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ABSTRACT

BACKGROUND: Heterotrophic cell cultures are widely used as a model in plant biology. During a culture cycle the composition
of the medium changes: the sucrose and other substrates are depleted, metabolism products are accumulated and the density
increases. Finally, arrest of a growth is followed by cell death in a short time. These processes are accompanied with physi-
ological alterations, corresponding to senescence.

AIM: To resolve metabolic features of tobacco cells in growing and stationary senescent suspension cultures VBI-0.
MATERIALS AND METHODS: Nicotiana tabacum VBI-0 cells were cultured in suspension MS medium supplied with 3% su-
crose. Cells were sampled at 7™ day, during intensive growth, and at 28" day, when the culture was in the stationary phase.
The GC-MS method was used to profile the metabolites.

RESULTS: Sucrose depletion in media caused starvation of heterotrophic tobacco cell culture and was associated with a de-
crease in the accumulation of free amino acids. At the same time, the level of pentoses and complex sugars, including sucrose,
increased, while the levels of glucose and fructose were not changed significantly and levels of hexose phosphates decreased.
During culture senescence cells showed higher levels of accumulation of malate, pyruvate and some other carboxylates.
CONCLUSIONS: The metabolomic data indicate that culture senescence was associated with a drop in amino acids metabolism,
a decrease in the activity of the upper part of glycolysis, and the accumulation of complex sugars, pentoses and carboxylates.
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AHHOTALMA

leTepoTPodHbIE KNETOYHbIE KYMbTYpbl LUMPOKO UCMONb3YIOT B Ka4ecTBe MOAESbHBIX 00bEKTOB B Bronorum pactenuit. B npo-
Liecce pa3BUTUA KyNbTypbl MEHSIETCA COCTaB CPefbl: UCTOLLAeTCA CybCTpaT, HaKkanMBaKTCA NpoAyKTbl MeTabonuaMa, pac-
TeT NNOTHOCTb KNETOK. B ¢puHanbHol dase pocT ocTaHaBNMBAETCS M Yepe3 HenpoLosKUTENbHOE BpeMs KyNbTypa norubaer.
371 npouecchbl CoNpoBOXAAIOTCA GU3NONOrNYECKUMU U3MEHEHNSMM KIETOK, KOTOPbIE MOXHO Ha3BaTb CTapeHMEM KyNbTyphbl.
MeToa0M ra3oBoii XpoMatorpadum, CONpsKEHHOW C Macc-CNeKTPOMETpUeEN, Obio NpoBeseHo NpoduIMpoBaHMe MeTabonm-
T0B reTepotpodHbIx Knetok Nicotiana tabacum VBI-0, noaaepxuBaeMbIx B CyCeH3WOHHOI KynbType. CpaBHUBaNM KIeTKM
KynbTyp BO3PacToM 7 CyT, BO BPeMS MHTEHCUBHOIO pocTa Guomacchkl, 1 28 cyT, Koraa KynbTypa Haxo4unach B CTaLMOHap-
HOV (ase. Bbino ycTaHOBNEHO, YTO CTapeHue COMPSXKEHO C NaJeHUeM HaKOMMIEHUst aMUHOKUCNOT. B To e Bpems Bo3pac-
Tan ypoBeHb MEHTO3 W CIIOXKHbIX CaxapoB, BKJIKOYAA caxapo3y, TOrAa Kak YpoBeHb IKO3bl, GpyKTo3bl U caxapodocdaTos
CHWXKancs. [ina ctapelowumx KymnbTyp XapaKTepeH 6onblumii ypoBeHb HAKOMIEHWA Manata, MupyBaTa W HEKOTOPbIX APYrux
KapbokcunatoB. TakuM 06pa3oM, nonyyeHHble MeTabonoMHble AaHHbIE CBUAETENbCTBYIOT, YUTO CTApeHUe COMPSIKEHO C U3-
MeHeHWeM 06MeHa aMUHOKMCIIOT, CHIXKEHWEM aKTMBHOCTM Ha4asibHOro 3Tana riMKONIN3a, HaKoMIEHUEM CIIOXHbIX CaxapoB,
MeHTO3 W KapboKcUnaToB.

