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ABSTRACT

BACKGROUND: Phlorotannins are unique phenolic compounds produced by brown algae. Due to their considerable biological
activity these metabolites are extensively studied in the context of medicinal applications. However, to date, no studies ad-
dressed potential genotoxicity of phlorotannins.

AIM: The objective of this research is an assessment of mutagenic activity of intracellular and cell wall (CW) bound phlorotan-
nins of three brown algal species.

MATERIALS AND METHODS: Mutagenicity of phlorotannin extracts of Desmarestia aculeata, Fucus serratus, and Ectocarpus
siliculosus was assessed by the Ames test, carried out using three tester strains of Salmonella typhimurium (TA97, TA98,
and TA100) with and without metabolic activation.

RESULTS: Intracellular phlorotannin extracts of all tested algae showed relatively low values of minimum inhibitory concen-
tration against S. typhimurium (20-30 pg/ml), with extract of D. aculeata being the most toxic. Intracellular phlorotannins of
F. serratus and CW-bound polyphenols of E. siliculosus demonstrated moderate mutagenic activity in the Ames test inducing
frameshift mutations with the number of His* revertants more than twice higher compared to the control. The phlorotannin
extracts of D. aculeata showed no mutagenic activity.

CONCLUSIONS: The brown alga D. aculeata may be regarded as a promising source of phlorotannins for medical applications,
as its phlorotannin-enriched extracts have high antibiotic activity and are not mutagenic.
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AHHOTALMA

AxTtyanbHocTb. DnIOpOTaHHUHBI — 3TO YHUKasbHbIE heHoMbHbIe MeTabonuTbl Bypbix Bogopocneid. 3T coeanHeHUs uccne-
LYHTCA Ha npeAMeT BO3MOXHOI0 NPUMEHEHUS B MeAMLIMHE, MOCKOJbKY UMEKT 3HaUMTENbHYH0 B1OMOMMYecKylo aKTUBHOCTb.
Hensy4yeHHbIM acmeKToM Ha [aHHbIA MOMEHT 0CTaeTCsA NoTeHUMasbHas reHOTOKCUYHOCTb (QIOpOTaHHUHOB.

Lienb — oLieHKa MyTareHHo# aKTUBHOCTW BHYTPUKIIETOUHBIX U CBA3AHHBIX C KNIETOYHOM CTEHKOI (h1opOTaHHUHOB TpeX BUAO0B
bypbix Bogopocnen.

Matepuanbl M Metoabl. OnopoTaHHUH-cofepKalume aKcTpakTel Desmarestia aculeata, Fucus serratus w Ectocarpus
siliculosus oueHMBanM Ha MyTareHHoCTb B TecTe JiMca Ha Tpex wTamMax Salmonella typhimurium (TA97, TA98 n TA100)
¢ MeTabonMyecKoii akTuBauuen v 6es Hee.

Pe3ynbTathl. BHyTpuKneTouHble hnopoTaHHUHbLI BCEX BOAOPOCHEH XapaKTepU3YOTC OTHOCUTENBHO HWU3KUMK 3HAYeHWUAMMU
MUHWUMaIbHON MHTUOMpYIOLLEHA KOHLIEHTpaLWMK B OTHOLEHUM S. typhimurium (20-30 MKr/mn). BHyTpuKieTouHble diopoTaH-
HUHBI F. serratus v cBA3aHHbIE C KIETOYHOM CTeHKoW nonudeHonsl E. siliculosus nokasanu yMepeHHylo MyTareHHylo akTuB-
HOCTb B TecTe 3iiMca: OHWU MHAYLMPOBaNU MyTaLuMmM CABUra PaMKW CYMTbIBAHUSA, NPY 3TOM YMcio peeepTaHToB His* bonee uem
BABOE NpEBbILIAN0 KOHTPOAb. JKCTpaKThl D. aculeata He NPOSBUAM MyTareHHON aKTUBHOCTM.

3aknioueHne. OnopotaHuHbl D. aculeata Haubonee nepcneKTUBHbI AJ1S UCMOJb30BaHUA B MEAULMHE, MOCKOSbKY UMEKT
HanbOoMbLLYK aHTUOMOTMYECKYI0 aKTUBHOCTb U He MPOSIBNISKT MyTareHHOCT!.

