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ABSTRACT

BACKGROUND: Plant ability to survive oxygen deficiency is associated with the presence of various adaptations, majority of
which are mediated by significant changes of metabolism. These alterations allow resistant wetland plants to grow even in an
oxygen-depleted environment.

AIM: To compare metabolic profiles of the leaves of the wetland species Ranunculus lingua, R. repens and R. sceleratus,
and the mesophyte species R. acris growing in their natural habitat in order to identify the most characteristic metabolic traits
of hypoxia-resistant plants.

MATERIALS AND METHODS: Metabolite profiling was performed by GC-MS. Statistical analysis of metabolomics data was
processed using R 4.3.1 Beagle Scouts.

RESULTS: The resulting profile included 360 compounds. 74 of these were identified and 114 compounds were determined to
a class. Sugars (114) were the most widely represented in the obtained profiles. 10 amino and 23 carboxylic acids, lipids and
phenolic compounds have been identified. Significant differences were revealed between the profiles of leaf metabolomes
of all tested species, which were clustered according to phylogenetic relation. The hydrophytic R. sceleratus, growing under
submergence, showed the most unique metabolome, in which the level of sugars was reduced and intermediates of anaerobic
metabolism, nitrogen metabolism, and alternative pathways of NAD(P)H reoxidation were accumulated. The profile of me-
sophytic R. acris was markedly different by decreased levels of amino acids, fatty acids and sterols. The metabolite profiles
of waterlogged hydrophytes R. lingua and R. repens occupied an intermediate position.

CONCLUSIONS: The identified differences of metabolomes of Ranunculus species are due to genetic determinants, ecological
niche and direct impact of a stressor.
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AHHOTALWMA

CnocobHOCTb YCTOWUMBBIX pPacTeHUA-TMAPOGUTOB Npon3pacTaTtb B 06eJHEHHON KUCIIOPOAOM cpefe obecrnieunBaeTcs Hanm-
UMEM Y HUX Pa3NUYHbIX MPUCNOCOBEHMIA, MHOTVE M3 KOTOPbIX OMOCPEeAO0BaHbl CyLLeCTBEHHBIMU U3MEHEHUSMU MeTabonus-
Ma. Llenb HactosLel paboTbl cocTosna B MeTabonMyecKoM NpodunmMpoBaHuM UCTbEB rMapoduTHLIX Ranunculus lingua,
R. repens, R. sceleratus n mesodutHoro R. acris, cobpaHHbIX B €CTECTBEHHBIX MeCTax 00MTaHWA, C MOMOLLbK Fa3oBoM
Xpomatorpadmm-Macc-CnekTPOMETPUM [J1S BbISIBNIEHWS XapaKTepHbIX U3MeHeHWA MeTabonoMa, CBOMCTBEHHBIX YCTOMYMBBIM
K 3aTonieHunio pacTenmsaM. MonydeHHble npodmnm Brtovamy 360 coeamnHeHnin. U3 HUX naeHTUGUUMPOBaHO 74 COeaMHEHMS,
109 6binm onpeaenelbl Ao Knacca. Hanbonee WmpoKo npeacTaeneHbl caxapa — 114 coegnHennid. Kpome Toro, uaeHtueu-
umpoBaHo 10 aMUHOKMCNOT, 23 opraHUYecKue KUCNOThI, @ TakkKe NMnoduibHble U GeHoNbHbIE coeuHenus. Npodunm MeTa-
0onMTOB rpyNNMPOBaNMCh COrNIaCHO BWMA0BOI NpUHAANeXHoCTU. TnapoduTHbIn R. sceleratus, npouspacTaBLUMA B YCNOBUAX
3aTonneHus, NoKasan Haubosbluee cBoeobpasne MeTabonoMa, XapaKTepusyHLLErocs NOHUKEHHBIM YPOBHEM CaxapoB W Ha-
KOMneHneM WHTepMeAnaToB aHaspobHoro MeTabonnsMa, a3oTHoro 0bMeHa 1 anbTepHaTUBHbIX NyTen peokucneHus HAL(O)H.
Mpodunb Me30@UTHOrO R. acris CUABHO OTAMYANCA NOHMMKEHHBIM COLEPKAHNEM aMUHOKMCIIOT, JUPHbIX KUCIOT U CTEPUHOB.
MetabonutHble npodmmu R. lingua v R. repens 3aHUManu NpoMexyTo4Hoe nonoxeHue. O4eBMAHO, BbISIBNEHHbIE PasNnyms
MeTabosIOMOB BUL0B JIOTUKA 00YCIIOBNEHBI FEHETUMECKUMM AeTEPMUHAHTaMM, 3KOJIOTMYECKOW HULLIEH U HENOCPEACTBEHHBIM
BO3[eCTBMEM CTpeccopa (3aTonneHue).