KnioueBble cnosa: Nicotiana tabacum VBI-0; MeTabonoMuKa; KynbTypa pacTUTENbHbIX KIETOK; CTapeHue; CycCrieH3WOHHas
KynbTypa.
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BACKGROUND

Cell cultures of higher plants, including transformed
ones, are widely used as model systems for studying
numerous processes, including cell division, embryo-
genesis, differentiation, various stages of primary and
secondary metabolism, etc. [1, 2]. The study of cultures
enables us to understand the cellular mechanisms un-
derlying the adaptation of plants to biotic [3] and abiotic
stressors [4] better. Additionally, plant cell cultures are
in wide demand in modern biotechnology for the pro-
duction of biologically active compounds, heterologous
proteins, etc., [5]. The application of aseptic, strictly
controlled conditions enables the achievement of high
reproducibility of results, cell cycle synchronization, and
enhanced growth rates [2, 6]. Plant cell cultures can be
either photosynthetic [7] or heterotrophic [1]. Heterotro-
phic cultures are maintained in the dark, and their only
sources of carbon and energy are the organic compounds
included in the medium. Plant cells are capable of con-
suming exogenous organic compounds, especially su-
crose [8] which is the main form of transported carbon
in higher plants [9].

Sucrose metabolism begins with cleavage, which is
catalyzed by two types of enzymes, invertases and su-
crose synthases. Invertases hydrolyze sucrose into glu-
cose and fructose. Acidic invertases are localized to the
vacuole, and neutral/alkaline invertases to the cytoplasm
and apoplast [10]. Sucrose synthases cleave sucrose
molecules into fructose and uridine diphosphoglucose,
which is a precursor for the synthesis of many metabo-
lites. Several sucrose metabolism pathways can probably
operate in parallel, and thus, the question arises about
their relationship under normal and stressful conditions.
The products of sucrose hydrolysis can be catabolized
through glycolysis, the tricarboxylic acid (TCA) cycle,
and the pentose phosphate pathway to produce energy.
Conversely, exogenous carbon can be involved in the
accumulation of biomass, directed into the synthesis of
amino and fatty acids or other compounds. In addition, it
can be stored in the form of starch or lipids. The activity
of the listed metabolic processes depends on the species’
characteristics, the physiological and biochemical activity
of its constituent cells, and developmental alterations.

During cultures growth, the substrate is exhausted
and starvation occurs, the first consequence of which is
a decline in physiological activity. Removal of sucrose
rapidly decreases respiration levels [11, 12]. The ex-
pression of genes encoding the TCA cycle and oxidative
phosphorylation enzymes is suppressed [13]. The gly-
colysis level also decreases, due to a reduction in the
contents of sugar phosphates [14, 15] and the expression
of the corresponding genes [11, 13]. In addition, when
cells are starved, reserves are mobilized. Vacuolar pools
of sucrose and malate serve as a rapid but short-term
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carbon source [14]. An enhancement in the expression
of certain genes associated with starch hydrolysis was
noted [13]. Lipid mobilization occurs, which is ensured by
the induction of genes encoding lipases and fatty acid ox-
idation-related enzymes [11, 13]. Simultaneously, mem-
brane degradation may occur [16]. The presentation is
complemented by a decrease in the expression of genes
for enzymes involved in fatty acid biosynthesis [11].
Starved cells are characterized by high proteolytic activ-
ity since amino acids can also be a carbon source during
starvation. This is indicated by an increase in the expres-
sion levels of genes encoding enzymes associated with
amino acid catabolism [17], especially the branched-chain
amino acids [18]. This process entails a restructuring of
nitrogen metabolism [19]. However, in heterotrophic cul-
tures, starvation can only last for a highly limited period.
The cell viability of Arabidopsis suspension cultures be-
gins to decline rapidly, after 24 h of starvation; after 48 h,
the culture loses the ability to recover after passaging,
which indicates the impossibility of restoring a new de-
velopment cycle that begins with proliferation [11].