KnioyeBble cnioBa: hnopoTaHHMHbI; Bypble BOAOPOCAM; MyTareHHOCTb; TeCT 3WMca; aHTUBMOTUYECKas aKTUBHOCTb; Fucus;
Desmarestia; Ectocarpus.
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BACKGROUND

Biologically active compounds of marine origin are cur-
rently being intensively investigated by numerous scientific
institutions around the world. The principal fields of the per-
spective practical application of such compounds are medi-
cine (pharmacology), and agriculture (feed additives), where
many seaweeds and marine invertebrates are considered
as potentially valuable sources of effective drugs [1, 2].
Phlorotannins represent one of the most promising groups
of marine biologically active compounds. These substances
are specific phenolic metabolites of brown algae, oligo-
mers and polymers of phloroglucinol (1,3,5-trihydroxyben-
zene) with diverse structure and degree of polymerization.
Several structural classes (fucols, phlorethols, fuhalols,
eckols, carmalols) can be distinguished among these com-
pounds, based on the bond type between the phloroglucinol moi-
eties (aryl-aryl, ether, or combination of aryl and ether bonds)
and the presence and number of additional hydroxyl groups
(see Figure) [3, 4]. The molecular profiles of phlorotan-
nins were shown to be very complex and species-specific
5, 61.

During the last decades phlorotannins are gaining in-
creasing attention due to their unique features. They occur
in all studied brown algae in considerable concentrations
(from 0.5 to 30% of dry weight, DW) and are relatively eas-
ily extractable [7, 8]. There are two subcellular phlorotan-
nin fractions: intracellular phenolics located in physodes,
specific brown algal organelles, and a minor phlorotannin
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fraction, associated with the cell wall (CW) [9, 10]. CW-bound
phlorotannins are still very poorly studied. Phlorotannins
demonstrated numerous biological activities (antioxidative,
antimicrobial and antifungal, anti-inflammatory, cytotoxic
and antiproliferative) with potential application in food and
cosmetic industries, and, most of all — in medicine [11].
Like other plant phenolics, phlorotannins exhibit antioxidant
properties [12, 13]. High correlation was found between phlo-
rotannin content in seaweed extracts and their scavenging
capacity against 2,2-diphenyl-1-picrylhydrazyl and peroxyl
radicals, indicating an important role of algal polyphenols
as chain-breaking antioxidants [14, 15]. Some phlorotan-
nins isolated from brown algae of the orders Laminariales
and, especially, Fucales, have shown comparable or even
stronger antioxidant activity than commercial antioxidants
such as butylated hydroxytoluene or propyl gallate [15, 16].
Cultured human liver cells HepG2 submitted to tert-butyl hy-
droperoxide induced oxidative stress demonstrated reduced
reactive oxygen species (ROS) and malondialdehyde level
after pretreatment with phlorotannins at physiological con-
centrations (0.5-50 pg/ml). Notably, phlorotannins in these
experiments showed no cytotoxic effect [17]. Phlorotannin
extracts scavenged intracellular ROS, prevented lipid peroxi-
dation and reduced 2,20-azobis-2-methylpropanimidamide
dihydrochloride induced cell death and morphological disor-
ders in zebrafish embryos [18]. Phlorotannins are also known
as potent antibiotics, demonstrating high toxicity against
Gram-negative and Gram-positive bacteria, human patho-
genic yeast, dermatophytes, and other microfungi [8, 19, 20].
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Figure. Representatives of major phlorotannin classes: fucols (1), phlorethols (2), fuhalols (3), eckols (4), and carmalols (5) [3]
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In antimicrobial tests, several phlorotannin extracts showed
minimum inhibitory concentration (MIC) values close to those
of widely used natural and synthetic antibiotics; moreover,
some polyphenol preparations were effective even against
antibiotic-resistant bacterial strains [21, 22]. Besides ex-
tensively investigated antioxidative and antimicrobial ef-
fects, phlorotannins also demonstrated anti-inflammatory
activity [23], cytotoxic and antiproliferative effects [24, 25].
Moreover, both phloroglucinol and low-molecular-weight
phlorotannins reduced formation of advanced glycation end-
products (AGEs), which are responsible for such diabetic
complications as retinopathy, neuropathy and cardiomyopa-
thy [26]. All these results indicate that phlorotannins might
be regarded as potential therapeutic agents for treating or
preventing diseases implicated with oxidative stress as well
as bacterial and fungal infections.

