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ABSTRACT

The review examines modern knowledge on the mechanisms of the early stages of plant cell elongation growth. Coleoptiles
are used as a model object representing juvenile organs of cereal seedlings. Elongation growth is considered to be a protec-
tive morphophysiological stage of seedling development during hypogeal germination. The molecular mechanisms of elonga-
tion growth include: changes in the properties of the cell wall, activation of proton pumps, as well as aquaporins of plasma
membrane and tonoplast. Particular attention is paid to the hormonal system of regulation, including auxin and ethylene.
Coleoptiles of rice, a semi-aquatic plant tolerant to oxygen deficiency, demonstrate that the mechanisms of elongation growth
are changing intensively under submergence, but they completely ensure cell growth. There is also a redistribution of impor-
tance and abundance between phytohormones. The data presented in the review indicate the necessity to continue investiga-
tions on the mechanisms of elongation growth under normal and stress conditions.
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AHHOTAUMA

B 0630pe paccMoTpeHbl COBPEMEHHbIE NPeACTaB/EHNs 0 MeXaHU3MaX peann3aumi HavasbHbIX 3TanoB PocTa PacTsKEHUEM
pacTUTENbHbIX KINETOK Ha NpUMepe KIeTOK KONeonTUnei — I0BEHUIbHBIX OPraHoB MPOPOCTKOB 3/1aK0B. POCT pacTsiKeHm-
€M KOJeonTuei pacLeHnBaEeTCs KaK 3aluMTHbIA MOpOGM3M0I0rMIeCKUin 3Tan pa3BUTUS NMPOPOCTKA NpU NOA3EMHOM Npo-
pacTaHumn. PaccMoTpeHbl Takue MoseKynsipHble MeXaHU3Mbl POCTa PacTsIKEHUEM, KaK U3MEHeHWe CBOWCTB KNETOYHON CTEHKM,
aKTMBALMA MPOTOHHBIX HACOCOB, @ TAaKXKe aKBaMoOpWHOB Mia3ManeMMmbl M ToHonnacta. Ocoboe BHMMaHWe yoeneHo ropMo-
HaNbHOW CUCTEMe perynsiuMM pocTa pPacTsIKEeHWEM, B TOM YMCNe ayKCMHY M 3TuneHy. Ha npumepe Koneontuneit puca —
MOMYBOAHOMO pacTeHMsi, TONIEPAHTHOrO K HEeAOCTaTKy KUCIopofa, — MPOAEMOHCTPUPOBAHO, YTO B YCIIOBUAX 3aTOMNEHMs
MeXaHu3Mbl POCTa B 3HAYMTENIbHOM CTEMEHW MEHSAIOTCS, OAHAKO MOJHOCTbIO 06eCneymBaloT POCT KIETOK PacTSKEHUEM.
MpoucXxoauT TaKKe NepepacnpeseneHne 3HaYuMocTh Mexay dutoropMoHamu. MpusefieHHbIe B 0630pe AaHHble YKasbiBaloT
Ha HeobXoAMMOCTb NPOAOIIKEHNS UCCe0BaHNIA MeXaH3MOB POCTa PaCcTSKEHUEM B HOPME W B CTPECCOBbIX YCOBUSX.

KnioueBble cnoBa: 3aTonneHue; KONeonTunb; pocT pacTsikeHneM; puc (Oryza sativa L.).
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BACKGROUND

Elongation growth is a unique stage in plant cell de-
velopment. It refers to multiple irreversible increases in
cell size, mainly along the vertical axis. The intensity of
this elongation can be up to a thousandfold [1, 2]. It is
thought that during the evolution of plants, this type of
growth arose quite early, at the stage of algae devel-
opment, and represents a compensatory mechanism for
an attached lifestyle under conditions requiring constant
movement to nutrition sources, such as light, water, and
mineral elements [3]. The increasing complexity of the
structure and the emergence of various regulatory sys-
tems at the whole organism level have led to the subor-
dination of the growth intensity of various organs, as well
as the possibility of changing growth processes under the
influence of environmental factors [4]. In higher plants,
elongation growth is most intense in zones adjacent to
the meristems, and the ability of cells to elongate is
retained for a relatively short time. Nevertheless, be-
cause meristems are constantly functioning, elongation
growth is preserved in plants throughout ontogenesis.
Through this process, the axial and lateral organs are
enlarged. The unequal intensity of elongation growth
underlies tropisms, which are plant growth responses
to the unilateral influences of various environmental
factors.

