JKONOrMYECKAn reHeTNKa

GENETIC TOXICOLOGY \ol. 22 (2) 2024 Ecological genetics
DOI: https://doi.org/10.17816/ecogen567956 ' l.)
Original Study Article
Check for
‘ updates ’

The ability of photochemical decomposition
products of the Roundup to induce oxidative
stress in bacterial cells

Elena A. Saratovskikh ', Elbek A. Machigov 2, Andrey I. Yarmolenko ',
Elena V. Shtamm 3, Serikbai K. Abilev % *

! Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia;
2 N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia;

3 N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia;

“ Lomonosov Moscow State University, Moscow, Russia

ABSTRACT

BACKGROUND: A common non-selective systemic herbicide Roundup (Glyphosate, active ingredient N-phosphonomethylgly-
cine, N-PMG) is used to control perennial weeds. It is necessary to assess the hazard of the products of photochemical decom-
position of N-FMG formed under the influence of solar UV and ozone.

AIM: Using lux-biosensors based on Escherichia coli, studying the ability of N-FMG photochemical degradation products
to induce oxidative stress in bacterial cells.

MATERIALS AND METHODS: The work used the active substance of the herbicide Roundup N-phosphonomethylglycine
(N-PMG), hiosensors E. coli (pSoxS-lux), E. coli (pKatG-lux). UV radiation, Mass spectrometry.

RESULTS: Using biosensors, it was shown that the products of photochemical decomposition of N-PMG (2-(N-hydroxymethyl-
hydroxyamine) ethanoic acid) cause an increase in the concentration of superoxide anion radical and H,0, in E. coli cells, which
induces oxidative stress in the bacterial cell.

CONCLUSIONS: The photochemical decomposition product of N-PMG (2-(N-hydroxymethyl-hydroxyamine) ethanoic acid)
induces the formation of superoxide anion radical and H,0, in bacterial cells.

Keywords: Glyphosate (Roundup, N-phosphonomethylglycine); photochemical degradation; Mass spectrometry; E. coli bio-
sensors pSoxS-lux, pKatG-lux; oxidative stress.
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AHHOTALIMA

AKTyanbHocTb. PacnpocTpaHeHHbIN HeCeneKTUBHBIA CUCTEMHbIN repouumna PayHpan (rnmdocat, AeicTByloLLee BELLECTBO
N-dochoHomeTmunrnmumH, N-OMI) ncnonbayetcs ans 60pb0bbl ¢ MHOrONeTHUMM COpHAKaMK. HeobxoayMa oLeHKa 0nacHoOCTH
npoayKToB QoTOXMMUYEcKoro pasnoxeHns N-OMI, obpasytowwmxca non LeNCTBMEM COSIHEYHOrO YNbTpadKUoNeToBoro Us-
JlyYeHns U 030Ha.

Lienb — ¢ nomoLubto lux-6roceHcopos Ha ocHoBe Escherichia coli iccneoBaHne cnocobHOCTV NPOAYKTOB HOTOXMMMYECKOTO
paznoxenns N-OMI nHLyLUMpOBaTb OKMCIUTENBHBIN CTpecC B HakTepuanbHbIX KITETKaX.

Matepuansl u Metoapbl. B pabote ucnonb3oBanu gelicTeytoiee Belecto repbuumaa PayHaan N-dochoHoMeTMArnMLMH
(N-OMTI), broceHcopsl E. coli (pSoxS-lux) u E. coli (pKatG-lux). YD-usnyyeHune, Macc CneKTpoMeTpus.

Pe3ynbtatbl. C noMoLLbto 61MOCEHCOPOB NOKa3aHo, YTo NPOAYKT GoToxuMmUdecKoro pasnoxenus N-OMT (2-(N-ruppokcuMeTun-
TMAPOKCMAMUH) 3TaHOBAA KUCNOTa) BbI3bIBAET yBeNMYEHUe KOHLIEHTPALWMW CynepoKCMAHOT0 aHWoH-paanKkana u H,0, B knet-
Kax E. coli, 4To MHAYLMPYET B DaKTepuanbHOM KIeTKe OKUCIUTENbHBINA CTpecc.

3akntouenue. MpoaykT doToxummyeckoro pasnoxenns N-OMI (2-(N-rugpoKcUMeTn-rnapoKcMaMmH) 3TaHOBas KUCNIOTa)
WHAYLMPYET B KNeTKax baKTepuii 0bpa3oBaHue CynepoKCMAHOrO aHoH-paauKana v H,0,.