Thus, phlorotannins have been the subject of extensive
research focusing on their numerous potential biological ac-
tivities, but nevertheless, there are still serious gaps in this
field. First, we could not find any research considering pos-
sible genotoxic effects of phlorotannins, in particular, their
potential mutagenic activity. Meanwhile such studies are
necessary to support the safe use of these compounds in
medicine, food production etc. And secondly, only few stud-
ies addressed structure and biological activity of CW-bound
phlorotannin fraction, though these molecules also showed
both antioxidant and antibiotic activities [6, 15, 27].

The aim of our study is to assess potential mutagenic
activity of several intracellular and CW-bound phlorotannin
preparations of three brown algal species: Fucus serratus,
Ectocarpus siliculosus, and Desmarestia aculeata. These
species were chosen as phlorotannin extracts of all the three
seaweeds demonstrated the highest antibiotic and antifungal
activities in our previous research [8].

MATERIALS AND METHODS

Algal material collection

Brown algae (Fucus serratus L., Ectocarpus siliculosus
(Dillw.) Lyngb., and Desmarestia aculeata (L.) J. V. Lamour.)
were collected near the shores of the Keret Archipelago
(Kandalaksha Bay, White Sea; 66°17'28.76" N33°40'03.46"'E)
in July—August 2022-2023. All algal species are named ac-
cording to AlgaeBase online resource [28]. Mature thalli
were collected from the typical habitats of each species,
cleaned from the epiphytes, rinsed with distilled water,
carefully wiped with filter paper, and then frozen and kept
at —70°C.

Extraction of intracellular and cell wall-bound
phlorotannins

Phlorotannin extraction was carried out according to the
protocol of R. Koivikko et al. [29]. For extraction of the intra-
cellular phlorotannins samples of 1-2 g frozen algal material
were homogenized using a cryogenic laboratory mill Freezer/

Yol.21(3)2023
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Mill 6870 (SPEX SamplePrep, Metuchen, NJ, USA, Germany),
transferred to the 15 ml polypropylene conical tubes, poured
with 10 ml of acetone : water (70 : 30, v/v) and left soaking
for one hour. Then, each extract was centrifuged (5000x g,
10 min), the supernatant was transferred to another tube,
and the pellet was re-extracted with another 10 ml of aque-
ous acetone. The supernatants of five extraction rounds were
combined, and acetone was evaporated in a CentriVap vacuum
concentrator system (Labconco, Kansas City, MO, USA). Then
the extracts were defatted three times, partitioning against
dichloromethane (1:1, v/v), and phlorotannins were ex-
tracted by five successive portions of ethyl acetate (1:1, v/v).
Ethyl acetate extracts were dried and resuspended in 1 ml
water.

The CW-bound phlorotannin fraction was extracted from
the precipitate of the remaining algal material after the ex-
traction of intracellular phlorotannins. The precipitate was
resuspended in 5 ml of 1 M aqueous NaOH solution (80°C)
and then incubated for 2.5 h at room temperature with continu-
ous shaking (750 rpm). After centrifugation (5000x g, 10 min),
the supernatant was transferred to another tube. The alkaline
extraction was repeated three times. The combined superna-
tants were neutralized with concentrated HCl to pH 6.8-7.0
and defatted three times, partitioning against dichlorometh-
ane (1: 1, v/v). Then, phlorotannins were extracted by five
successive portions of ethyl acetate (1: 1, v/). Ethyl acetate
extracts were dried and resuspended in 1 ml water.

A comprehensive HPLC-MS analysis carried out in our
previous study [6] as well as a combination of HPLC with
UV- and MS-detection and NMR-analysis used in the work
of R. Koivikko et al. [29] confirmed that phlorotannins are
the principal constituents of the extracts obtained according
to the described protocol.

Analysis of phlorotannin content

A modification of the Folin-Ciocalteu micro-method
was used to measure the total phlorotannin content in the
semi-purified extracts. Phloroglucinol (Sigma Aldrich Inc.,
Budapest, Hungary, 79330) was used as the standard.
The reaction mixture containing 0.3 ml of sample (diluted as
necessary), 0.3 ml of Folin reagent, and 2.4 ml of 5% (w/v)
aqueous Na,CO, was incubated for 20 min at 45°C, and
then the absorbance was measured at 750 nm using a
SPEKOL 1300 spectrophotometer (Analytik Jena AG, Jena,
Germany).

