085735) plays an important
role in the KEAP1 gene, encoding the Keap1 protein, which
is a critical negative regulator of the Nrf2 transcription
factor and a sensitive 0S sensor [119, 120]. The location
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of this substitution in intron 2 may have functional conse-
quences, affecting mRNA splicing, protein structure, and
the interaction of Keap1 with Nrf2. In the Iragi Kurdish
population, a higher frequency of the minor allele A and
the AA genotype was recorded in obese individuals, which
correlated with higher BMI, waist and hip circumference,
than in carriers of the AC and CC genotypes [119]. In the
Iranian population, the AA genotype was more common
in T2DM patients and in patients with T2DM complicated
by neuropathy than in healthy individuals [120].

Table 2 presents the effect of single-nucleotide sub-
stitutions in the most important genes of the antioxidant
system on the development of OS in obesity and meta-
bolic disorders.

Thus, research conducted in recent decades has
demonstrated the critical role of 0S in the mechanisms
of obesity and associated pathologies and the major
contribution of polymorphism in the genes of enzymes
producing AOM, antioxidant enzymes, and proteins of

Table 2. Single-nucleotide substitutions in the genes of antioxidant enzymes and proteins regulating the development of oxidative stress

in obesity and metabolic diseases

Ta6nuua 2. OfHOHYKIIEOTUAHbIE 3aMeHbl B FeHax aHTUOKCWMAAHTHBIX GepMeHTOB U DEKOB, PerynmpyloLLMx pasBuTUE OKUCIUTENIBHOTO
CTpecca, Npu OXMPEHUN U MeTaboM4ecKx 3aboneBaHusX