KnioueBble cnoBa: runokcus; Me3oduT; ruapoduTbl; MeTabonoMMKa; rasoBas XpoMaTorpadus-Macc-CneKTpoOMeTpUs;
'X-MC; Ranunculus acris; R. lingua; R. repens; R. sceleratus.
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BACKGROUND

The concept of an individual “metabolic profile” of the
internal environment of the body, reflecting a patient’s
condition, was developed in medicine in the middle of
the 20" century. Methods for chromatographic analy-
sis of the composition of metabolites have been used
in clinical studies since the late 1960s [1]. Because of
the development of systemic-biological disciplines,
by analogy with the terms “genome” and “proteome”,
the term “metabolome” was proposed in 1998 to denote
the totality of all metabolites of a biological system [2].
The metabolomic approach is widely used in medicine,
sports biology, and veterinary medicine [3]. By the end
of the 20th century, methods that are applicable to the
study of plants, such as extraction, derivatization, and
chromatography methods, had been developed [4]. Since
the year 2000, research into the plant metabolome has
grown exponentially. Metabolic profiling is a relatively
inexpensive and fast method for phenotyping the bio-
chemical state (chemotyping) of plants. This approach is
used to study processes in both model objects and agri-
cultural and wild plants. Metabolomic analysis was used
for phenotyping plant varieties, populations, and species.
The advantages of metabolomics studies are that they
can be used to assess complex changes in plant me-
tabolism during development and to detect the biochemi-
cal features of various tissues and organs under normal
and stress conditions. Recent research has been aimed
at elucidating metabolic variability under the influence of
both abiotic and biotic stress factors (drought, salinity,
low and high temperatures, heavy metals, and pathogen
attacks) [5]. Unfortunately, studies on metabolic profil-
ing of plants under stressful conditions, such as oxygen
deficiency, are much fewer than those analyzing other
types of stress effects [6].

Deficiency (hypoxia) or complete absence (anoxia) of
oxygen is a common unfavorable environmental factor
that occurs in agrocenoses and natural plant communi-
ties due to temporary or permanent waterlogging, ex-
cess water during floods, spring floods and heavy rain-
fall, asphalt covering, and soil compaction [7, 8]. Annual
crop losses from oxygen deficiency can reach up to 50 %
per year [8, 9]. Oxygen deficiency under these conditions
leads to significant changes in plant metabolism, particu-
larly the suppression of aerobic respiration and oxygenic
photosynthesis, causing a severe crisis in energy me-
tabolism [7, 8, 10]. The only process able to supply ATP
molecules during hypo-/anoxia is glycolysis followed by
lactic acid and alcohol fermentation, which causes the
accumulation of toxic products of anaerobic metabolism,
such as acetaldehyde and ethanol, as well as acidification
of the cytoplasm [7, 10]. Nevertheless, NADH oxidation,
which is necessary for the effective functioning of glycol-
ysis, occurs during fermentation. Some hypoxia-resistant
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plants can redirect intermediate metabolites of glycoly-
sis into alternative anaplerotic pathways, which leads to
the accumulation of malate, succinate, glycerol, alanine,
and y-aminobutyric acid (GABA) [7, 10]. The synthe-
sis of these alternative hypoxic metabolites allows the
plant to reoxidize NAD(P)H in NADP*, which is required
for glycolysis, and prevents the accumulation of toxic
metabolites during oxygen deficiency. The accumula-
tion of alanine and GABA also prevents acidification of
the cytoplasm during hypoxia/anoxia [10]. These results
were obtained using conventional classical biochemistry
methods.