The depletion of nutrients and other environmental
changes induces several physiological processes that end
with the death of the cultured cells; this stage can be
called senescence. Growth stops, the level of respiration
and synthetic processes decreases [20, 21]; the compo-
sition of fatty acids changes [22]; and the morphology
and number of organelles alter [23-25]. The comparative
analysis of the processes occurring in plant cell cultures
during starvation and at late stages of development, with
those during ontogenetic or induced senescence of cells
in native organs, is of particular interest [19, 26]. It was
established that old starving heterotrophic Arabidopsis
cultures differed markedly from ontogenetically aging
organs at the transcriptional level; of the genes whose
expression increased in senescent cell culture, only
about 40% were enhanced in leaves during dark-induced
senescence [27]. A further study of the features of onto-
genetic senescence, carbon starvation and senescence of
cell culture is necessary to examine the development and
trophic levels of plant adaptability.

It can be concluded that substrate uptake and the met-
abolic response to its deficiency are primarily associated
with the central or primary metabolism. It is a collective
concept of a set of metabolic processes that provide the
cell with carbon, energy, and metabolites necessary to
maintain life, as well as precursors for the synthesis of
secondary compounds [28, 29]. The set of primary me-
tabolites, mostly represented by small molecules such as
C,—C; carboxylic acids, amino acids, monosaccharides,
fatty acids, etc., constitute a specific metabolic profile that
characterizes the state of a biological object. Gas chro-
matography coupled with mass spectrometry (GC-MS),
one of the fundamental techniques in metabolomics,
is a promising method for metabolic profiling [30].
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The present study compares the metabolomic profiles
of the heterotrophic cell suspension culture VBI-0 ob-
tained from the stem parenchyma of Nicotiana tabacum L.
cv. Virginia Bright Italia 0 [31]. VBI-0, like the culture
By-2 (N. tabacum L. cv. Bright Yellow 2), is easily syn-
chronized and has a specific filamentous phenotype [32].
Cells at different stages of development are well dis-
tinguished morphologically; they are small, forming
chains during the proliferation period of the first week of
growth, but single, large, and elongated after two weeks
in the stationary phase [33]. The cells from these two
stages, contrasting in their physiological state, were used
in this study. Metabolite profiling was performed during
the period of biomass growth (day 7) and at the stage of
senescence, on the eve of death (day 28). The work aimed
to identify metabolic variations between cells from the
growing and senescent stationary suspension cultures
of VBI-0.

MATERIALS AND METHODS

Plant material

The etiolated Nicotiana tabacum suspension cell cul-
ture (VBI-0) was maintained in the dark, at 26 °C and with
constant stirring on a rotary shaker (120 rpm). Samples
were collected at 7 days (biomass growth) and 28 days
(senescence) by filtration using a water jet vacuum pump.
For analysis, 200 mg of crude hiomass was used.

Sample preparation

Samples were flash-frozen in liquid nitrogen.
The cells were disrupted in a TissueLyser LT bead mill
(QIAGEN, Germany) and extracted with cooled methanol-
chloroform—water at 5:2:2. The extract was cleared
from debris by centrifugation for 10 min, 15,000 g at 4°C.
Then the extract was evaporated in a vacuum evaporator.
The dried material was dissolved in a mixture of pyridine
and silylating agent BSFA-TMCS (99: 1), and added with
an internal standard (tricosane, normal hydrocarbon C,,).
The material was derivatized by incubating the samples
at 90°C for 20 min.