This process is most noticeable in the growth of the
axial organs of the seedling, especially at the germination
stage and the subsequent period of formation of the first
true leaves, which are responsible for photosynthesis.
Elongation growth is especially important during the ju-
venile development of a seedling under etiolated (in the
absence of light) conditions. Deep germination allows
the seedling to overcome the soil layer and reach light,
which is the main source of energy for photosynthetic
organisms.

Studies on the mechanisms of elongation growth have
been ongoing more than a century. The first documented
interest in this process was the work by Charles and
Francis Darwin “The Power of Movement in Plants” [5].
In this study, coleoptiles, the juvenile organs of cereal
seedlings, were used as model objects to explore these
mechanisms. A huge amount of data in this subject has
accumulated. These data indicate the multistage nature
of implementation, as well as a multilevel system of
regulation of elongation growth in various organs and
tissues, as well as in various plant species. The intensity
of elongation growth can change under the influence of
various stressors. Despite the abundance of experimental
results on elongation growth, we are still very far from
a detailed understanding of the universal mechanisms
underlying this process.

This review presents a comparative analysis of the
main mechanisms of elongation growth under normal
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conditions and under the influence of stress factors, such
as lack of oxygen, using the coleoptile of cereals as an
example.

MECHANISMS OF ELONGATION
GROWTH IN COLEOPTILE CELLS

The coleoptile of cereals is a juvenile organ of time-
limited development, whose main function is to protect
the true leaf during germination. It has a cylindrical shape
and two vertical conductive bundles in its structure.
Chloroplasts can form in the outer cells of the epider-
mis, whereas the inner layers of cells are characterized
by large amyloplasts [6]. The growth of the coleoptile
stops when it reaches the soil surface and is exposed
to light [7]. At this point, a “breakthrough” of the apex of
this organ is occurs, in which the cell death program is
initiated [8]. Under normal conditions, by day 4 of deve-
lopment, coleoptiles complete their morphophysiological
development program [9, 10].

Seedlings with longer coleoptiles are believed to have
many advantages. For example, a long coleoptile ensures
seed germination in deeper layers of the soil, which pre-
vents the negative effects of temperature fluctuations,
lack of moisture, or even the action of herbicides and
rodents, which are characteristic of surface germina-
tion [11-13]. However, a comparative analysis of the
growth of coleoptiles under normal conditions does not
enable unambiguous assessment of parameters, such as
stability and final productivity of plants [14, 15]. Appar-
ently, dependence manifests only under the influence of
a stress factor.

Thus, the elongation growth of coleoptile cells is a
complex process that involves almost all of their com-
partments (including vacuole, Golgi apparatus, endoplas-
mic reticulum, and cell wall). The intensity of elongation
growth is regulated at the transcriptional and posttrans-
lational levels [16, 17], and is under the control of many
external factors.

ROLE OF THE CELL WALL

It is impossible to understand elongation growth with-
out considering the dynamic processes occurring in cell
walls [18-20]. Their importance is mediated by the role
of the exoskeleton, which maintains cell shape and pro-
tects intracellular compartments from biological, chemi-
cal, and physical damage. These structures have two
mutually exclusive properties: rigidity to provide cell pro-
tection and extensibility to accommodate growth caused
by turgor pressure [1, 2]. Cell walls have a multicompo-
nent profile that varies depending on the plant species
and development stage [21, 22]. Cellulose microfibrils
are the largest polysaccharides in the cell wall. Their
location determines the direction of elongation growth.
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They interact with molecules of xyloglucans and pectin.
This type of cell wall is characteristic of dicotyledonous
plants [2]. a-Expansins, a group of small proteins able
to modify the bonds between xyloglucan and cellulose
molecules, are important for elongation growth [23].
The mechanism of this process is still unclear, because
a-expansins themselves do not have their own enzymatic
activity. However, expansins initiate a 100-fold elonga-
tion of tobacco cells in vitro [[1].