Recently, data on metabolomic studies of Arabidop-
sis [11], deervetch [12], rice [13, 14], wheat [13, 15],
barley [16], soybeans [17], and other cultivated plants
have been published. There are also isolated reports on
the impact of oxygen deficiency on the metabolome of
aquatic plants, namely, eelgrass (Zostera marina) [18]
and pondweed (Potamogeton anguillanus) [19]. A recent
review of metabolomic profiling data of various plants
under the influence of hypoxia/anoxia [20], identified
“metabolic fingerprints” specific to plants under condi-
tions of oxygen deficiency. In most cases, substantial
changes in the level of soluble sugars and accumulation
of pyruvate, succinate, and lactate in plant tissues were
observed. Additionally, the content of amino acids associ-
ated with glycolytic metabolites, such as phosphoglycer-
ate (serine and glycine), phosphoenolpyruvate (phenyl-
alanine, tyrosine, and tryptophan), and pyruvate (alanine,
leucine, and valine), was predominantly increased. Amino
acids, namely, aspartate derivatives (asparagine, lysine,
methionine, threonine, and isoleucine), glutamate, and its
derivatives (proline, arginine, and GABA), connect glycol-
ysis with the Krebs cycle in an oxygen-free environment
and provide alternative pathways for NAD(P)H oxidation,
which prevents excessive accumulation of toxic fermenta-
tion metabolites [7, 10, 12, 20, 21]. Interestingly, 40 of out
of the 63 varieties, lines, and plant species analyzed were
moderately to highly resistant to oxygen deficiency [20],
implying that most of the above “metabolic fingerprints”
are characteristic of species adapted to hypoxia. Sugar
levels also varied greatly in the metabolic profiles of
different plants. The detected changes in metabolomes
relate to oxygen deficiency in a broad sense, from hy-
poxia to anoxia, because under different experiments, the
authors used different methods of creating and duration
of action of this stressor. Lack of standardization of ana-
lytical methods for metabolic profiling [gas chromatog-
raphy-mass spectrometry (GC-MS), liquid chromatogra-
phy-mass spectrometry, capillary electrophoresis-mass
spectrometry, and nuclear magnetic resonance] also led
to slightly different profiling results, even among the
same plants. Currently available data, unfortunately,
are not conclusive on which of the metabolites and/or
metabolic pathways is specific for hypoxia and/or anoxia.
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It is also impossible to unambiguously distinguish the
metabolic profiles of plants resistant to and unstable un-
der oxygen deficiency.

In light of these findings, metabolic profiling of plants
that are not resistant to hypoxia and comparison of the
metabolomes of plants that differ in resistance to the ac-
tion of this stressor is quite relevant. To identify changes
in the metabolome that distinguish differently adapted
plants, it is instructive to compare the metabolic profiles
of closely related plant species, mesophytes, and hydro-
phytes, differing in resistance to flooding and growing in
the same area in different biotopes. Knowledge of the
characteristic “metabolic fingerprints” of resistant and
nonresistant plants can be used to diagnose resistance to
oxygen deficiency in plants, and is of interest to breeders
and agrobiotechnologists.

In our previous metabolomic study, we performed
metabolic profiling of three willow-herb species, namely,
the mesophytic rosebay willow-herb (Epilobium angusti-
folium L. = Chamaenerion angustifolium (L.) Scop. and
two hydrophytes, the great hairy willow-herb (E. hir-
sutum L.) and marsh willow-herb (E palustre L.) [22].
We recorded high levels of sugars in the mesophyte pro-
file. In the hydrophytic willow-herb, the metabolomes
were practically the same and were characterized by a
typical anaerobic response, consisting of accumulation of
amino acids, dicarboxylic acids, and glycolysis and lactic
fermentation metabolites, which indicated the stimula-
tion of anaerobic respiration, nitrogen metabolism, and
alternative pathways of NAD(P)H reoxidation. However,
the hydrophytic E. hirsutum and E. palustre belong to
the Epilobium section, and E. angustifolium belongs to
the Chamaenerion section. Thus, the identified differ-
ences in metabolic profiles could be due not so much
to ecological as to taxonomic differences in the species
studied [22].

This study aimed to compare the metabolic profiles of
leaves of four buttercup species, differing in degrees and
strategies of resistance to oxygen deficiency and belong-
ing to two subgenera of the genus Ranunculus, to identify
characteristic changes in the metabolome typical of hy-
drophytic plants resistant to oxygen deficiency.