Metabolite profiling

For the GC-MS analysis, Agilent 5860 gas chromato-
graph coupled to Agilent 5975C mass spectrometer
(Agilent Technologies, USA) was used. Agilent 7693A
autosampler was utilized for automatic sample injec-
tion. Separation was performed using a DB5-HT capillary
column (Agilent). The carrier gas used was helium, with
a constant flow of 1 ml/min. The evaporator tempera-
ture was 250 °C, applied in a splitless mode. The initial
column thermostat temperature was 70°C, followed by
a linear increase at a rate of 4°C/min up to 320°C.

The PARADISe software [34] in combination with
NIST MS Search (National Institute of Standards and
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Technology, NIST, USA) was utilized to process the chro-
matograms. Additionally, AMDIS (Automated Mass Spec-
tral Deconvolution and Identification System, NIST, USA)
was applied for the deconvolution and identification of
metabolites. Compounds were annotated by matching the
obtained mass spectra (MF > 800) and Kovacs retention
indices with library records in NIST2020 (USA), Golm Me-
tabolome Database (GMD, Germany) [35], and the homeli-
brary of the Laboratory of Analytical Phytochemistry of
the Botanical Institute of the Russian Academy of Sci-
ences (St. Petersburg, Russia).

Statistical analysis and visualization

Data analysis was performed in the R4.3.1 “Beagle
Scouts” environment. Data were normalized to the ob-
servation median, logarithmized, and standardized.
If a compound was absent in a sample but present in
the remaining replicates, this was considered a techni-
cal error and imputation was performed using the KNN
(k-nearest neighbors) method utilizing the impute pack-
age [36]. Principal component analysis (PCA) was per-
formed using pcaMethods [37]. Orthogonal projections
in latent structure-discriminant analysis (OPLS-DA)
were performed utilizing the ropls package [38].
The fgsea package was applied for metabolite set enrich-
ment analysis (MSEA) [39]. Metabolite sets for identifying
the biochemical pathways for MSEA and reaction pairs for
metabolic map construction were downloaded from the
KEGG database [40] using the KEGGREST package [41].
The list of metabolites belonging to different biochemi-
cal pathways was manually adjusted as required path-
ways were added for certain metabolites. Compounds for
which a class was annotated were placed in the appro-
priate paths. The metabolic map was constructed on the
Cytoscape platform [42].

RESULTS

On day 7, the cultures were characterized by an in-
tensive increase in biomass density. On day 28, the raw
mass density did not change for >7 days, which indicates
complete exhaustion of resources and accomplishment of
culture development (Fig. 1).

The metabolite profiles were obtained using GC-MS,
which included ~300 compounds; 84 of them were iden-
tified by matching the mass spectra and retention indi-
ces with those from the library, and a chemical class
was annotated for another 44. The remaining spectra
were unidentified but still analyzed. The most abun-
dant profiles obtained were sugars and their derivatives
(60 in total), sugar alcohols, sugar acids, phosphosugars,
pentoses (including ribose), hexoses (including glucose
and fructose), and oligosaccharides such as sucrose.
Several complex molecules containing sugar residues
were annotated, apparently including numerous di- and
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trisaccharides, as well as secondary compounds such as
glycosides. The profiles also included 24 amino acids,
consisting of 17 standard ones, and 20 carboxylic acids,
which included the intermediates of energy metabolism.
Free fatty acids and sterols were detected in small quan-
tities.

PCA was performed to determine the similarity of me-
tabolite profiles of the cultures in the growth and senes-
cence phases. The profiles were scattered in the count
space of the first two principal components (PCs) (Fig. 2).
The observations were separated according to age along
PC1, explaining 56.8% of the variance. Individual differ-
ences among the cultures of the same age were associ-
ated with PC2 explaining 23%.

Since metabolite profiles were grouped based on the
culture development stages, OPLS-DA was performed
next to identify metabolites that accumulated differential-
ly depending on the development stage. We selected se-
nescence-associated metabolites based on the VIP (vari-
able importance in projection) values [38]. The results
are presented on a simplified map of central metabolism
(Fig. 3), plotted based on the main reaction pairs (sub-
strate—product) accessed from the KEGG database [40].