Singlg— Gene, Gen.e.expression, enzyme Effects of single-nucleotide Population, Refe-
nucleotide activity, AOM production, A gender, age
- chromosome substitution rences
substitution 0S level (years)
-251A>G SoD1 Nucleotide substitution SNP is associated with obesity in wo- Mexicans [76]
(rs2070424) 21¢22.11 in intron 3 of SODT modu-  men: the frequency of GA+GG genotypes  (m/f, 56 £ 5)
lates enzyme activity and is higher in obese than in normal
0S level individuals; high levels of visceral fat
47C-T SoD2 Substitution of Ala1é6Val ~ The TT SOD2 genotype doubled the pro- Mexicans [76]
(rs4880) 6925.3 changes the structure of bability of obesity, (m/f, 56 +5).
the MTS signal peptide: relative to CC or CT genotypes. Mexicans [78]
S0D24, ROS 1, 0ST The CT genotype was detected (m/f, 66 + 8).
in 90% of obese patients, Poles [771
and the TT genotype was associated (m/f, 37-57)
with low total SOD activity
172A>6 S0D3 Substitution of Ala58Thr Allele G is associated with the Saudi Arabia [73]
(rs2536512) 4p15.3 in the structure of the en- development of obesity, (m/f, 42 £ 16)
zyme: SOD3T, ROS!, 0SY allele A exhibits protective effect
-262C>T Substitution is associated Spaniards [80]
(rs1001179) with obesity and T2DM; catalase levels (m/f,
were significantly higher in carriers 8.7 + 0.1).
Single-nucleotide of the —269T allele than in homozygotes Swedes [81]
CAT substitutions in gene for the C allele (m/f, 50 + 10)
-844A>6 1p13 regulatory regions: Substitution is associated Spaniards [12]
(rs769214) CAT, Catd, H,0,T, 0ST with prepubertal obesity in children, (b/g, 8.7 £ 0.1)
with high weight, BMI and adipocyte
fatty acid-binding protein
levels
-89T>A Substitution is associated with Spaniards [12]
(rs7943316) prepubertal obesity in children (b/g, 8.7 £ 0.1)
594C>T GPX1 Substitution of Pro198Leu,  The T allele is associated with obesity Spaniards [12]
(rs1050450) 3p21.31 allele Leu (7): GPX14, and insulin resistance in children; (b/g, 8.7 £ 0.1).
Gpxd, H,0,T, lipid this allele is associated with a high risk Japanese [12]
hydroperoxidesT, 0ST of atherosclerosis in T2DM patients (m/f, 40-60)
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Table 2 (continued)
OKoHuaHUe mabauusl 2
S|ngle_— Gene, Gen_e_expressmn, enzyme Effects of single-nucleotide Population, Refe-
nucleotide activity, AOM production, o gender, age
- chromosome substitution rences
substitution 0S level (years)
14362A>G GPX2 Minor allele G: GPX2!, Allele G is associated Russians [87]
(rs4902346) 14923.3 Gpxd, H,0,T, with the risk of T2DM in men (m/f, 61 £ 10)
lipid hydroperoxidesT,
peroxynitriteT, 0ST
1578A>G GSTP1 Substitution of Ile105Val: ~ Genotypes 105/le/Val and 105Val/Val are Russians [90]
(rs1695) 11q13.2 GSTP14, xenobioticsT, associated with T2DM and (m/f, 61 +10).
LPO products T, 0ST obesity in women; the SNP is associated Brazilians [91]
with overweight and obesity in old age;  (m/f, 60-98).
genotype 105Val/Val is associated Poles 193]
with T2DM (m/f, 54 £ 11)
C>T GSR Substitutions in introns Association with a low risk of T2DM in Russians [94]
(rs2551715), 8p12 of the GSR gene. Minor a group of patients with normal body (m/f, 61 £11)
T>A alleles increase GSR ex-  weight, with sufficient daily consumption
(rs2911678), pression in the pancreas,  of vegetables and fruits. The T/T rs2551715
>C nervous system, subcuta-  genotype was 2.5 times less common in
(rs3757918) neous and visceral adipose T2DM patients than in controls;
tissue. GSHT, AOST, 0SV  genotype A/A rs2911678 was 6 times less
common; genotype C/C rs3757918 was
2.7 times less common. The protective effect
of GSR on the risk of T2DM was not observed
in patients who did not consume a plant-
based diet or in those with a BMI >25.
Cc>T TXNIP Minor alleles Association with hyperglycemia, Brazilians [100]
(rs7211), 1921.1 in the TXNIP gene: predisposition to T2DM, hypertension; (m/f, 25-64).
C>G TXNIPT, TXNIPT, correlate with the risk of IHD and athero- Chinese [mon
(rs7212) redoxisome inhibition, 0ST  sclerosis; the T allele (rs7211) is associ-  (m, 63 + 10).
ated with low BMI and risk of obesity Mexicans [102]
(m, 53 +9).
Americans [103]
(m/f, 19-60)
(GN), Alleles with (GT), < 25: Low risk of IHD. T2DM patients Caucasians [106]
(rs3074372) HMOX17; 0S!. had a high BMI, risk of IHD (m/f, 57-72)
Alleles with (GT),> 25: and atherosclerosis
HMOX1 HMOX1{, 0S7T
~413T>A 22912 Allele —413A Reduces the incidence of IHD, Caucasians [106]
(rs2071746) (protective): myocardial infarction, (m/f, 57-72).
HMOX11, 0SJ. angina pectoris East Asia [107]
Allele —413T: (m/f, 62 + 6)
HMOX1{, 0S7T
—-617C>A NFE2L2 The substitution is localized Associated with obesity Chinese [118]
(rs6721961) 2931.2 in the gene promoter, and the risk of associated (m, 50+ 11)
in the ARE sequence. metabolic pathologies
Minor allele is -617A:
NFEZL2!, gene expression
A0S, 0ST
C>A KEAP1 The substitution is localized in  The frequency of the AA genotype is Kurds [119]
(rs11085735) 19p13.2 intron 2, it influences the in- higher in obesity; AA carriers have (m/f, 41 + 10).
teraction of Keap1 with Nrf2.  high BMI, as well as high waist and Iranians [120]
Minor allele A: disruption of  hip circumference. A higher frequency  (m/f 54 + 6)

the KEAP1 structure, interac-

tion with the transcription
factor

of the AA genotype in T2DM patients
and in those with T2DM complicated by
neuropathy than in healthy individuals

Note. T — higher gene expression, enzyme activity, level of activated oxygen metabolites (AOM) and oxidative stress (0S) than in the
normal; L — decrease in the above-mentioned indicators relative to the control; m/f — males/females, b/g — boys/girls; BMI — body
mass index; IHD — ischemic heart disease; T2DM — type 2 diabetes mellitus; XOR — xanthine oxidoreductase; MPO — myeloperoxidase;
RHS — reactive halogen species; SOD — superoxide dismutase; AOS — antioxidant system.
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the redox-sensitive signaling pathway Keap1/Nrf2/ARE,
which controls redox homeostasis. Disruption of redox
homeostasis due to genetic variability of the prooxidant-
antioxidant system contributes to the development of the
obesity phenotype.