KntoueBble cnoBa: ramdocat (PayHaan, N-dochoHoMeTURrNMLMH); GOTOXMMUYECKOE Pa3OKeHUe; Macc-CreKTPOMEeTpus;
E. coli bruoceHcopbl pSoxS-lux, pKatG-lux; okcuaaTvBHbIN cTpecc.
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BACKGROUND

A compound with the common name “glyphosate (Gl)"
is included in more than 20 commercial drugs, in particu-
lar Roundup (Rp)*. It is the most widespread chemical in
the world in terms of production volume and application
in agricultural practice [1]. It is a non-selective systemic
herbicide used to control weeds, especially perennial
ones. The active component has the systematic name
N-phosphonomethylglycine (N-PMG) and is an organo-
phosphorus compound related to phosphonates.

Numerous studies have reported that herbicides and
their decomposition products pollute the environment [2, 3].
Moreover, Gl and its main decomposition products, in
particular aminomethylphosphoric acid (AMPA), are re-
sponsible for the almost ubiquitous pollution of surface
and groundwater [4]. Rp showed high toxicity in cultivated
plants, for example, Allium cepa L. and Zea mays L. [5, 6].
Weeds against which Rp or Gl are applied have developed
resistance, and therefore the applied doses have to be in-
creased periodically [7-10]. Numerous herbicides, inclu-
ding Rp, chelate with metals to form complexes [11, 12]
and interact with aluminum oxide [13]. Complexes of this
type have significantly higher binding constants with ade-
nine, nucleotides, and several other biological molecules.
As a result, their chemical and biological stability, as well
as toxicological effects, are enhanced remarkably [14, 15].
Residual amounts of Rp (Gl) and its decomposition prod-
ucts are found in staple foods such as sugar, corn, soy-
beans, and wheat [16].

Like other herbicides, Rp negatively affects soil and
aquatic organisms, exhibiting high toxicity and sharply
reducing their numbers [3, 14, 15]. Upon entry into the
human body with food, Rp affects the organs of the di-
gestive and excretory systems and causes many diseas-
es [2, 3, 17-19]. In particular, Gl markedly impacts the
oxidation of fats and polypeptides. The nature of the ef-
fect changes with dosage, so that at high concentrations
(107°-1074 mol/l), the intensity of peroxidation processes
decreases, and at low concentrations, the intensity of
these reactions increases [20—22]. One of the mechanisms
of action of Rp is the inhibition of cholinesterase [23].
Suppression of maltase and peptidase in hydrobionts by Rp,
as well as the in vitro inhibition of the redox system
NADH oxidoreductase by the metal complexes of the
herbicides Lontrel, Rp, Zenkor, Bazagran, Kuzagard,
Sethoxydim, and Lontrel has been recorded [24, 25].
Cytochrome P450 (CYP) enzymes are of phenomenal
importance in animal and plant metabolism. In particu-
lar, they participate in the detoxification of xenobiotics.
Their inhibition by Gl is an underappreciated aspect of its

* Since commercial preparations contain various additives, the fol-
lowing text presents the names that the authors have used in the specific
articles cited.
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toxicity to mammals. In this way, Gl enhances the dam-
aging effects of chemicals and toxins that enter the body
from the environment. The negative effects are insidious
and manifest themselves slowly over time as inflam-
mation damages cellular systems throughout the body.
In addition to inhibiting CYP enzymes, Gl disrupts the bio-
synthesis of aromatic amino acids by intestinal bacteria
and the transport of sulfate in serum. All these processes
synergistically enhance each other and have a combined
effect [16].

Herbicides cause serious disturbances in the antioxi-
dant system by suppressing the levels of reduced gluta-
thione and antioxidant enzymes, such as superoxide dis-
mutase, catalase, and glutathione reductase in the liver,
thereby inducing oxidative stress via lipid peroxidation
which is a proposed toxic-dynamic pathway of oxidative
stress [26]. Many indications of the genotoxic potential
of Rp exist [26-31] as its most hazardous effect. Oxida-
tive DNA fragmentation causes genetic damage [28-30].
Rp modifies gene expression in the liver, particularly that
of TP53. The formation of apurinic/apyrimidinic lesions
leads to DNA strand breaks and protein misfolding [27].
General molecular mechanisms associated with the gen-
eration of reactive oxygen species (ROS) due to Gl or
AMPA, have been established [31, 32].

As a result of these biochemical and genetic disor-
ders resulting from the action of Rp (Gl), embryotoxic,
hemotoxic, cytotoxic, and genotoxic changes occur in hu-
mans and animals [17, 18, 33], their fertility decreases,
and carcinogenic and teratogenic diseases are registered
[19, 34, 35]. Since 2015, Rp has been categorized as
a group 2A carcinogen per the classification of the
International Agency for Research on Cancer of the World
Health Organization [36, 37].