Bacterial strains

Histidine auxotrophic strains of Salmonella typhimurium
TA97 (hisDé610 his01242 rfa A(uvrB chl bio) pKM101), TA98
(hisD3052 rfa A(uvrB chl bio) pKM101), and TA100 (hisG4é
rfa A(uvrB chl bio) pKM101) were obtained from the col-
lection of the Department of Genetics and Biotechnology,
Saint Petershurg State University (St. Petershurg, Russia).
The genetic characteristics of each strain were tested as rec-
ommended [30].
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Measurement of minimum inhibitory concentrations

MIC values were determined as the lowest concentra-
tions of tested phlorotannin extracts, completely inhibiting
the growth of the S. typhimurium cultures. The broth dilution
method was used for the MIC assays [31]. First, the stock
solutions of phlorotannin extracts were made in the Vogel-
Bonner growth media, and serial 2-fold dilutions of the stock
were prepared in 96-well microtiter plates (100 pl per well).
Then, 100 pl aliquots of cell suspensions containing approxi-
mately 10* cells/ml of bacteria were inoculated into each
well. The final concentration of phlorotannin extracts ranged
from 1 to 1000 pg/ml; pure growth medium was used as a
negative control. The MIC values were visually determined
after 24 h of incubation.

Mutagenicity assay

Mutagenicity of the phlorotannin extracts was evaluated
using the Ames test, performed according to the standard
protocol [30]. A minimal agar medium (Vogel-Bonner mini-
mal medium supplemented with 2% glucose) with an over-
lay agar containing 0.5 mM L-histidine and 0.5 mM D-biotin
to support a few cell divisions were used for selection of
His* revertants. Fresh overnight cultures of three tester
strains of S. typhimurium (TA97, TA98, TA100) were grown
up to the late exponential phase (approximately 10° cells
per ml) at 37°C. Then 0.1 ml of bacterial culture and 0.1 ml
of phlorotannin extract were mixed in the tube with 3 ml of
molten (45°C) overlay agar. The final concentration of phlo-
rotannin extracts ranged from 2.5 to 15 pg/ml for intracel-
lular phlorotannins and from 62.5 to 250 pg/ml for CW-bound
phlorotannins, for each tested extract the highest concentra-
tion corresponding to 1/2 MIC. For each tested extract the
mutagenicity assay was performed in the presence (+) and
absence (-) of a metabolic activation (MA) system, contain-
ing a cofactor-supplemented post-mitochondrial fraction (S9)
prepared from the rat liver treated with enzyme-inducing
agents [30, 32]. 0.5 ml of MA mixture or phosphate buffer
(0.1 M, pH 7.4) was added into each MA* and MA~ tube, cor-
respondingly. Distilled water was used as a negative control.
2-Nitrofluorene (2 pg/plate, for TA97 and TA98) and NaN,
(2 pg/plate for TA100) were used as positive controls in
the MA~ tests; 2-aminoantracene (5 pg/plate) was used as
positive control in the MA* tests. Stock solutions of 2-nitro-
fluorene and 2-aminoantracene were made in DMSO, and
NaN, — in distilled water. The overlay agar with all nec-
essary additions was poured over the surface of a minimal
agar plate and allowed to solidify before incubation. Triplicate
plating was used for each variant. All plates were incubated
at 37°C for 3 or 5 days, and then the number of His* revertant
colonies per plate was counted.

Data analysis

Measurements were performed as three (the Ames test)
to six (MIC determination) independent experiments with
three analytical replicates in each experiment. Excel 2016
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Table 1. Minimum inhibitory concentrations (MIC) of intracellular
and CW-bound phlorotannin extracts of three brown algal species
against the Salmonella typhimurium tester strain TA97

Tabnuua 1. MuHuManbHble MHMMOMpYIOLLME  KOHLEHTpaLmm
BHYTPUKJIETOYHBIX W CBA3aHHBIX C KIIETOYHON CTEHKOW (iopoTaH-
HWHOB TPEX BWA0B OypbiX BOLOPOC/EN MO OTHOLIEHUIO K Salmonella
typhimurium, wramm TA97

Tested phlorotannin extracts | MIC, pg/ml

Intracellular phlorotannins 24
Fucus serratus )

CW-bound phlorotannins 500
Ectocarpus Intracellular phlorotannins 30
siliculosus CW-bound phlorotannins 500
Desmarestia Intracellular phlorotannins 20
aculeata CW-bound phlorotannins 500

(Microsoft, Redmond, WA, USA) software was used for data
processing. Student’s t-test was used to confirm the sig-
nificant differences between the means. The values are ex-
pressed as means and standard deviations.