The impact of polymorphisms in redox-sensitive
genes on redox homeostasis and the risk of obesity and

3KonoruyecKas reHeTuKa
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associated metabolic pathologies can vary significantly
among various populations, and these differences are as-
sociated with interpopulation differences in minor allele
frequencies and linkage disequilibrium between polymor-
phic loci. Most of single-nucleotide substitutions consi-
dered in this review are characterized by variability in pop-
ulation frequencies (Table 3). The frequency of the minor

Table 3. Population features of the frequency of the minor allele according to the studied single-nuclectide substitutions (according

to the “1000 Genomes” project)

Tabnuua 3. |-|0I'Iy1'IFIU,VIOHHbIe 0Cc0HEHHOCTM 4acTOThI MMHOpHOVI annenn no uccnenyemMbiM 0AHOHYK1€0TUOHBIM 3aMeHaM (Mo faHHbIM npo-

eKrta «1000 Genomes»)

Single-nucleotide

Population frequency of minor alleles (mean value and variation range)

East Asia

Caucasians

leH substitution ]
(allele) Africans
CYBA rs9932581 (7) 0.24 (0.11-0.32)
rsk673 (A) 0.51 (0.45-0.59)
XDH rs17011368(C) 0.12 (0.08-0.17)
CYP2C8  rs11572103 (4) 0.19 (0.14-0.23)
rs11572080 (7) 0.01 (0-0.03)
rs10509681 (C) 0.01 (0-0.03)
MPO rs2333227 () 0.37 (0.56-0.69)
NOS3 rs1799983 (1) 0.07 (0.035-0.11)
rs3918226 (7) 0 (0.0-0.025)
rs3918188 (4) 0.37 (0.29-0.41)
rs743506 (G) 0.47 (0.39-0.545)
rs7830 (T) 0.19 (0.13-0.26)
rs2070744 (C) 0.14 (0.08-0.18)
SoD1 rs2070424 (G) 0.2 (0.16-0.24)
Sob2 rs4880 (G) 0.42 (0.36-0.46)
CAT rs1001179 (T) 0.02 (0-0.06)
rs769214 (G) 0.44 (0.37-0.52)
rs7943316 (T) 0.42 (0.34-0.52)
rs1049982 (T) 0.44 (0.37-0.52)
GPX1 rs1050450 (4) 0.27 (0.22-0.34)
GPX2 rs4902346 (G) 0.41 (0.34-0.47)
GPX5 rs445870 (G) 0.59 (0.5-0.7)
GPXé rsk06113 (C) 0.75 (0.64-0.88)
GSTP1 rs1695 (G) 0.48 (0.4-0.54)
GSTM] rs1056806 (T) 0.24 (0.21-0.31)
GSTM2 rs3815029 (G) 0.09 (0.06-0.12)
PRDX3 rs3740562 (A) 0.52 (0.46-0.55)
rs2271362 () 0.37 (0.34-0.42)
rs7768 (C) 0.48 (0.44-0.52)
rs3377 (6) 0.11 (0.08-0.16)
TXNIP rs7211 (G) 0.41 (0.36-0.46)
rs7212 (C) 0.42 (0.34-0.46)
HMOX1 rs2071746 () 0.31(0.23-0.37)
Naori rs1800566 (4) 0.18 (0.12-0.21)
rs1131341 (4) 0 (0-0.02)
NFE2L2  rs6721961 (T) 0.06 (0.02-0.11)

0.6 (0.46-0.68)
0.08 (0.05-0.13)
0 (0-0.02)