The phytotoxic effect of herbicides depends on the du-
ration for which they remain on the leaves. This property
relies on the herbicide formulation, which, along with
the active ingredient, contains auxiliary compounds that
enhance the wettability of leaves and the penetration of
herbicide molecules into cells. Therefore, after treat-
ment, drops of herbicide remain on the leaves for a long
time, which decompose, when exposed to sun rays.
Several studies on the photodecomposition products of
Gl are available [38-41]. For example, we have previ-
ously revealed that when an N-PMG solution is irradiated
with light at 250-600 nm for 14 h, a genotoxic product is
formed that can induce an SOS response in the K12 bio-
sensor MG1655 (pColD-lux); however, the non-irradiated
solution did not have any such activity [41].

Despite all the available data, certain pressing ques-
tions remain for environmental scientists; first, regarding
the decomposition products of N-PMG, and second, con-
cerning the most effective ways to purify drinking water
of N-PMG and its decomposition products. Various treat-
ment processes for natural and drinking water to reduce
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their herbicide concentrations and minimize the potential
health risks associated with exposure to these chemicals
through consumption of contaminated water have been
investigated [42, 43]. Qver time, researchers have con-
cluded that improved oxidation processes are a crucial
technology for solving the problems of herbicide con-
tamination, by both purifying drinking water and treating
wastewater [44]. In previous reports, post-exposure to
UV radiation, the parallel influence of many other fac-
tors, such as catalyst, pH, and the introduction of H,0,,
was studied [45-47]. In our previous publication, ozone
exposure was used in addition to UV radiation [41].

It should be emphasized that very few studies have
been conducted on the primary decomposition products
of Gl (Rp), and the results presented were ambiguous.
A study states that AMPA is a major metabolite with
excellent stability and low toxicity [45]. Gl and AMPA
showed cytogenetic toxicity during in vitro micronucleus
analysis in the Chinese Hamster ovary cell line CHO-K1,
which was elevated by 100-fold after light irradiation; an
assessment of the ROS levels suggested the involvement
of oxidative stress in the genotoxic effects of Gl [46].

Equally conflicting opinions have been expressed
about the possible route of photodecomposition of
N-PMG. A review analyzes a significant array of data
and presents two pathways for the formation of reaction
products; however, the stable compounds formed were
glycine, sarcosine, and formaldehyde, but not AMPA, and
their synthesis process was not associated with it [47].
In our previous article, photodecomposition products were
identified using chromatography-mass spectrometry (MS),
among which AMPA was not identified [41]. These findings
can be explained by certain difficulties in stabilizing the phos-
phate group in molecules and the products of their hydrolytic
abstraction are strongly stabilized via conjugation [48].

In particular, the application of lux biosensors based
on the Escherichia coli K12 strain MG1655 (pSoxS-lux) and
MG 1655 (pKatG-lux) [49-51], as well as pColD-lux [52],
carrying a recombinant plasmid with the lux operon of the
luminescent bacterium Photorhabdus luminescens, fused
with the promoters of the superoxide dismutase, cata-
lase, and colicin encoding genes, respectively, were ef-
fective in studying the causes and pathways of the geno-
toxicity of herbicides and other compounds. The pKatG
promoter (OxyR activator protein) responds specifically
to hydrogen peroxide (H,0,) and other peroxides, while
the pSoxS promoter (SoxR activator protein) responds
explictly to the superoxide anion radical (°072). For the

0
[ H OH
HO—P—C—N—C—CC
| Hp ) ™0
HO

Fig. 1. Chemical formula of N-phosphonomethylglycine
Puc. 1. Xumnyeckas dopmyna N-dochoHomeTunrnmumHa
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SOS biosensor that responds to DNA damage, the pColD
promoter of the colicin gene, which is part of the SOS
regulon, was used. E. coli strains carrying the lux op-
eron, under the influence of oxidative stress inducers or
DNA-damaging agents, begin to actively produce the
luciferin-luciferase complex, which enhances the biolu-
minescence levels [53].

Using lux biosensors based on E. coli, this work aimed
to study the ability of the photochemical decomposition
products of N-PMG to induce oxidative stress in bacte-
rial cells.

MATERIALS AND METHODS

We used the active component of Rp (Gl, N-phos-
phonomethylglycine [N-PMG, C;H¢NO;P]), purified
from double-distilled water by double recrystallization
(Fig. 1) [54].