MATERIALS AND METHODS

Objects of the study

The objects of this study are representatives of the
genus buttercup (Ranunculus L.), one of the largest gen-
era of flowering plants, which, recently estimated to in-
clude from 1616 [23] to 1723 [24] species. This extensive
genus includes a wide variety of representatives, both
endemic [Ranunculus lyallii (A. Gray) Rydb.] and cosmo-
politan (creeping buttercup, R. repens L.). Approximately
160 species of buttercup are found on the territory of
the former USSR [25], with 16 species growing in the
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Leningrad region and St. Petersburg [26]. We examined
the leaves of four species belonging to two key subgen-
era, namely, great spearwort (R. lingua L.) and celery-
leaved crowfoot (R. sceleratus L.) as representatives
of the subgenus Auricomus Spach., and tall buttercup
(R. acris L.) and creeping buttercup (R. repens L.) as rep-
resentatives of the subgenus Ranunculus [27]. In addi-
tion to phylogenetic affinity, the species chosen for this
study differ in their ecological preferences and life forms.
Most species of this genus are perennial polycarpic herbs,
and their development is associated with moist habitats,
such as the banks of rivers, lakes, temporary reservoirs,
hypno-sedge bogs, and reed swamps [28]. However, some
species develop as annual monocarpics (R. sceleratus) or
may occur in drier habitats (R. acris) [29].

Plants were collected in the Sergievka Park and
in the adjacent territory (Petrodvortsovy District of
St. Petersburg). The coordinates of the collection site are
59°54'00.5""N29°50'32.5"E for R. lingua, on a reed marsh
along the shore of the Gulf of Finland; 59°53'04.7"'N
29°50'33.6"'E for R. sceleratus, in the water of the drain-
ing ditch adjacent to the territory of the horticultural
park; 59°52'53.9"N 29°50'05.0"'E for R. repens, a tem-
porary puddle along the pedestrian path near the Fac-
ulty of Applied Mathematics and Control Processes of
St. Petersburg State University; 59°52'43.5"'N 29°49'54.3"E
for R. acris, dry meadow opposite the entrance to the
building of the Faculty of Mathematics and Mechanics of
St. Petersburg State University. Sergievka Park is located
near the Gulf of Finland, which imparts its climate with
features of the sea. The main factor in climate forma-
tion here is the intense movement of air masses, leading
to frequent rainfall even in winter. The coldest month
is February, during which the average daily temperature
decreases to 8.1°C. In summer, the influence of westerly
wind increases, causing significant cloudiness and heavy
precipitation. The hottest month is July, with an average
daily temperature of 16°C-17°C [28].

For hydrophytes, leaves of plants growing on flooded
soil in the immediate vicinity of a reservoir (R. lingua and
R. repens) or partially submerged in water (R. sceleratus)
were collected. Leaves of mesophilic R. acris were col-
lected in a dry meadow outside the flood zone. Samples
were analyzed in six biological replicates collected from
different plants. Leaves of the same generation and ap-
proximately the same size, undamaged by pathogens and
phytophages, were selected. Samples were collected in
mid-July. A sample of buttercup leaves (200 mg) was
weighed on a portable electronic scale, before it was
placed in a microtube and filled with 1 ml of methanol
directly at the collection site.

Sample preparation
Within 1-2 h, the samples were delivered to the labo-
ratory, where the methanol extract was poured into a
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new microtube, and the remainder of the plant material
was ground in a ball mill (Tissue Lyser LT, QIAGEN, Ger-
many, 50 beats/s, 3 times of 2 min) with 1 ml of metha-
nol. Sample preparation was performed according to a
previously described method [22]. Dried samples were
stored at 80°C until analysis.

The sediment in the microtube was dissolved in 100 pl
of pyridine containing an internal standard (C,, trico-
sane), before 100 pl of a silylating agent [1 % solution
of trimethylchlorosilane in bis(trimethylsilyl)-N, O-triflu-
oroacetamide, Sigma, USA] was added, and the samples
were derivatized using a thermal shaker TS-100C (Bio-
San, Latvia) at 800 rpm and 90°C for 20 min.