Unlike dicotyledonous plants, the primary cell walls
of cereals, studied mainly using root cells as examples,
are distinguished by having a special type of noncel-
lulosic polysaccharides, which distinguishes them as a
special type Il [2]. The leading position in their structure
is occupied by glucuronoarabinoxylan and glucan with
a mixed type of bond. It is assumed that the mechanism
of cell wall transformation during elongation growth in
cereals displays some traits of this process compared
with other flowering plants. High growth rate is con-
sistent with the accumulation of mixed-linkage glucan,
whose function is the same as that of type | cell wall
pectins [24]. Similarly, the content of glucuronoarabi-
noxylan, a connecting glycan of the primary cell walls
of cereals, increases, and its domain organization also
changes [25]. Changes in the properties of the cell wall
during elongation growth are accompanied by high ex-
pression of a rather large group of genes. Up to 40% of
this group consists of genes for expansins and xyloglucan
endotransglycosylases, as well as glycosyl transferases,
peroxidases, and enzymes for the synthesis of cell wall
components [2, 7]. During elongation growth, the protein
profiles of cell walls also undergo significant changes
(26, 27].

Despite research using the most modern methods,
the processes occurring in the cell walls of coleoptiles
are mostly still not fully deciphered and there is need to
further explore them.

VACUOLIZATION AND ROLE
OF AQUAPORINS

The driving force for growth is turgor pressure, which
is predominantly caused by internal osmotic pressure in
the vacuolar system [28]. The value of the latter in plant
cells usually ranges from 5 to 10 atm and is balanced
by the mechanical properties of the cell walls [1, 29].
The accumulation of osmotically active ions and me-
tabolites, such as sugars, organic and amino acids, K*
ions, and other compounds, in the vacuole causes water
absorption. The membrane potential, which ensures the
transport of these compounds through the tonoplast, is
created by two proton pumps, H*-pyrophosphatase and
H*-ATPase [30].

Due to cell wall loosening and preservation of osmotic
potential, water is intensively absorbed by vacuoles. It is
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thought that a change in the properties of the cell wall can
be perceived as a signal that is detected by receptor-like
kinase (LRX/FER) and subsequently leads to a significant
increase in the central vacuole [31]. Another connect-
ing factor between the size of the cell and the vacuole
can be proteins of the networked (NET) family, which
can interact with actin filaments and membranes [32].
NET4A mutants significantly change the cell vacuolation
intensity during elongation growth [33].

There is no doubt that a sharp increase in the vacuole
is accompanied by an intense flow of water into it. Wa-
ter can penetrate cell membranes directly through the
phospholipid bilayer [34]. However, aquaporins (trans-
membrane proteins responsible for water transport)
are predominantly involved in water absorption into the
vacuole [35, 36]. The intensive activity of aquaporins was
revealed in the composition of the plasma membrane
(PIP, plasma membrane intrinsic proteins) and tonoplast
(TIP, tonoplast intrinsic proteins) [30, 36]. This is consis-
tent with findings on changes in the hydraulic conductivity
of biological plant membranes upon modulation of the
amount of aquaporins obtained using molecular genetic
methods [37, 38]. Unfortunately, there are no published
data on the contribution of aquaporins to the elongation
growth of cereal coleoptile cells. However, this contribu-
tion is indirectly confirmed by their participation in the
growth of adult plant organs [39]. For example, there
are differences in dynamics of gene expression between
ZmTIPs and ZmPIPs at the stage after germination [40],
which may indicate an unequal representation of aqua-
porins in the plasmalemma and tonoplast during cell
elongation.

Thus, the general increase in the external dimensions
of the cell during the elongation growth of coleoptiles is
accompanied by intense vacuolization due to an increase
in the hydrostatic permeability of some cell membranes.

ROLE OF PROTON PUMPS

Intense intracellular changes in a cell during elonga-
tion growth demonstrate the importance of homeostatic
systems, including the pH-stat system. It is a combina-
tion of elements of the buffer capacity of the cytoplasm
and the activity of several proton pumps localized on the
plasmalemma and tonoplast [41]. There is renewed dis-
cussion about the role of protons as an independent sig-
nal or secondary messenger in the perception of several
factors [42]. Changes in pH can differ in the magnitude of
the gradient and in the dynamics of the hydrogen ion con-
tent in the three most important compartments, namely,
the apoplast, cytosol, and vacuole. The role of apoplast
acidification during root growth was further confirmed in
a 2023 study [43]. The mechanism of this acidification is
closely related to the activation of the plasma membrane
H*-ATPase; therefore, it can be considered as a key factor
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in determining the pH gradient between the apoplast and
cytoplasm. The subsequent stage of elongation growth is
directly related to the processes occurring already at the
cytosol/vacuole boundary, i.e., the activation of tonoplast
proton pumps, which include H*-ATPase and H*-PPase
(proton pyrophosphatase). These three transporters/
enzymes form the basis of the dynamic pH regulation
of plant cells. The main properties of these pumps are
discussed below.