The bacterial lux biosensors used in this work were
E. coli K12 MG1655 (pSoxS-lux) and E. coli K12 MG1655
(pKatG-lux) [55-57]. In the text, they are designated as
pSoxS-lux and pKatG-lux. They contain a recombinant
plasmid that includes the promoters of the superoxide
dismutase (soxS) and catalase (katG) genes fused with
the P. luminescens lux operon. In cells of the pSoxS-lux
strain, when the °07% concentration increases, the
soxS is transcribed along with the lux operon, which
leads to luminescence with an intensity proportional to
the *072 levels. The pKatG-lux strain has a similar mech-
anism of operation, where the katG fused with the lux
operon, but is responsive to H,0,. The biosensors listed
were provided by G.B. Zavilgelsky and I.V. Manukhov
(GosNllgenetika, Moscow).

Bacterial strains were stored and cultured using solid (agar)
and liquid (broth) LB (Luria Bertani) nutrient media, contain-
ing 100 pg/ml ampicillin. For the experiments, broth cultures
of KatG-lux and pSoxS-lux in LB medium were utilized.

Overnight cultures of the biosensors were diluted in
fresh LB broth, bringing the bacterial content to 107 cells/ml,
and incubated at 37°C for 120 min with aeration until the
early exponential phase was reached. Next, the cultures
were transferred into a 96-well plate at 180 pl/well for
the lux test. A row of wells for the control sample was
filled with distilled water, 20 ul/well. The next rows
were added with various dilutions of irradiated N-PMG
(N-PMGirr). In the last row, 20 pl/well of 0.01 M N-PMG
was added as a positive control. Next, the cultures in the
filled plates were incubated for 1 h at 37°C. Then, the
luminescence intensity of the biosensors was determined
employing a StatFax 4400 microplate reader luminom-
eter (Awareness Technology Inc., USA), where relative
light units (RLU), the unit for the luminescence response
measurement was taken as conventional luminous flux
units. The above experiments were performed at least
thrice with eight repetitions each.
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Experiments were performed to simultaneously deter-
mine the luminescence and survival of the pSoxS-lux and
pKatG-lux biosensors containing cells directly in the in-
cubation mixture in the wells depending on the N-PMGirr
dilution to recalculate the luminescence/1000 viable
cells. For this purpose, post-incubation of the experimen-
tal mixture, the bioluminescence intensity was measured.
Then the contents of each well were serially diluted to
1076, 107, and 1072 in 0.9% NaCl for subsequent inocula-
tion in Petri dishes with LB agar. After 19 h of incubation
at 37°C, the number of colonies was counted and recal-
culated to the number of colony-forming units (CFUs) in
0.2 ml of the bacterial suspension. The luminescence
value was divided by the number of CFUs for the cor-
responding concentration of N-PMGirr and multiplied
by 1000. The resulting coefficient indicated the relative
luminescence of 1000 CFUs.

All experiments were performed in triplicates.
The data obtained during the experiments were processed
using standard statistical methods. The average values of
the indicators were calculated. The significance of the
differences in mean values was determined using Stu-
dent’s t-test. The probability of error p < 0.01 was con-
sidered sufficient to confirm the statistical significance of
the differences in the data obtained.

RESULTS AND DISCUSSION

Kinetics and products of N-PMG decomposition under
UV radiation and ozone

Herbicides are considered harmless to plants based
on the fact that they are degraded by the plant metabo-
lism, the UV component of solar radiation, and soil mi-
croorganisms. The degradation rate of N-PMG under the
influence of only sunlight measured under our experi-
mental conditions was 2.8 x 107* M/h [41].

1.2
1.0

Absorption, A
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Previously, we tried to simulate the natural conditions
in which the herbicide is applied to plants, namely solar
UV radiation, moisture (dew, rain, surface or groundwa-
ter), and ozone (formed during a lightning discharge) [41].
The decomposition of N-PMG under irradiation from
a DRSh 1000 mercury lamp was recorded. The combined
effect of UV radiation and ozone on the N-PMG decom-
position was non-additive. Thus, the decomposition rate
was many times higher than those recorded with either
irradiation or ozone bubbling of the solution alone. It has
been established that the decomposition of N-PMG under
the combined action of UV radiation and ozone occurs at
a markedly higher rate (0.406 M/h) than when using them
separately [41].

The decomposition process is complex and multi-stage
in nature. Several intermediate compounds appeared and
were traced in the electronic spectra recorded during the
decomposition of N-PMG at different periods of irradiation
(Fig. 2). Thus, after 1 h from the start of irradiation, a peak
with A, of 195 nm manifested, which was subsequently
detected in all samples. After 3.8 h, a peak at A, of 258 nm
was identified, which was noted in all samples monitored
up to 8.1 h. The peak A; of 238 nm was identified once
after 5.3 h. The peak A, of 286 nm appeared after 2.8 h,
then disappeared after 1 h, redetected at 11.3 h, and then
was no longer observed. This trend indicates a complex
multi-stage process of N-PMG decomposition.