Gas chromatography coupled with mass spectrometry

For GC-MS, we used an Agilent 5860 gas chromato-
graph with an Agilent 7893 automatic sample introduc-
tion system controlled by MassHunter software (Agilent
Technologies, USA). Samples were introduced in splitless
mode, with the volume of the injected sample of 0.5 pl.
Separation was performed on an Agilent VF-5MS capil-
lary column (length 30 m, diameter 0.25 mm, stationary
phase film thickness 0.25 um, Agilent Technologies). He-
lium was used as the carrier gas (constant flow 1 ml/min,
evaporator temperature 250 °C). The temperature regime
of the column included an initial temperature of 70°C,
followed by a linear increase at a rate of 6 °C/min to
320°C [30]. Chromatograms were recorded using an
Agilent 5975 mass selective detector. The mass range
was 50-800 m/z. The temperature of the ion source was
230°C, and that of the quadrupole mass filter was 150°C.
The studies were conducted on the chromatographic
equipment of the Resource Center of St. Petershurg State
University “Development of Molecular and Cellular Tech-
nologies”.

Interpretation of the GC-MS results

Chromatograms were processed using the PARADISE
software [31] along with the NIST MS Search (National
Institute of Standards and Technology, NIST, USA). AMDIS
(Automated Mass Spectral Deconvolution and Identifica-
tion System, NIST, USA) was used for the deconvolution
and detection of metabolites. Compounds were identified
from the obtained mass spectra and Kovacs retention
indices using the libraries NIST2020 (USA), Golm Me-
tabolome Database (GMD, Germany) [32], and the library
of the Laboratory of Analytical Phytochemistry of the
Botanical Institute of the Russian Academy of Sciences
(St. Petersburg, Russia). A peak was considered when
the matching factor was >800. Retention indices were
determined by calibration using saturated hydrocarbons.

Statistical analysis
Metabolomic data analysis was performed using R
version 4.3.1 “Beagle Scouts” [33]. Data were normalized
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to the sample median, logarithmized, and autodialed.
If a compound was not detected in a particular sample
but was present in the remaining replicates, it was con-
sidered a technical error, and imputation was performed
using the k-nearest neighbors method of the impute
package [34]. Heat maps were constructed using the
ComplexHeatmap [35]. The Random Forest (RF) method
was used in randomForest [36]. Mean decrease accu-
racy (MDA) was used to determine the contribution of a
trait to the class difference. Principal component analysis
(PCA) was performed using pcaMethods [37]. A diagram of
the phylogenetic relationships of buttercup species based
on article materials [27] was constructed in the Icytree
program [38]. The projection to latent structures discrim-
inative analysis (PLS-DA) method was performed using
rolls [39]. Metabolite set enrichment analysis (MSEA) was
performed using the U-test from the mod package [40].
Metabolite sets for metabolite pathways were download-
ed from the KEGG database [41] using KEGGREST [42].
Arabidopsis thaliana (L.) Heynh was used as the ref-
erence organism. The list of metabolites belonging to
various biochemical pathways was manually adjusted
as mandatory required pathways were added for some
metabolites. Compounds identified by class (hex-
ose, disaccharide, etc.) were placed in the appropriate
pathways.

RESULTS

We profiled leaf metabolites of four buttercup species,
Ranunculus acris (mesophyte), R. lingua, R. repens, and
R. sceleratus (hydrophytes) using GC-MS. The resulting
metabolite profiles included about 360 compounds, 74 in-
dividual compounds were identified from the databases;
a class was determined for further 109 compounds (Fig. 1).
The results are presented in the form of a heat map com-
bined with MDA bar charts from the RF classification.
Sugars and their derivatives (114) were most widely repre-
sented in the profiles, including pentoses (28), hexoses (34),
and oligosaccharides (52). Ten amino acids (7 proteino-
genic), 23 carboxylic acids, including intermediates of
glycolysis (pyruvate), fermentation (lactate), and the
Krebs cycle (citrate, succinate, fumarate, and malate), as
well as 6 free fatty acids and acylglycerols were detect-
ed. Sterols were represented by only three molecules.
We also detected 17 secondary compounds represented
by various phenols.