Senescent cultures differed from growing ones by
enhanced levels of complex sugars, including sucrose,
while those of glucose and fructose did not vary remark-
ably. Simultaneously, the volumes of hexose phosphate
pools either did not change or declined. Senescence was
also associated with the accumulation of pentoses and,
to a limited extent, hexoses. The level of the final product
of glycolysis, pyruvate, as well as malate, was higher in
stationary cultures. However, those of other detected TCA
cycle intermediates did not alter. Interestingly, those of
many other carboxylic acids not directly involved in en-
ergy metabolism also increased. The most striking differ-
ence in the metabolite profiles of senescent cultures ap-
pears to be the reduced accumulation of most free amino
acids. These include the nitrogen metabolism intermedi-
ates, namely glutamate, glutamine, and ornithine. Inter-
estingly, in contrast, a significant accumulation of urea
was noted. Notably, aminocyclopropanecarboxylic (ACC)
acid, a precursor of ethylene, was detected only at the
growth stage. Almost no alterations were registered in
the sterol and free fatty acid levels. The exception was
a marked decrease in one unidentified sterol and an in-
crease in one very long chain (lignoceric) fatty acid (C,,)
(Fig. 3).

Enrichment analysis was performed to determine the
relationship between these changes and the biochemi-
cal pathways activated. It enables the assessment of the
strength and probability of directed coordinated changes
in the accumulation of a particular set of metabolites [39].
We used lists of metabolites from biochemical pathways
downloaded from the KEGG database [40]. The results in-
dicate that the reduced accumulation of most free amino
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acids the reduced accumulation of most free amino ac-
ids senescent cultures differed from growing ones in the
greater accumulation of sugars involved in sucrose, ga-
lactose, and ascorbate metabolism (Fig. 4). Parallelly, the
pools of amino acids decreased, which may be due to the
repression of protein synthesis and, possibly, nitrogen-
containing secondary compounds, being their precursors.
Intermediates of the TCA cycle, sterol, and fatty acid syn-
thesis pathways did not show any obvious unidirectional
changes.
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Days after passaging, days

Fig. 1. Growth of heterotrophic suspension cell culture N. tabacum
VBI-0: fresh weight density mg per ml

Puc. 1. PocT retepoTpodHoii cycnieHsunoHHoii KynbTypbl N. tabacum
VBI-0

HH Growth
O Senescence

PC2 23%
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PC1 56.8%

Fig. 2. Score plot from PCA of metabolite profiles extracted from
heterotrophic suspension cell culture N. tabacum VBI-0 at growth
and senescence. Eclipses — are the 95% confidence intervals, % —
percent of variation
Puc. 2. PaccesHue npoduneii MeTabonuToB B MPOCTPaHCTBE Cye-
TOB rnaBHbIX KOMMOHEHT (TK), nonyyeHHbIX Npy aHanu3e cycneH3u-
OHHbIX KynbTyp KneTok N. tabacum VBI-0 Ha cTagusix pocTa u cTa-
penus. Inauncel — 95 % foBepuTENbHbIE MHTEPBanbI, % — fons
LVCNEepCU, CBA3aHHas C rMaBHON KOMMOHEHTON
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Fig. 3. Visualization of differentially accumulated metabolites (DAMSs) in suspension cell culture N. tabacum VBI-0 at growth and senescence
stages. DAMs were selected by rule: VIP > 1. Increase refers to higher level at senescence. FC — fold changes

Puc. 3. Busyanusaums metabonutos, auddepeHumanbHo HakannmBawowmxes (JHM), B pacTylwimx u cTapeiolumx KynbTypax KIeToK
N. tabacum VBI-0. Bbibop IHM ocywecTenet no VIP > 1. FC — KpaTHocTb pasnuunii cpeaHux 3Hadenmii (fold changes). YBenuueHue co-