RESULTS

Minimum inhibitory concentrations of phlorotannin
extracts

The toxicity of phlorotannin extracts against the tester
strain TA97 of S. typhimurium varied considerably depending
on the subcellular fraction of polyphenols (Table 1). Intracel-
lular phlorotannins of all three brown algae demonstrated
considerable antibiotic effect with D. aculeata extract being
the most toxic (MIC 20 pg/ml). CW-bound phlorotannins of
all tested algal species showed substantially lower toxicity to
S. typhimurium (500 pg/ml).

Mutagenic activity of phlorotannin extracts

The results of the mutagenic activity assays are shown
in the Tables 2-4. Intracellular phlorotannins isolated from
F. serratus demonstrated considerable mutagenic effect
for the strain TA97 without metabolic activation (Table 2).
The number of His* revertants per plate was 2.3 times higher
compared to the negative control for the highest phlorotan-
nin concentration (12 pg/ml, corresponds to 1/2 MIC) and
1.7 times higher than control for the phlorotannin concen-
tration 6 pg/ml. The lowest tested polyphenol concentration
(3 pg/ml) had no mutagenic effect. Phlorotannins in the high-
est concentration also demonstrated significant (p = 0.021)
mutagenic activity for the other S. typhimurium tester strain,
TA100 after MA: in this case the number of His* revertants
per plate was 1.4 times higher compared to the negative
control. CW-bound phlorotannins showed no significant mu-
tagenic effects in the Ames test (Table 2).

By contrast to F. serratus, intracellular phlorotannin ex-
tracts of E. siliculosus demonstrated no mutagenic activity in
the Ames test for the S. typhimurium strain TA97 (Table 3).
However, similar to Fucus preparations, these extracts in the
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Table 2. Mutagenic activity of intracellular and CW-bound phlorotannin extracts of Fucus serratus
Ta6nuua 2. MytareHHas aKTMBHOCTb BHYTPUKIIETOYHBIX M CBA3AHHBIX C KIIETOYHOM CTEHKOW (OpOTaHHUHOB Fucus serratus

Quantity of His* revertants per plate

Phlorotannin

Variant concentration, pg/ml TA97 TA98 TA100
of overlay agar MA- MA* MA- | MA* MA- MA*

Neaative control 111.00 + 195.00 + 46.67 + 72.33 152.33 ¢ 130.00 +
9 +17.58 +20.22 +2.08 +12.50 +21.22 +22.52
Positive control 387.00 + 346.33 + 94533+  1229.33+  633.67 528.33 +
+73.08 +12.90 +162.99 + 155.86 +71.51 + 67.47
3 115.02 + 200.01 + 49.33 + 79.15 + 159.14 + 141.24 +

+20.78 +18.30 +2.88 +9.10 +£20.12 +15.87
Intracellular 6 186.00 + 21432 + 48.00 + 73.34 + 170.27 + 165.30 +
phlorotannins +32.50 +31.16 +9.01 +8.54 +18.89 +20.16
12 254.33 + 216.16 + 51.66 + 81.00 + 168.00 + 186.00 +

+12.85 +21.94 +19.03 +19.13 +26.85 +13.52
625 119.15 + 170.00 + 46.67 + 74.67 + 156.33 + 138.33 +

: +16.34 +18.38 +5.68 +4.16 +12.01 +21.73
CW-bound 125 105.66 + 193.67 + 48.00 + 73.67 + 151.00 + 141.33 +

phlorotannins +9.43 +10.30 +3.00 +577 +19.00 £5.13
250 120.00 + 201.33 = 4133 + 70.00 + 158.33 = 136.67 =

+12.40 +19.14 +5.03 +19.00 +19.03 +13.65

Note. The values significantly (t-test, p < 0.05) differing from the negative control are marked with bold font. MA — metabolic activation.