The synergistic influence of UV radiation and ozone
can be explained by considering the ability of ozone to
photolyze upon absorption of a quantum of UV radiation:

0,+hv—>0°+0, (M

The resulting atomic oxygen can directly interact with
N-PMG, inducing oxidation, which includes a multi-stage
sequence of transformations resulting in products, some
of which were identified.

m/ m2 m3 m4 mh

1

11.28 14.28

Time, h
Fig. 2. Change in the absorption spectrum of the reaction mixture during the photochemical decomposition of an aqueous solution
of N-phosphonomethylglycine under the combined influence of UV radiation and ozone over time: 7 — absorption intensity at A = 212 nm;
2 — 195 nm; 3 — 286 nm; 4 — 258 nm; 5 — 238 nm. According to work [41]
Puc. 2. /3MeHeHWe crnekTpa MOT/IOLLEHNS PeaKUMOHHOI cMecu B npouecce (GOTOXMMMYECKOTO pas/oXKeHWs BOLHOMO pacTeopa
N-cbochoHOMETUNMIMLMHA NPU COBMECTHOM Bo3aencTBUM YP-U3/y4eHUs U 030Ha OT BPEMEHU: | — MHTEHCMBHOCTb MOTMIOLLEHUS MpU
A =212 uM; 2 — 195 HM; 3 — 286 HM; 4 — 258 HM; 5 — 238 HM. [To faHHbIM paboThl [41]
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N-PMGirr solutions were analyzed using MS to ascer-
tain the composition of the photochemical decomposition
products [41]. The initial N-PMG was characterized by a
peak of the deprotonated molecule with m/z 168, which
corresponded to C;H,NO,P~". Some impurities appeared
in the sample, kept in the dark at 25°C for 14.3 h, but
they were significantly less than the main compound
N-PMG. In the irradiated and ozonized sample, even
traces of N-PMG could not be detected, i.e., it was com-
pletely degraded.

The use of high-resolution MS [58] enabled the de-
termination of the exact masses of sample destruction
products (UV + ozone; 14.3 h) and, as a consequence,
their elemental compositions were ascertained [41].
Table 1 presents the composition and most probable
structures of the fragments produced under the influence
of UV radiation and ozone. Obvious peaks corresponding
to deprotonated molecules of the N-PMG decomposition
products were recorded.

The activity of the oxidative stress systems
influenced by N-PMG photodecomposition products

The photodecomposition products of N-PMG
(N-PMGirr) induced intense luminescence in the pKatG-lux
and pSoxS-lux biosensors when co-incubated for 90 min
(Fig. 3). This observation indicates that N-PMGirr directly
or indirectly generates ROS such as superoxide anion
and hydrogen peroxide in E. coli. These compounds are
robust sources of oxidative stress in organisms. Oxida-
tive damage can not only be cytotoxic but also damage
the DNA.

Experiments were performed to determine the sur-
vival of bacteria, i.e., their ability to form CFUs, when
exposed to various concentrations of N-PMGirr. For this
purpose, after the incubation of the experimental mix-
ture for a specific time, a 0.1 ml aliquot of the bacterial
suspension was serially diluted to 10~ using 0.9% NaCl.
Then 0.1 ml from different dilutions were inoculated on
LB agar. After 19 h of incubation at 37°C, the number of
colonies grown was determined, which is an indicator
of the CFUs. The N-PMGirr concentration was markedly
inversely proportional to the number of CFUs in the cell
culture (Table 2). In the case of the pKatG-lux, the num-
ber of viable bacteria was 5.11 x 107 in the control; when
exposed to a 1:10 diluted solution of N-PMGirr, the sur-
vival rate of bacteria did not differ from the control value.
However, higher concentrations of N-PMGirr, either un-
diluted or diluted to 1:2 reduced the survival of bacteria
by >100- and 10-fold, respectively. Similar results were
obtained with pSoxS-lux.

An experiment was performed to simultaneously de-
termine the luminescence and survival rate of bacteria
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based on the pSoxS-lux and pKatG-lux biosensors direct-
ly in a cultured suspension in the panel of cells and to
determine changes in the luminescence intensity depend-
ing on the N-PMGirr concentration for a fixed number
of bacteria. For this purpose, luminescence data were
read after 90 min of incubation of the suspension. Then
the contents of each well (0.2 ml) were serially diluted
to 107, 1075, and 1072 with 0.9% NaCl and subsequently
inoculated into Petri dishes with LB agar. After 19 h of
incubation at 37°C, the number of colonies grown was
counted and recalculated to the number of CFUs in
0.2 ml of the bacterial suspension. The results obtained
are presented in Table 3.