The heat map shows that the metabolomic profiles
of the hydrophytic R. sceleratus and mesophytic R. ac-
ris were the most unique and different from each other
were (Fig. 1). Leaves of aquatic R. sceleratus contained
the highest levels of amino acids, carboxylates, fatty
acids, and sterols, whereas the levels of disaccharides
and phenolic compounds were low. Among the metabo-
lites accumulated by R. sceleratus, there were typical
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representatives of the anaerobic metabolome, namely,
intermediates of glycolysis (glycerate and pyruvate) and
fermentation (lactate), carboxylates of the Krebs cycle
(citrate, succinate, fumarate, and malate), amino acids
associated with glycolysis (valine, leucine, serine, and
phenylalanine), as well as GABA, glutamate, and oxopro-
line (Fig. 1). The mesophytic R. acris was characterized
by the lowest representation of amino acids, fatty acids,
and sterols among the species we studied. Ranunculus
lingua and R. repens, as well as R. sceleratus, collected
in hydrophytic habitats, occupied an intermediate posi-
tion in their metabolite profile between R. sceleratus and
R. acris. As shown in the heat map, pentoses, complex
sugars, and phenolic compounds were mostly represent-
ed in the metabolome of R. repens, and the profile of
R. lingua was characterized by low levels of organic acids
and alcohols (Fig. 1).

To identify general patterns in metabolite profile
similarities, we represented them in a lower dimensional
space using PCA. Metabolite profiles were grouped ac-
cording to species (Fig. 2a). The metabolite profiles of
R. sceleratus showed the greatest originality; they di-
verged from those of the species in PC1 (principal com-
ponent 1), which explained 30 % of the variance. Metabo-
lite profles of R. lingua were separated from those of
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R. repens and R. acris along PC2 (20.8 %). The latter, in
turn, differed from PC3 (19.1 %) (Fig. 2a). We then per-
formed hierarchical cluster analysis using the Spearman
distance (1 — rho, where rho is the Spearman correlation
coefficient). This approach also revealed strong distinc-
tiveness in the metabolomes of R. sceleratus, which clus-
tered into a separate branch in the dendrogram (Fig. 2b).
Next, the profiles of R. lingua were separated from those
of R. repens and R. acris, which were also the last to
diverge on the dendrogram.

Thus, at the metabolome level, the hydrophytic
R. sceleratus, which grows partially submerged in wa-
ter, was very different from the other species, both from
R. lingua and R. repens, which are hydrophytes, as well
as from the mesophytic R. acris. Cluster analysis data
showed the similarity between hydrophytic R. repens and
mesophytic R. acris.

To identify metabolites that accumulate in various
amounts in mesophytes and hydrophytes, Ranunculus
The constructed PLS-DA model included three predic-
tive components with Q?Y = 0.914. Figure 3 presents
a graph of scores similar to that of the PCA. A load graph
is located below it. If the position of a metabolite on the
load graph corresponds to the position of the samples
on the score graph, then its accumulation is higher in the
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corresponding samples. The divergence of R. sceleratus
from other species was associated with p1 (predictive
component 1), which explained 29.9 % of the variance
(Fig. 3a). As can be seen from the loading pattern (Fig. 3b)
and enrichment analysis (MSEA, Fig. 3c), p1 was associ-
ated with a wide repertoire of differentially accumulating
metabolites, including carboxylates, amino acids and fatty
acids, and sterols, which R. sceleratus accumulated in
larger quantities, whereas the other three species sur-
passed it in the accumulation of sugars and secondary
compounds.

Differences between R. lingua and R. repens and
R. acris were associated with p2 (20.8 % of the variance).
As shown by the loadings (Fig. 3b) and MSEA results (Fig. 3c),
these differences were focused on the group of alcohols
and organic acids, which demonstrated a trend toward
lower accumulation in R. lingua. Among the differen-
tially accumulating metabolites that distinguish R. lingua
from other species, there were also compounds of other
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classes, including amino acids (GABA and oxoproline),
fatty acids, phenols, and sugars.