Table 3. Mutagenic activity of intracellular and CW-bound phlorotannin extracts of Ectocarpus siliculosus
Ta6nuua 3. MyTareHHas aKTMBHOCTb BHYTPUKIIETOUHbIX 1 CBA3AHHBIX C KIIETOYHON CTeHKOM (opoTaHuHoB Ectocarpus siliculosus

Phlorotannin

Quantity of His* revertants per plate

Variant concentration, pg/ml TA97 TA98 TA100
of overlay agar MA- MA* MA- | MA* MA- MA*

Negative control 236.67 + 302.33 + 56.67 + 57.00 + 139.67 + 149.00 +
9 +32.96 +9.29 +12.05 +14.73 +8.50 +16.46
Positive control 477.00 £ 609.60 + 771.67 £ 800.67 + 593.33 603.00 +
+10.15 +22.92 +77.51 +113.33 +55.00 +57.00

375 215.03 + 300.00 + 49.15 £ 60.16 + 159.14 + 146.15 +

' +20.40 +18.14 +4.92 +7.98 +20.12 +10.46

Intracellular 75 226.00 + 274.67 + 50.03 + 53.67 + 170.27 + 171.43 +
phlorotannins ' +31.67 +21.78 +8.78 +5.98 +18.89 +20.21
15 214.67 + 281.10 + 50.13 + 59.00 + 147.33 + 196.33 +

+13.65 +15.04 +10.46 +6.12 +17.01 +15.88

625 276.16 + 280.00 = 58.33 + 60.33 = 145.33 = 148.00 +

: +19.98 + 14.46 +3.51 +11.67 +13.20 +12.49

CW-bound 125 397.67 £ 333.67 £ 54.67 + 56.33 ¢ 141.00 = 144.67 +
phlorotannins + 15.48 +25.14 +5.52 +11.01 +16.36 +10.78
250 541.97 + 393.03 + 51.33 63.33 ¢ 137.00 + 143.33 ¢

+13.80 +10.11 +9.05 +8.62 +18.68 +12.50

Note. The values significantly (t-test, p < 0.05) differing from the negative control are marked with bold font. MA — metabolic activation.
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Table 4. Mutagenic activity of intracellular and CW-bound phlorotannin extracts of Desmarestia aculeata
Tabnuua 4. MytareHHas aKTMBHOCTb BHYTPUKIIETOUHBIX 1 CBA3AHHBIX C KIIETOYHOM CTeHKOi dnopoTaHHuHoB Desmarestia aculeata

Phlorotannin con-

Quantity of His* revertants per plate

Variant centration, pg/ml of TA97 TA98 TA100
overlay agar MA- MA* Mo [ M MA- MA*

Neaative control 174.00 = 199.33 ¢ 31.67 + 73.00 + 188.33 ¢ 157.00 +

g £ 1452 +9.50 +7.57 £9.00 +10.60 £5.29
Positive control 35334+  902.33+  430.67 £ 520.67 + 962.00 +  1320.67 +
+52.77 +89.79 +35.30 + 44.28 +52.25 +198.21

95 17433 + 186.33 + 3233+ 72.00 + 175.00 + 150.67 +

: +16.25 +13.05 +10.01 +7.81 +30.80 +11.01

Intracellular 5 182.67 + 182.33 + 2833 + 76.33 + 197.00 + 157.33 =

phlorotannins +23.07 +23.86 +2.89 +18.15 +17.00 +14.29
10 192.33 ¢ 215.00 = 3333+ 76.67 = 185.00 = 155.00 +

+14.36 + 24.55 +4.72 +10.69 +11.13 +31.51

625 165.67 + 210.33 ¢ 35.67 + 77.00 = 194.67 + 156.67 +

' +8.08 +11.93 +5.03 +6.24 +7.57 +16.50

CW-bound 125 160.67 + 190.67 + 33.67 + 74.00 + 17233 + 157.67 +

phlorotannins +13.05 +12.09 +7.50 +3.60 +18.00 +15.95
250 184.33 + 185.33 + 26.00 + 73.33 192.67 + 152.00 +

+13.65 +17.90 +6.00 +18.55 +13.57 +15.87

Note. The values significantly (t-test, p < 0.05) differing from the negative control are marked with bold font. MA — metabolic activation.

highest concentration (15 pg/ml) had slight though statisti-
cally significant (p = 0.023) activity for the strain TA100 in the
variant with MA: the number of His* revertants per plate was
1.3 times higher compared to the negative control. Notably,
the CW-bound phlorotannins of Ectocarpus were also muta-
genic, showing significant effect for the strain TA97 in both
variants of the Ames test (with MA and without it). For the
highest polyphenol concentration (250 pg/ml) quantity of His*
revertants per plate was 2.3 and 1.3 higher than the negative
control without MA and after MA, respectively (Table 3).