The following calculation was performed to estimate
the intensity of the luminescent response of the pSoxS-lux
and pKatG-lux biosensors per 1000 viable cells.
The intensity indicator of the biosensor luminescence
response at a certain concentration of N-PMGirr was di-
vided by the number of CFUs in the well and multiplied by
1000. The resulting coefficient indicated the relative lu-
minescence of 1000 CFUs. In the control sample untreat-
ed with N-PMGirr, the luminescence of 1000 pKatG-lux
and pSoxS-lux bacteria was 0.005 and 0.014 RLUs,
respectively; with the addition of undiluted N-PMGirr
exceeded the control values by 240- and 261-fold,
at 1.2 and 3.65 RLUs, respectively; and with 10-fold dilu-
tion, was 0.007 and 0.02 RLUs, respectively.

These data suggest that the intensity of the expres-
sion of the genes encoding the oxidative stress-reliev-
ing enzyme superoxide dismutase in viable biosensor
cells was directly proportional to the concentration of
N-PMGirr. Thus, with increasing N-PMGirr levels, some
cells die, and in the remaining, an increase in the activ-
ity of the oxidative stress-relieving systems was noted
(Table 3).

Chemical reactions leading to the formation
of superoxide anion radicals from N-PMG under
the influence of UV radiation and ozone

Table 1 presents the products of the photochemi-
cal decomposition of N-PMG. The following scheme for
their formation can be proposed. Under the harsh oxi-
dative conditions produced by N-PMG, namely an aque-
ous environment under the influence of UV and ozone
(producing both 0,” and 0°), the entire N-PMG molecule
becomes excited. Electrons move from the m-bonding
to the m-antibonding levels of the molecule, which
leads to its disintegration. In stage 1, a proton is lost
to form a stable intermediate anion, which we can be
detect using MS (m/z 168.0 [C,H,NOPI") and UV spec-
troscopy (A = 195 nm). Its stability can be explained by
the delocalization of electrons throughout the molecule
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Table 1. Composition and structure of fragments formed during the photochemical decomposition of N-phosphonomethylglycine,

according to mass spectrometry data [41]

Tabnuua 1. CocTaB 1 CTpyKTypa parMeHTOB, 00pasyrowmxcs B npoLiecce GoToxMMMYeckoro pasnoxeHust N-pochoHoMeTUnrmMumHa, co-

rMacHo [aHHbIM Macc-cnekTpoMeTpum [41]

Pr?]guct m/z Composition Structure
0
1 86,02510 C;H,0,N /N\)k
0
0
2 100,00427 C;H,0;N OVN\*
o
H 0
3 102,01995 C;H,0;N 0\/N
0
H 0
4 104,03557 C;H,0N HO. N
o
(|JH 0 T H 0o I
5 121,02968 C,H,0,N HovN\)k or HO\/NW)‘\OH

Table 2. Dependence of the survival of biosensor bacteria (number of CFUs in 0,1 mL suspensions) at concentration of N-PMGirr
Tabnuua 2. 3aBMCMMOCTb BbIXMBaeMoCTH bakTepuii bruoceHcopos (umcno KOE B 0,1 Mn KynbTypbl) oT KoHUeHTpauum N-OMIobn

N-PMGirr dilution

Lux biosensor Water (control)
1:10 1:2 undiluted
pKatG-lux 5.11+0.39 x 107 4.67 +0.55 x 107 473 +0.58 x 10¢ 3.14 + 0.56 x 10°*
pSoxS-lux 5.46 £0.16 x 107 5.75 + 0.08 x 107 454 +0.35 x 10¢* 2.83 £ 0.55 x 105**

Statistically significant differences between the control and variants with N-PMGirr: *p < 0.05; **p < 0.001.
CTaTUCTUYECKM 3HAUMMbIE Pa3nuuMs MeX Y KOHTponeM 1 BapuaHTamu ¢ N-OMlobn: *p < 0,05; **p < 0,001.

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Luminescence, c.u.