Role of the plasma membrane H*-ATPase

The plasma membrane H*-ATPase belongs to the
family of P-type ATPases and is characterized by the
formation of a phosphorylated intermediate [30]. It con-
sists of one protein (100 kDa). The enzyme consists of
10 transmembrane domains, which supposedly constitute
20% of the protein. Some of the protein is converted to
the apoplast (10%). A significant proportion of the protein
is localized in the cytoplasm (70%), which indicates the
importance of the cytoplasmic posttranslational regula-
tion of this enzyme [44]. The H*-ATPase of the plasma
membrane of plant cells has a more elongated C-ter-
minus, which performs a regulatory autoinhibitory func-
tion and can lead to an eightfold increase in the need
for ATP while maintaining the number of transported
hydrogen ions [45]. In vascular plants, including cereals,
the plasma membrane H*-ATPase is encoded by a mul-
tigene family, in which five subfamilies are usually dis-
tinguished [46, 47]. Unfortunately, no data have yet been
obtained on changes in the expression of genes encoding
plasma membrane H*-ATPase during elongation growth.
It is assumed that the main regulatory processes are
associated specifically with posttranslational regulation
[48, 30]. The most active mechanisms include phosphory-
lation/dephosphorylation of amino acid residues at the
C-terminus, especially the Thr947 residue. The presence
of a phosphate group ensures binding to 14-3-3 proteins
and a subsequent decrease in autoinhibition [49].

The hypothesis that the activity of plasma membrane
H*-ATPase during elongation growth in coleoptile cells
is mediated by a change in the number of enzyme mol-
ecules in the membrane has not yet been falsified [50].
Experimental evidence indicates a nonlinear change in
the activity of the plasma membrane H* pump [51-53].
However, a comparative analysis of the genes encod-
ing the plasma membrane H*-ATPase during elongation
growth could expand our understanding of the mecha-
nisms of regulation of this enzyme/transporter.

Role of the tonoplast H*-ATPase

The vacuolar H*-ATPase, which ensures the genera-
tion of a proton gradient on the tonoplast, represents
a V-type ATPase and has homology with F-type ATPases
(ATP synthases) of chloroplasts and mitochondria [54].
It is represented by two domains, namely, the peripheral
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supramembrane (V) and membrane integral (V;) domains
[30, 55]. The total mass of the complex is approximate-
ly 800 kDa [56]. Genes encoding vacuolar H*-ATPase
have been identified in all plant genomes sequenced to
date. Encoding of vacuolar H*-ATPase subunits can be
performed using both single genes and gene families.
Phylogenetic analysis suggests that different V-ATPase
subunits, which are structural parts of the same pro-
tein, evolved differently [57, 58]. There is genus- or even
species-specific specialization of isoforms of V-ATPase
subunits [59], suggesting the presence of mechanisms
for regulating enzyme activity by changing the subunit
composition of the enzyme complex [60]. Changes in
enzyme activity were recorded upon phosphorylation
of subunits and further interaction with 14-3-3 pro-
teins, indicating a complex system of posttranslational
regulation [61].

The activity of vacuolar H*-ATPase depends on sev-
eral environmental factors; therefore, the special name
“eco-enzyme” was proposed for the V-ATPase of higher
plants [30, 62]. Experimental evidence, although very
limited, confirm the importance of this enzyme com-
plex during plant cell ontogenesis, including elonga-
tion growth [59]. Changes in the functional activity of
V-ATPase during elongation growth were demonstrated
using maize coleoptile cells [53]. Proteomic analysis
indicated a dynamic decrease in the amount of sub-
unit E when coleoptile growth stopped during etiolated
development [5].

Role of the tonoplast H*-pyrophosphatase

We will conclude this section by considering the prop-
erties and functions of another tonoplast proton pump,
H*-V-PPase, which uses the energy of pyrophosphate to
generate a proton gradient [63, 64]. Recent data indicate
the physiological significance of H*-V-PPase [65-67].
Analysis of evolution showed an expansion of the fam-
ily of genes encoding H*-PPase in angiosperms due to
an increase in copy number [68]. The expansion of the
number of representatives of the gene family, of course,
raises the question of the specificity of their expression
in various tissues and cells, depending on the action of
various factors. The protein molecule of H*-PPase forms
a rosette of 16 transmembrane coils. Both ends of the
enzyme molecule (both N- and C-terminal regions) face
the vacuole, and its active form is represented by a ho-
modimer [69]. Pyrophosphatase is characterized by post-
translational modification, including the participation of
14-3-3 proteins [70].