The differences in metabolite profiles that differenti-
ated between R. repens and R. acris were associated with
p3 (19 % of the variance) and predominantly affected me-
tabolites such as pentoses, fatty acids, and carboxylates
(Fig. 3). MSEA analysis (Fig. 3c) indicated that differences
between mesophytic R. acris and hydrophytic R. lingua
were mainly associated with organic and fatty acids. In this
component (p3), all hydrophytic buttercups differed from
the mesophyte. Ranunculus acris was superior to R. repens
and other species in the levels of some C, compounds, such
as deoxytetronic acid, erythritol, and tartrate (with the ex-
ception of R. sceleratus, Fig. 1, 3). Ranunculus acris had
relatively high levels of glyceraldehyde, dihydroxyacetone,
glycerate, and malonate. Ranunculus acris and R. lingua
accumulated less shikimate than the other two species, and
R. acris was characterized by a low level of hydrophobic
compounds, namely, fatty acids and sterols (Fig. 1, 3).
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DISCUSSION

The limited data on metabolic profiling of buttercups
available in literature primarily covers the targeted de-
tection of secondary metabolites, ranunculin [43], amines,
and phenolic compounds [44]. Many previous studies have
focused on the study of the metabolomes of leaves and
root tubers of the ornamental Asian buttercup (R. asiati-
cus) during vernalization, germination, flowering, differ-
ent photoperiods, and light intensity [45—47]. Only one
publication has discussed environmental metabolomics
of herbaceous plants in the Arctic tundra of Iceland under
the influence of geothermal activity [48]. Increasing soil
temperatures caused changes in metabolomes, although
this occurred to a lesser extent in R. acris than in the

DOl https://doiorg/10.17816/ecogenb23592

colonial bent grass (Agrostis capillaris L.). An increase
in temperature of 5°C—15°C resulted in the accumulation
of many carbohydrates, amino acids, carboxylates, and
secondary compounds, phenols and terpenes in R. acris
leaves. Most of the detected metabolites were involved
in adaptation to elevated temperatures [48].

In this study, metabolic profiling of leaves of me-
sophytic R. acris and hydrophytic R. lingua, R. repens,
and R. sceleratus collected from their natural habitats
was performed using GC-MS. The profiles of all the four
buttercup species studied differed from each other in all
multivariate statistical analyses performed, both with and
without training (Fig. 1-3). The hydrophytic R. sceleratus
showed the most distinctive metabolome, which clus-
tered separately from the rest according to the results of
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hierarchical cluster analysis. Additionally, R. lingua was
located closest to R. sceleratus, followed by R. repens
and R. acris, which were grouped together on the den-
drogram (Fig. 2b). It is very interesting that the results
of clustering based on metabolomic profiling data com-
pletely coincided with the dendrogram of the phylogenetic
relationships of the species of the genus Ranunculus we
studied (Fig. 2c), constructed based on the analysis of a
combined set of plastid markers and nuclear ITS (Internal
Transcribed Spacer) [27]. Consequently, the differences
we discovered in the metabolic profiles of the studied
species are also due to species differences. The species
R. repens and R. acris, belonging to the subgenus Ranun-
culus, were clustered together according to both molecu-
lar genetics and metabolic markers, as were the species
R. lingua and R. sceleratus, belonging to the subgenus
Auricomus (Fig. 2b, c). Thus, profiling of the central me-
tabolome enables the identification of related relation-
ships and, along with classical methods of computational
phylogenetics using molecular genetic methods, can be
used in constructing phylogenetic dendrograms. It should
be noted that previous chemotaxonomic studies have
predominantly focused on secondary metabolites.