Water 1:100 1:10 1:5 1:2 Undiluted
Dilutions of N-phosphonomethyl-glycine

Fig. 3. Luminescence of pKatG-lux and pSoxS-lux with N-PMGirr in arbitrary units of luminous flux
Puc. 3. JliomunecueHums pKatG-lux u pSoxS-lux ¢ N-®Ml0bn B ycnoBHbIX eAMHMLAX CBETOBOO NOTOKA
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Table 3. Dependence of the intensity of the luminescent response and cell survival of the biosensors pKatG-lux and pSoxS-lux on the

N-PMGirr concentration

Ta6nuua 3. 3aBUCHMOCTb MHTEHCMBHOCTM JIOMMHECLIEHTHOrO OTBETA M BbIKMBAEMOCTU KJeTOK buoceHcopoB pKatG-lux u pSoxS-lux

OT KoHLeHTpauum N-OMIobn

CFU number in 0.2 ml

Luminescence of 0.2 ml Luminescence per

Lux biosensor N-PMGirr of culture of culture 1000 CFU
Water (control) 5.22 + 0.44 x 108 2938 + 109 0.005
pKatG-lux 1:10 471 +051 x 108 3328 + 86 0.007
undiluted 3.34 +0.40 x 10¢ 4092 + 131 1.2
Water (control) 4.19 £0.28 x 108 5932 + 109 0.014
pSoxS-lux 1:10 3.62 £0.39 x 108 7157 £115 0.02
undiluted 2.50 +0.38 x 10° 9137 £ 125 3.65*

*The most significant results.
*Hanbonee 3HauMMble pe3ynbTatbl.

involving the conjugated double bonds C=0 and P=0, as
well as the lone electron pairs of nitrogen and oxygen
atoms (2).

I OH
HO—P—C—N—C—C _
| H, H, 0 H
— > HO—P—C—N—C—CZ 0,
-H | H, H, 0
OH

We can only hypothesize from which of the acid
groups (carbonyl or phosphorus) the proton is abstracted,
but the probability of both paths is obvious. Most likely,
both particles are in a state of equilibrium. At the next,
most probable stage, the phosphorus—carbon bond is
quite easily hydrolyzed, while the phosphorus atom is
oxidized under these environmental conditions from the
formal valence (+4) (due to delocalization of electrons)
to the most stable valence (+5) in N-PMG. As a result,
phosphoric acid (H,P0,) is abstracted. The anions P0;"
with m/z 78.95941 and H,P0,” with m/z 96.96990 were
identified by MS.

0
[ H .0 +H,0
HO—P—C—N—CCZ 0 ———»
| H, H, ~0  -H3PO,
*HZO /0
—N—C-CT e
o, TN

(*)

In the resulting intermediate, the anion (*) and the
nitrogen (N) atom, with its lone electron pair, participate
in conjugation with the carboxyl group (COOH). As a re-
sult, the cloud of m electrons is distributed throughout the
molecule. This anion is sufficiently stabilized and from it,
under such environmental conditions, subsequent reac-
tions in several directions are possible, namely a) from

DOl https://doiorg/10.17816/ecogen567956

the oxidative deprotonation of the N atom, compound
No. 1is formed, identified in MS with an m/z of 86.02510.

From the resulting compound, upon oxidation of the
methyl group (b) bonded to the N atom, compound No. 2
is formed with an m/z of 100.00427, in which aldehyde
grouping is conjugated with the lone electron pair of the
N atom, which stabilizes this particle.

b)
00
—N—C—CZ "o
ﬁ3 H 50 -HyO
|
0 0
» CH—N—C—C
o™ CHN—E—CTge

Under the aggressive oxidizing environmental condi-
tions, further oxidative reactions occur with the resulting
intermediates at their easily oxidized positions, namely
the N atom and the methyl grouping associated with the
N atom.

As a result, compounds No. 4 with an m/z of 104.03557
(c), followed by No. 5 (d) with an m/z of 121.02968 are
sequentially formed.

c)
0 0
C—N—C—CZ 0~ »
H, H, 0 H0
0 H 0
~ » H0—C—N—C—C7 " o
H,0 H, H, 0

and/or (*)
Under these conditions, nitrogen is easily oxidized to
the hydroxyamine (N-OH) group, with the formation of
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2-(N-hydroxymethyl-hydroxyamine) ethanoic acid, com-

pound No. 5:
d) H .
-0 UV+0
—C-—N—C—CZ 0>
HO N6 0300 o
OH -
. |
uv+0 0
= H0—C—N—C —C<
T R

Other parallel reaction pathways for the oxidation of
the intermediates are also possible. This includes the oxi-
dation of carbon located in the a-position relative to the
carbonyl group with the formation of a hydroxyl group in
this position, namely compound No. 3, having an m/z of
102.01995 (diagram, Fig. 4).

The photochemical decomposition products No. 1-4
have one, two or even three double bonds (Table 1). Sig-
nificantly excessive electron densities determine their
reducing nature.

Product No. 5, having an m/z of 121.02968 and with
the composition of C;H,0,N is of particular interest.

OH nks

| 0
HO—C—N—C —CZ (®)
H, H, OH

Compound No. 5 is an aliphatic hydroxylamine:
2-(N-hydroxymethyl-hydroxyamine) ethanoic acid, which
is an oxidizing agent and is capable of a disproportionation
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reaction, inducing the formation of a short-lived and
highly active nitroxide radical.