V-PPase is present in most plant tissues and cells;
however, the amount of this enzyme varies with the tis-
sue [71]. High accumulation of V-PPase mRNA and pro-
tein has been reported in shoot apical meristems and
leaf primordia, cells characterized by high levels of pyro-
phosphate. The amount of V-PPase in terms of vacuolar
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membrane protein in three-day-old Arabidopsis cotyle-
dons was twice as high as that in 10-day-old cotyledons.
Similarly, the highest transport activity of this enzyme
was demonstrated in the youngest, three-day-old maize
coleoptile [53].

To summarize, all of the listed proton pumps are re-
sponsible for the generation of an electrochemical gradi-
ent of hydrogen ions on the plasmalemma and tonoplast,
which ensures the entry of osmotic agents into the cell
and vacuole. H* pumps participate in regulating the in-
tensity of growth processes, including elongation growth
of cereal cells. Thus, the work of the plasmalemma
H*-ATPase ensures acidification of the cell wall, thereby
increasing the elasticity of the latter. However, there are
too little data of this kind to conclude about a possible
redistribution of the significance of these three pumps
during elongation growth.

ROLE OF THE HORMONAL REGULATION

The above data indicate the involvement of a variety
of cell components in the implementation of elongation
growth and the consistency of processes occurring at the
tissue/organ/organism level. Experimental results indi-
cate the role of the hormonal system in the implementa-
tion of elongation growth, which suggests not only the
action of individual phytohormones but also the presence
of cross-regulation. Elongation growth is regulated by
hormones, such as gibberellins, brassinosteroids, and
abscisic acid. [72-74]. Nevertheless, the special impor-
tance of two phytohormones in controlling the elonga-
tion growth of coleoptilism, auxin, and ethylene should
be recognized.

Auxin

In the 1970s, conclusions were made regarding the
ability of the phytohormone auxin to induce elongation
growth of coleoptile cells of cereals [3, 75]. These con-
clusions formed the basis of the “acid growth” theory.
Taking into account modern ideas, this theory can be
briefly represented by the following chain of events:
It begins with the activation of plasma membrane
H*-ATPase, resulting in cell wall acidification. This, in turn,
leads to the activation of many cell wall proteins, namely,
xyloglucan endotransglycosylase/hydrolase (XTHs) [76],
pectin methylesterase inhibitors (PMEIs) [77], and expan-
sins [78]. Increasing the concentration of protons and the
activity of these proteins weakens the interaction between
polysaccharides in the cell wall, leading to an increase
in the distance between cellulose microfibrils. In some
cases, apoplast pH can decrease down to reach 4.0 [79].
Increased operation of the proton pump leads to a
change in the membrane potential and, consequently, to
the activation of many ion channels, including those for
K* ions [80]. Consequently, osmotically active substances
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enter the cell. The next stage involves the synthesis of
new cellulose microfibrils and the synthesis/secretion
of polysaccharides, cell wall matrix proteins, and cell
membrane components, which collectively fill the increas-
ing cell surface. The driving force for elongation growth
is created by the cell’s proton pumps, and the direction is
determined by the orientation of the cellulose microfibrils.

The question of the mechanism by which auxin ac-
tivates the plasma membrane H*-ATPase when auxin is
added remains open. The phytohormone entering cells is
receptorized with the participation of the F-Box protein
TIR1/AFB [81]. This leads to the rapid degradation of Aux/
IAA proteins and the release of ARF family transcription
factors, leading to a rapid activation of several groups of
auxin-specific response genes [82]. However, no tran-
scriptional activation of plasma membrane H*-ATPase
genes was detected. Currently, the generally accepted
viewpoint is that phosphorylation plays a role in the
mechanism of hormonal activation of plasma membrane
H*-ATPase [83]. Auxin initiates the activity of the SAUR
family protein, which inhibits PP2C. D-phosphatase [84],
which leads to an increase in auxin-specific phosphoryla-
tion. Another mechanism of action of the hormone may
be mediated by activation of auxin kinase (TMK1), which
is capable of direct phosphorylation of Thr947, which
leads to activation of plasma membrane H*-ATPase and
apoplast acidification [85].

The point of view of increasing the proton-transport-
ing activity of plasma membrane H*-ATPase due to an
increase in its amount in membrane proteins as a re-
sult of changes in the intensity of exo- and endocytosis
remains relevant [50]. Auxin-binding protein 1 (ABP1),
Ca?* ions, and proteins of the SNARE family may be in-
volved in the implementation of this pathway [86—88].