In a previous study, we reported significant differ-
ences between the metabolic profiles of leaves of the
mesophytic E. angustifolium and hydrophytic E. hirsutum
and E. palustre, whereas the metabolomes of hydrophytic
fireweed were practically identical. These differences
were attributed to ecological and taxonomic differences
in the species studied [22]. In this study, the anaerobic
metabolic fingerprints characteristic of hydrophytic fire-
weeds were most fully detected only in R. sceleratus,
leaf samples of which were collected from submerged
plants. Similar to E. hirsutum and E. palustre [22],
R. sceleratus is characterized by a low level of oligo-
saccharides and accumulated intermediates of glycolysis
(glycerate and pyruvate) and fermentation (lactate), or-
ganic acids of the Krebs cycle (citrate, succinate, fuma-
rate, and malate), amino acids associated with glycolysis
(valine, leucine, serine, and phenylalanine), as well as
GABA and glutamate (Fig. 1, 3), which reflects the stimu-
lation of anaerobic respiration, nitrogen metabolism, and
alternative pathways of NAD(P)H reoxidation [7, 20, 22].
The activation of anaplerotic pathways for the oxidation
of pyridine dinucleotides is also evidenced by an increase
in the levels of glycerol and shikimate and stimulation
of lipid metabolism (Fig. 1). Additionally, malonate and
oxoproline accumulate in the leaves of R. sceleratus,
which may be a consequence of high oxidative damage to
lipids (accumulation of malonate formed from malondi-
aldehyde), glutathione, and proteins (oxoproline) under
flooding [7, 49-51]., The metabolome of the mesophytic
R. acris was most different from that of R. sceleratus
(Fig. 1; 2b). Metabolites with high levels in the hydrophyte
(amino acids, fatty acids, and sterols) were decreased
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in the mesophyte, whereas the mesophyte, in contrast
to R. sceleratus, contained more sugars (pentoses and
oligosaccharides) and phenolic compounds. The metabo-
lite profiles of two other hydrophytic buttercups, R. lin-
gua and R. repens, were intermediate between those of
R. acris and R. sceleratus (Fig. 2). Generally, differences
between hydrophytes and mesophytes influenced changes
in the levels of carboxylates and hydrophobic compounds
(Fig. 3), with R. repens accumulating more metabolites
characteristic of hypoxia-resistant plants [amino acids
(including GABA), carboxylates (including lactate, malate,
succinate, and shikimate), lipids, sterols, and glycerol
(Fig. 1]. Ranunculus lingua had lower levels of sugars
and phenols than R. repens and lower levels of amino
acids, carboxylates, and hydrophobic compounds than
R. sceleratus (Fig. 1). The hydrophytic species of but-
tercups we studied here have almost identical ecological
niches; they grow in marshy meadows, floodplains, and
along the banks of reservoirs and swamps [29]. Ranun-
culus repens and R. sceleratus can also grow in moist
places along roadside ditches, wastelands, gardens and
vegetable gardens, and ruderal habitats [29]. However,
there are some significant differences between them.
Ranunculus lingua is a tall (up to 1.5 m) perennial plant
with a straight hollow stem and rhizomatous underground
shoots, a typical helophyte [29]. Ranunculus repens is
also a perennial herbaceous plant with a creeping stem
that takes root at the nodes with a stem (up to 0.5 m long)
and a short branched rhizome [29]. Ranunculus sceleratus
is an annual herbaceous plant with a stem up to 0.5 m tall.
Additionally, this species differs from other hydrophytes
in its adaptation strategy to oxygen deficiency. Ranun-
culus sceleratus has a well-developed constitutive aer-
enchyma, and when flooded, it stimulates the growth
of axial organs, stem internodes, and leaf petioles [52],
demonstrating a strategy of avoiding flooding (low ox-
ygen escape syndrome, LOES) [7, 10, 20]. Ranunculus
repens has lysigenic aerenchyma, and when complete-
ly flooded, which was not the case in our experiment,
it is stimulated primarily not by growth but by metabolic
adaptations, including underwater photosynthesis, gly-
colysis, and fermentation [52], characterized by a dor-
mancy strategy (low oxygen quiescence syndrome, LOQS)
[7, 10, 20].

Growing the hydrophytic pondweed P. anguillarum
under conditions of increasing oxygen deficiency (nor-
moxia — hypoxia - anoxia) led to successive rearrange-
ments in metabolism to the anaerobic type [19]. Accord-
ingly, the metabolic response of perennial R. repens and
R. lingua growing in flooded soils was not as intense as
that of annual R. sceleratus growing under completely
flooded conditions. Slight differences in the metabolite
profiles of the hydrophytic E. hirsutum and E. palus-
tre [22] could also be due to the fact that they grew under
the same flooding conditions.
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Thus, the results obtained indicate that differences
in the metabolomic profiles of hydrophytic buttercup
species are due to genetic determinants (life form and
adaptation strategy), ecological niche (biotope), and the
direct effect of a stressor (flooding). To confirm this con-
clusion, it is necessary to compare the metabolomes of
closely related hydrophytic and mesophytic plants for a
larger number of species and to study the effect of oxy-
gen starvation on the metabolomes of hydrophytes and
mesophytes in laboratory experiments.
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