OH 0
Y | (5)
—CN—C— —> —CN—C—

As a result of the transfer of a proton, the unpaired
electron is localized in the antibonding m* orbital formed
from the 2p, orbitals of nitrogen and oxygen atoms.
The hybridization of the nitrogen atom bonds is close
to sp?. In the absence of the possibility of delocalization
of the unpaired electron, an extremely unstable molecu-
lar ion is formed [59]. Alkyl radicals react quickly with
oxygen [60, 61] to form 072, one of the most active forms
of oxygen circulating in organisms. This particle has
a very high reactivity, as a result of which both its life-
time and its stationary concentration are minuscule.

RNO® + 0, = RNO +0,° (or 0,) or ©)
RNO® + 0; - RNO, + 0," (or 0,).

However, evidence indicates that due to the high
instantaneous radiation density, interaction between
products formed under the influence of UV radiation is
possible [62]. The product(s) diffuse(s) through the cell
membrane. In particular, when treated with A = 220 nm,
there was a significant decrease from pH 7.4 (biologically
important) to pH 2.5-3.0. The underlying mechanism is
associated with the formation and subsequent breakdown

0

|| 0 H 0 H 0
HO—P—C—N—C—CZ . ©—» H0—C—N—C—CZ_ o —» HO—C—N—C—CZ

| H,  H T Hy  Hp 0 H L “0H

HO

Fig. 4. Scheme of potential reactions of N-PMG oxidation at a-carbon atom
Puc. 4. CxeMa noteHumManbHbIx peakumit okucnennst N-OMI no a-yrnepofHoMy atoMy
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of peroxynitrite. At pH 7.4, both ionic (ONOQO-) and proton-
ated (peroxynitrous acid ONOOH; pK, = 6.8) forms exist.
The protonated form has a half-life of ~1.3 s, while the
ionic form can persist for up to 15 days even at room
temperature [62].

The immune system takes advantage of the damag-
ing effects of oxidizing agents, making the production of
oxidizing substances a key element in the mechanism
for destroying pathogens. Thus, activated phagocytes
produce ROS and reactive nitrogen species. These in-
clude °072, nitric oxide (*NO), and a particularly reac-
tive derivative, peroxynitrite (ONOO™) [63]. Under normal
conditions, the intracellular content of ROS is maintained
at a low level by various enzyme systems involved in
redox homeostasis. However, under various conditions,
in particular in the presence of toxins (for example, pes-
ticides), excessive free radicals accumulate, which are
molecules without one electron (°072, hydroxyl radical,
HO-, and H,0,), leading to oxidative stress.

CONCLUSIONS

The study results showed that the products of pho-
tochemical decomposition of N-PMG are toxic to E. coli
cells. Using the pSoxS-lux and pKatG-lux biosensor sys-
tem, N-PMGirr was found to cause oxidative stress with
an elevation in the concentrations of superoxide anions
and hydrogen peroxide, which can damage the genetic
material. Using the MS method, it was established that
among the products of the photochemical oxidation of
N-PMG, a compound with the composition C,H,0,N and
m/z 121.02968 was identified [41]. This work pres-
ents a sequence of chemical reactions proving that, as
a result of proton transfer and delocalization of the un-
paired electron, the compound 2-(N-hydroxymethyl-hy-
droxyamine) ethanoic acid is capable of producing *07?,
which can induce the expression of the gene encoding the
oxidative stress-relieving enzyme superoxide dismutase
in viable cells detected by the pSoxS-lux and pKatG-lux
biosensors.

A mechanism has been proposed for the trans-
formation of the N-PMG molecule into new chemical
compounds capable of generating ROS and stable free
radicals in bacterial cells. In turn, free radicals and ROS
accumulation in the cell cause DNA damage. Thus, a very
probable mechanism for the occurrence of the geno-
toxic effect of the photochemical degradation products
of N-PMG has been considered. Once inside the human
body, N-PMG accumulates in cell membranes due to an
interaction with lipids or by binding into stable complex-
es with other biological molecules, such as adenosine
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triphosphate. Under certain conditions (nervous over-
load, increased solar radiation [hv or hv + 0,], or other
factors), a significant amount of «0~? is generated from
the N-PMG molecules accumulated. The membrane(s)
rupture and radicals enter the lymph and bloodstream.
Their quantity is several-fold greater than the body needs
or can be uses or detoxified under normal physiological
conditions. An excessive amount of radicals leads to en-
hanced activation of free radical processes, which entails
a whole cascade of negative reactions and pathological
processes that induce many diseases.
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