0
0
0
0.14 (0.12-0.17)
0.13 (0.082-0.16)
0
0.29 (0.24-0.34)
0.2 (0.15-0.24)
0.41 (0.33-0.48)
0.12 (0.1-0.15)
0.51 (0.47-0.56)
0.12 (0.1-0.15)
0.03 (0.02-0.04)
0.73 (0.63-0.79)
0.26 (0.19-0.34)
0.73 (0.63-0.79)
0.07 (0.05-0.12)
0.13 (0.1-0.15)
0.51 (0.42-0.57)
0.51(0.43-0.57)
0.18 (0.1-0.22)
0.2 (0.17-0.25)
0.65 (0.64-0.67)
0.55 (0.52-0.58)
0.49 (0.45-0.53)
0.57 (0.53-0.61)
0.31(0.25-0.38)
0.81(0.69-0.87)
0.18 (0.11-0.31)
0.48 (0.45-0.5)
0.42 (0.35-0.5)
0.02 (0.02-0.03)
0.24 (0.19-0.3)

0.4 (0.34-0.47)
0.34 (0.21-0.47)
0.05 (0.01-0.07)
0 (0-0.01)

0.12 (0.08-0.15
0.12 (0.08-0.15
0.24 (0.19-0.29
0.34 (0.23-0.39
0.1(0.07-0.12)
0.31(0.28-0.33)
0.29 (0.17-0.39)
0.35 (0.24-0.44)
0.44 (0.31-0.5)
0.07 (0.04-0.12)
0.47 (0.43-0.52)
0.23 (0.21-0.26)
0.33 (0.28-0.4)
0.67 (0.59-0.71)
0.33 (0.285-0.4)
0.34 (0.28-0.4)
0.19 (0.15-0.24)
0.31(0.27-0.35)
0.33 (0.3-0.37)
0.33 (0.28-0.39)
0.16 (0.09-0.22)
0.37 (0.34-0.38)
0.3 (0.26-0.32)
0.27 (0.23-0.28)
0.31(0.25-0.34)
0.56 (0.48-0.61)
0.95 (0.94-0.97)
0.04 (0.03-0.05)

( )

( )

( )

( )

)
)
)
)

0.56 (0.53-0.59
0.21(0.18-0.25
0.02 (0.01-0.03
0.13 (0.11-0.14
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Fig. 2. Mechanisms of oxidative stress development in obesity and metabolic diseases
Puc. 2. MexaHu3Mbl pa3BUTUS OKUCIIMTENIBHOTO CTPecca Npu O3KMPeHUM 1 MeTabonmdyeckux 3aboneBaHuAX

allele in different populations can differ by two orders of
magnitude. For example, the frequency of the T allele at
rs1001179 of the CAT gene is on average 11 times lower
in Africans than in Caucasian populations. The frequency
of allele C at rs7212 of the TXNIP gene among Africans
is more than two times higher than that among residents
of East Asian countries and 10 times higher than in pop-
ulations in European countries (Table 3). In East Asian
populations, the frequencies of alleles G (rs769214),
T (rs1049982) of the CAT gene and allele G (rs3815029)
of the GSTMZ2 gene are predominant.

Thus, the intensity of various components of me-
tabolism leading to the development of OS in obesity
may have genetically determined ethnic and population
characteristics.

CONCLUSIONS

An analysis of previous studies presented in this re-
view shows that in obesity and concomitant metabolic dis-
eases, disturbances in redox homeostasis and 0S occur,

DOl https://doiorg/10.17816/ecogen62714

which are caused by the insufficiency of the antioxidant
system and excess production of ROS, RNS, and chlorine.
The dependence of obesity on many exo- and endogenous
factors emphasizes the critical role of imbalance in the
prooxidant < antioxidant system, associated with the
variability of genes of AOM-producing enzymes that cause
the development of OS, and the genes of AOS enzymes
that prevent disruption of the redox balance. The reviewed
studies show that polymorphism of genes associated with
0S, leading to disruption of their functionality, is asso-
ciated with the risk of obesity and metabolic disorders.
Consequently, allelic variants of these genes may be of
interest for testing genetic susceptibility to obesity. It has
been demonstrated that disruption of redox homeostasis
due to polymorphism of genes in the prooxidants < an-
tioxidant system contributes to the development of the
pathological phenotype of obesity (Figure 2).

An in-depth understanding of the subtle mechanisms
of genetic regulation of obesity-associated 0S will con-
tribute to the development of effective methods for treat-
ing obesity and associated metabolic diseases.
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