Neither intracellular, nor CW-bound phlorotannin extracts
of the third tested brown alga, D. aculeata, demonstrated any
mutagenic activity in the Ames test (Table 4).

DISCUSSION

Our results showed that intracellular phlorotannins of
all three tested brown algal species possessed considerable
antibiotic activity, demonstrating relatively low MIC values
(20-30 pg/ml, Table 1) against S. typhimurium. Generally,
these values correspond well with the results of our pre-
vious studies on the other gram-negative bacteria, E. coli,
and literature data [8, 33]. The interspecies variation of MIC
values may be explained by the specificity of the molecular
composition of phlorotannins accumulated in the cells of dif-
ferent brown algae. Our previous research on polyphenols of
several fucalean algae [6] showed that molecular profiles of
intracellular phlorotannins are very complex and may include
more than 30 types of phlorotannin molecules of different
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polymerization degrees, of which 1-3 phlorotannin classes
dominate in the profile, while the others are minor constitu-
ents or occur only in trace amounts. Thus, the dominating
phlorotannin species of F. serratus are low-molecular-
weight fucols and fucophlorethols, and pronounced antibi-
otic effects of fucoid algae are attributed to these particular
molecules [5, 6, 8]. Compared to phlorotannins of fucalean
algae, phenolics of the Desmarestiales and Ectocarpales are
currently much less studied. The toxicity of these compounds
against different unicellular organisms including gram-neg-
ative bacteria was shown earlier [8, 34], but the underlying
molecular profiles are still not analyzed, though given their
high antibiotic activity (Table 1), such investigations would be
in high demand. Given the close MIC values demonstrated by
phlorotannins of F. serratus, D. aculeata, and E. siliculosus in
the current study as well as in our previous research [8], we
may suggest that their dominating phlorotannin molecules
may be similar.

Interestingly, CW-bound phlorotannin fraction showed
considerably lower toxicity, compared to the intracellular
polyphenols (Table 1). This may relate to the specific fea-
tures of the molecular composition of two subcellular phlo-
rotannin fractions. According to literature data, whereas
intracellular phlorotannins represent a complex mixture of
molecules differing in their basic structure and polymeriza-
tion degree even between the phylogenetically close brown
algal species [5, 6], the CW-bound phlorotannins are gener-
ally much more uniform and, at least for fucalean algae, in-
clude only one dominating type of molecules, low-molecular
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weight hydroxylated eckols/carmalols [6]. Apparently, such
molecules are less toxic compared to the fucols and fuco-
phlorethols, dominating in the intracellular phlorotannins of
these algae. This looks logical in the context of physiologi-
cal functions of different subcellular phlorotannin fractions:
whereas intracellular phlorotannins confer chemical protec-
tion of the organism against different pathogens, the principal
function of the CW-bound phlorotannins is a structural one.
After being secreted to the cell wall, phlorotannin molecules
are supposed to be activated by enzymatic oxidation and then
cross-linked to alginates, the major components of the cell
wall matrix of the brown algae, thus contributing to the wall
rigidification and adhesion to the substratum [35, 36].