Further events can be represented as an auxin-in-
duced increase in cell wall elasticity and vacuolization
due to intensive water absorption [31].

Ethylene

The phytohormone ethylene has the opposite effect
on the elongation of coleoptiles and seedlings in general.
It causes specific morphological changes, which are
commonly called the “triple reaction,” namely, shorten-
ing, thickening, and bending, which increase the me-
chanical properties of the seedling when growing through
soil layers [89]. Using this reaction on a model object
(Arabidopsis seedlings), the fundamental sequence of the
receptor-transduction cascade of this phytohormone was
deciphered [90]. The exact opposite process occurs when
ethylene affects the growth of rice seedlings; in this case,
a significant elongation of juvenile organs, such as cole-
optiles and mesocotyls, is recorded [91]. This phenom-
enon suggests that in rice coleoptiles, there is another
mechanism for regulating elongation growth under the
influence of ethylene.
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In rice coleoptiles, ethylene promotes cell elongation
and inhibits cell expansion. Consequently, the coleop-
tile becomes longer and thinner. Its elongation pushes
the shoot tip above the soil surface, and the thinner tip
of the juvenile organ reduces mechanical resistance as
the seedlings emerge from the soil. The accumulation
of two ethylene cascade proteins (OsEIL1 and OsEIL2),
specific for rice seedlings, activates the expression of
genes involved in the detoxification of reactive oxygen
species [91]. These forms, under the influence of eth-
ylene, predominantly accumulate in the apical region of
the juvenile organ. In this case, the cell wall properties
change because the intensity of expression of the family
of genes encoding expansins and peroxidases, including
those localized in the cell wall, changes [91].

Unfortunately, there is no evidence to support the
possible activation of proton pumps by the action of eth-
ylene on the elongation of coleoptile cells. Nevertheless,
there is indirect evidence that indicate the possibility of
regulating the expression of genes encoding the subunits
of vacuolar H*-ATPase [30]. One of the mechanisms in-
fluencing the degree of vacuolization may be the inhi-
bition of the accumulation of organic acids in vacuoles
by ethylene, i.e., it causes a change in the balance of
osmotically active compounds [92]. Moreover, a possible
inhibitory effect of ethylene on the activity of tonoplast
aquaporins was established [93]. However, considering
that the effect of ethylene on coleoptile cells differs from
that on cells of other organs, studies are required that
could reveal the ethylene-mediated participation of the
listed proteins in the implementation of the elongation
growth mechanism specifically in coleoptiles.

ROLE OF STRESS FACTORS

The effect of external stress factors on elongation
growth is diverse. Thus, intensive elongation growth of
coleoptile and mesocotyl cells of maize seedlings was
recorded during etiolation. In contrast, the action of light
leads to rapid inhibition of elongation growth, and this ef-
fect depends on the spectral composition of the stimulus.
The effect of blue light was more intense than that of red
light [7]. Stress factors such as heavy metals, drought,
and salinity also have the ability to regulate the intensity
of elongation growth [94-96].

Thus, external factors primarily inhibit coleoptile
growth, but the reverse process is also noted. An ex-
ample of this is the germination and primary stage of
growth of rice (Oryza sativa L.), a representative of the
group of semiaquatic plants that can germinate from a
depth of up to 35 cm [97].

Lack of oxygen
Under flooding conditions, the availability of oxygen
sharply decreases, leading to a significant change in the
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physiological and biochemical processes recorded in
seedlings [36, 98]. With this type of germination (hypo- or
anoxic, depending on the flooding duration), germination
consists of intensive growth of the coleoptile with almost
complete cessation of leaf and root growth [99]. A sharp
acceleration in the growth of shoots (including coleop-
tiles) is associated with one of the strategies of plant
adaptation to oxygen deficiency, namely, the avoidance
strategy (low-oxygen escape syndrome, LOES).

In rice varieties resistant to flooding, more intense
elongation growth of coleoptile cells is registered, which
results in a more rapid achievement of the aerobic en-
vironment and thereby the supply of oxygen to the en-
tire seedling [15, 100, 101]. The development program
of coleoptiles during flooding differs significantly from
that under normal conditions (see above). Under these
conditions, the aging program slows down, but elonga-
tion growth is enhanced [9]. The hypothesis on the role of
the coleoptile as a “snorkel,” which was proposed in the
1970s [102], has recently received numerous confirma-
tions [103]. It has been established that when flooded,
rice coleoptiles can elongate by 6—12 mm per 24 h [10].
Intensive elongation growth was demonstrated for cells
of the lower third of rice coleoptiles, whereas this in-
dicator was significantly inhibited near the apex [104].
Additionally, this effect intensified with age but was prac-
tically absent in young seedlings just beginning to de-
velop, in which elongation growth proceeded with almost
equal intensity along the entire length of the coleoptile.
In this regard, it is not surprising that the transcription
profile differed significantly between these two zones of
the coleoptile and in seedlings of different ages. Genetic
mapping analyses revealed several (from 4 to 13) quan-
titative trait loci (QTL) associated with the development
of rice seedlings under flooding [105].

The process of elongation growth under flooding
conditions was accompanied by increased expression
of genes encoding expansions EXPA7 and EXPA12, as
well as genes encoding pectinesterases [104, 106, 107].
Changes in expansin levels certainly influence the state
of the cell wall during oxygen deficiency. The activation
of soluble peroxidases under flooding conditions may be
important [108]. The listed data indicate the mechanisms
that increase the elasticity of the cell wall. However, un-
der normoxic conditions, the fundamental mechanism is
acidification, which is achieved through activation of the
plasma membrane H*-ATPase. Whether this mechanism
can be implemented in rice coleoptiles during flooding
remains questionable because the lack of oxygen leads
to severe energy starvation and, consequently, to the
limitation of ATP, the energy substrate for the opera-
tion of the plasma membrane proton pump [9, 10, 104].
A different mechanism has been proposed to explain the
acidification of cell walls. The elongation of coleoptile
cells increased by 8-16 times when solutions saturated
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with CO, were used [109]. However, this mechanism also
requires additional confirmation because the CO, formed
during alcoholic fermentation is largely released from
plant tissues into the environment [98]. A decrease in
the level of ATP in coleoptile cells during germination
under flooding conditions is one of the reasons for the
decrease in H*-ATPase activity not only on the plasma
membrane but also on the tonoplast. The accumulation of
lactate because of the activation of lactic acid fermenta-
tion leads to acidification of the cytoplasm [98], and this,
in turn, activate these proton pumps [110, 111]. Thus,
a very dynamic change in the activity of H*-ATPases is
noted, which can be modified by the activity of kinases/
phosphatases responsible for phosphorylation of the au-
toinhibitory domain of the plasma membrane H*-ATPase
and the subunits of the tonoplast H*-ATPase. The activa-
tion of anoxic metabolism is associated with increased
activity of some enzymes, including pyruvate phosphate
dikinase (PPDK), resulting in the accumulation of pyro-
phosphate. Therefore, we can assumed that H*-V-PPase
is activated. The energy of pyrophosphate hydrolysis
is approximately 60% of that of ATP hydrolysis [112].
In aerobically grown rice seedlings, oxygen deficiency
activated H*-V-PPase and stimulation of the expression
of its encoding genes [113]. Therefore, cells are able to
solve several problems, namely, equalizing the pH level
of the cytosol, generating an electrochemical potential on
the tonoplast, restoring the transport activity of osmo-
lytes into the vacuole, and creating the necessary driving
force for water transport [67]. Unfortunately, we did not
find literature on changes in the role of aquaporins during
elongation growth of rice coleoptile cells, and data on the
role of aquaporins in other growing organs of seedlings
are contradictory [36]. The genes encoding H* pumps and
aquaporins are not included in the identified QTLs as-
sociated with coleoptile growth; therefore, there may be
other mechanisms underlying the regulation of elonga-
tion growth under flooding conditions.

This review presents the results of an analysis of
a recently conducted large-scale study of the promoter
region of genes involved in ensuring the germination and
growth of rice seedling coleoptiles. Representatives of
several families of transcription factors have been iden-
tified, namely, MYB, bZIP, AP2/ERF, ARF, WRKY, ZnF,
MADS-box, NAC, AS2, DOF, E2F, ARR-B, and HSF [114].
They participate in the regulation of fission processes,
elongation growth, and many carbohydrate metabolism
genes. Additionally, the rice varieties most resistant to
flooding were characterized by the activity of transcrip-
tion factors such as HY5 (bZIP), GBF3, GBF4 and GBF5
(bZIP), DPBF3 (bZIP), ABF2, ABI5, bHLH, and BES/BZR,
which are involved in transduction cascades of phyto-
hormones ethylene, auxin, gibberellin, abscisic, and jas-
monic acids. This confirmed that resistance to oxygen
deficiency and the maintenance of intensive elongation
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growth during flooding is determined by several phyto-
hormones [114].