Three tested phlorotannin extracts (intracellular phlo-
rotannins of F. serratus and both subcellular phlorotan-
nin fractions of E. siliculosus) demonstrated slight to mo-
derate mutagenic activity in the Ames test (Tables 2, 3).
The Ames test is a robust and fast method for revealing the
mutagenic activity of different chemical compounds. Cur-
rently, it is one of the principal methods applied worldwide
for genotoxicity screenings [37]. The test variant without MA
allows detecting direct mutagenic activity, while the vari-
ant with MA addresses the promutagenic activity [30, 32].
Using different tester strains of S. typhimurium allows re-
vealing the predominant mutation types induced by the tested
compounds. Our results showed that intracellular phlorotan-
nins of F. serratus can induce frameshift mutations in bac-
terial cells (more than two-fold increase of His* revertants
number in the TA97 strain) and also has a slight promuta-
genic activity inducing base pair substitutions (1.4-fold in-
creased number of revertants for the TA100 strain) (Table 2).
The same low (though statistically significant) level of pro-
mutagenic activity for TA100 strain was detected also in the
intracellular phlorotannin extract of E. siliculosus (Table 3).
And finally, CW-bound phlorotannins of Ectocarpus induced
frameshift mutations (TA97 strain) both after MA and, espe-
cially, as direct mutagens (Table 3). The absence of mutagen-
ic activity in the phlorotannin extracts of D. aculeata (Table &)
is a very promising result in the context of possible practical
use of these metabolites in the medicine, as phlorotannin
preparations of this alga proved to be the most effective an-
tibiotics and fungicides compared to polyphenols of the other
brown algae [8]. Finding such a perspective natural source
of phlorotannins is important because the biosynthesis path-
ways of these metabolites in brown algal cells have not been
deciphered yet, so to date it is impossible to produce phloro-
tannins using a hiotechnological approach.

To our knowledge, our study is the first attempt to as-
sess potential genotoxicity of brown algal phlorotannins,
though mutagenic activity of different phenolic compounds,
including natural plant metabolites, was reported in the lit-
erature [38, 39]. Thus, phenols and quinones of white grapes
induced base pair substitution mutations in the cells of S. ty-
phimurium (TA100 strain) [38]. Phenols-enriched metha-
nolic extracts of Alchornea triplinervia demonstrated slight
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to moderate mutagenic activity (1.6—3.1-fold increase of His*
revertant number per plate) for the TA97a and TA98 strains
both with and without MA [39]. These data together with our
results (Tables 2, 3) show that though phenolic compounds
frequently regarded primarily as antimutagens based on their
antioxidative properties [e.g., 40, 41], some of such mole-
cules may possess considerable mutagenic activity.
Obviously, the observed differences in the mutagen-
ic activity of different phlorotannin preparations need to
be addressed in the context of their molecular structure.
As detailed information about the structure of phlorotannins
of Ectocarpus is still unavailable, we may only suggest that
some minor constituents of the phlorotannin molecular pro-
files of this alga and F. serratus are responsible for genotoxi-
city of their extracts. Acetylated phlorotannin molecules may
be candidates for this role. Monoacetylated phenolic com-
pounds were reported to demonstrate more pronounced bio-
logical activity, in particular, mutagenicity, compared to the
non-modified molecules [42, 43], and HPLC-MS analysis al-
lowed to reveal several classes of acetylated phlorotannins in
the cells of fucalean algae, including F. serratus [6]. Obviously,
further structural investigations are needed to elucidate this
issue, and this is an ongoing objective in our current research.

CONCLUSIONS

Phlorotannin extracts of brown algae F. serratus and
E. siliculosus demonstrated slight to moderate mutagenic ac-
tivity in the Ames test with and without metabolic activation.
The most active were intracellular phlorotannins isolated
from F. serratus and CW-bound polyphenols of E. siliculosus:
both extracts induced frameshift mutations in the cells of
S. typhimurium strain TA97, and the number of His* rever-
tants per plate was 2.3 times higher compared to the nega-
tive control. The phlorotannin extracts of D. aculeata, being
the most toxic for bacteria, showed no mutagenic activity.
Thus, D. aculeata may be regarded as a promising source of
phlorotannins for medical applications.
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A0NONHUTENBHAA UHOOPMALIUA

bnaropapHocTu. VccneoBaHus BbIMONIHEHbI C UCMOMb30Ba-
HMeM obopynoBaHus Mopckoi buonoruyeckont ctaHumm CI6rY
“YHb benomopckas” n HayyHoro napka CaHkT-lleTtepbyprckoro
rocyAapCTBEHHOT0 YHUBEPCUTETA.

Bknap aBTopoB. Bce aBTOpbI BHECNN CYLLECTBEHHbINA BKNaf,
B pa3paboTKy KOHUenuuu, npoBefeHue MCCrefoBaHus W Moa-
FOTOBKY CTaTby, MPOYAM U OA00pUNM (UHaNbHYI0 Bepcuio nepen,
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