Let us consider the importance of two phytohormones,
auxin and ethylene, in the regulation of elongation growth
under conditions of oxygen deficiency. The significance
of these hormones under normoxic conditions was ana-
lyzed as described above. The role of auxin in initiating
elongation growth during flooding has been debated for
a long time. For example, disruption of the synthesis of
this hormone and its polar transport was noted during
oxygen starvation in rice [115]. The addition of exogenous
auxin did not increase the elongation growth of coleop-
tiles under anoxic conditions [116]. However, a compara-
tive analysis of rice varieties that differed in coleoptile
length showed that the effect of auxin on elongation
growth depends on the activity of the AUX1 transporter.
Expression of the gene encoding was higher in long-
coleoptile rice varieties under flooding [117]. Along with
this, a decrease in the expression of the miR393a gene
was revealed, which negatively regulates the mRNA of
the auxin receptor Transport Inhibitor Response 1 (TIR1),
which intensifies the phytohormone signaling cas-
cade [118]. Thus, the effect of auxin on the elongation
growth of rice coleoptiles under flooding conditions can
have an effect of varying intensity, depending both on
the participants in the growth response and on the initial
genetic characteristics of the plant analyzed, which are
inherent in the ability to elongate. In considering the role
of ethylene, it should be noted that this gaseous phy-
tohormone is intensively accumulated under conditions
of oxygen deficiency [109]. This, in turn, leads to in-
creased expression of SUBTA and SNORKELs genes [106].
Both hormones belong to the group of transcription fac-
tors (Ethylene Responsive Factor of group VII, ERF-VII),
a distinctive feature of which is the preservation of the
N-terminus of the molecule under conditions of oxy-
gen deficiency. Therefore, these factors do not undergo
hydrolysis and thereby participate in the regulation of
so-called anaerobic genes [119]. Transcription factors
SNORKELs control the strategy of active avoidance of
flooding (LOES), in which shoot growth is stimulated,
and SUB1A control the strategy of dormancy, or true re-
sistance to hypoxia (low-oxygen quiescence syndrome,
LOQS), in which growth is inhibited and adaptation is
achieved by changing metabolism [98, 119].

CONCLUSION

To summarize this review, it is necessary to empha-
size the variety of protective functions of a juvenile or-
gan, such as the coleoptile of cereals. The primary func-
tion is to protect the seedling leaf as it grows through the
soil. This requires intensive elongation of the coleoptile,
which is achieved through elongation growth, a more
economically advantageous process than cell division.
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When light enters the seedling upon reaching the sur-
face, it abruptly stops growth and initiates a program of
aging and death of coleoptile cells. In this model, elon-
gation growth depends on acidification of the cell wall,
which is mediated by activation of the plasma membrane
H*-ATPase and induced by the phytohormone auxin.
The change in the hydrogen ion gradient at the apoplast/
cytoplasm and cytoplasm/vacuole boundaries is sup-
ported by the work of two H*-ATPases, whose function-
ing is ensured by the synthesis of ATP under conditions
of active respiration. Multiple increases in cell length
are accompanied by vacuolization, which indicates the
active involvement of aquaporins of the plasmalemma
and tonoplast in ensuring water transport. The proper-
ties of cells in different zones of the coleoptile and their
ability to support elongation growth change with age.
The role of the phytohormone ethylene, which affects
the growth of coleoptiles, is radically different from the
influence of other axial organs. High rate of cell growth
and softening of the upper part of the coleoptile allows
the developing leaf to break easily through its top when
emerging from the soil surface. Consequently, by initiat-
ing different molecular mechanisms, auxin and ethylene
intensify the implementation of coleoptile physiological
function.

If stressful conditions develop, the intensity of elon-
gation growth is adjusted. It is largely suppressed by the
action of heavy metals, high temperature, drought, and
salinity. However, stress factors such as lack of oxygen,
on the contrary, can sharply activate growth because of
the development of the “avoidance” strategy (LOES). This
phenomenon is noted in the coleoptiles of rice, which
is a semiaquatic plant well adapted to germination and
primary growth under flooded conditions. Metabolic
changes (glycolysis and fermentation increase), and a
sharp decrease in ATP are partially compensated for by
an increase in the level of pyrophosphate; therefore, con-
ditions arise for the activation of the vacuolar H*-PPase
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