OTBETCTBYET bonee BbICOKOMY HaKOMJIEHUI0 Ha CTann CTapeHna

DISCUSSION

The composition of the metabolite profiles of VBI-0
cell cultures was similar to those of native tobacco seed-
lings [43]. While the spectra were obtained and annotated
using similar methods, the number of compounds in the
culture profiles was significantly smaller. In both seed-
lings and cultures, carbohydrates were the most widely
represented group. However, in cultures, the number of
compounds annotated as carbohydrates was 1.5-fold
less than in seedlings. Mainly, fewer complex carbohy-
drates were registered in cultures. This may be due to the
differentiation of organs, tissues, and cells in a multicel-
lular organism, which can also be traced at the biochemi-
cal level [44]. Conversely, seedlings have fully functional
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plastids, which upon illumination, photosynthesize, pre-
sumably expanding the metabolic network and making
the metabolite profile more diverse. Sugar residues are
part of many secondary compounds [45], and the syn-
thesis of specialized molecules is usually triggered in
response to unfavorable influences [3, 46]. Since the ex-
perimental suspension cultures were maintained under
stable and favorable conditions, the mechanisms for the
biosynthesis of many secondary compounds could remain
inactive. This finding was consistent with the observa-
tion that the cell cultures analyzed were characterized
by a limited number of secondary compounds identified.
For example, nicotine, a characteristic of N. tabacum, was
not detected in tobacco cultures. We emphasized earlier
that these compounds were identified in seedlings [43].
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Puc. 4. Aanus oboraLLeHus, noyyeHHbIi Ha OCHOBE Harpy3oK npeankTueHoii KoMnoHeHTsl OMNJIC-[A. CeTb MeTabonuueckux nyTen, pea-
nm3yeMbix B kietkax N. tabacum. Y3nbl — MeTabonnueckue nytn u3 6asbl aaHHbIx KEGG. Ecnm oHM uMetoT 0bLume MeTabonuTbl B npodune,
TO OHW COeIMHEHbI pebpamu, KoTopble Ux cTaruBatoT. Pasmep — NES, HopManusoBaHHas oueHKa oboralenus (normalized enrichment
score), uBeT — FDR, ypoBeHb f10XHOMoNoXUTENbHbIX pe3ynbTatos (false discovery rate). TpeyrofbHUKM ¢ BEPLUMHON, HanpaBeHHoM BBEpX

COOTBETCTBYIOT bonee BbICOKOMY HAKOMJIEHUI0 MHTEepMeOUaToB NyTU Npu CTapeHnn

Finally, changes in cell wall composition may be an im-
portant factor in carbohydrate profile formation. The ap-
pearance of a large number of oligosaccharides in the
profile of the cultures studied may result from the partial
degradation of cell wall polysaccharides, which was pre-
viously noted during the development of tobacco suspen-
sion cultures.

It is well known that plant organs and tissues un-
dergo physiological changes with age. This observation
is also reflected in the fact that the metabolite profiles
of plants at different ages [47, 48] or organs during de-
velopment [49] vary significantly. As a rule, in the early
stages of the development of plants, organs, and cell
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cultures, there is an increase in coupling with high bio-
synthetic activity. For example, actively dividing tomato
cells in suspension cultures are characterized by a high
level of carbon flux into protein synthesis [21]. High pro-
tein synthesis activity is associated with a high content
of free amino acids, which is noted at the early stages of
plant development [50].

Biosynthetic activity must be supported by appropri-
ate resources. Since sugars are the source of carbon
and energy for a heterotrophic culture, their metabolic
pathways play a crucial role in providing the cell with
energy. Modeling of flows in heterotrophic Arabidopsis
cells revealed that glycolysis and TCA cycle play a major
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role in glucose utilization [51]. The combination of a high
level of phosphorylated hexoses and a low ATP/ADP (ad-
enosine triphosphate/adenosine diphosphate) ratio can
impart glycolysis with high importance. This presentation
is registered, for example, during the period of prolif-
eration of pericarp cells of tomato fruits [52]. The same
was also true in the case of our study, as in suspension
cultures, the contents of all sugar phosphates were high
during the growth period. A reduction in their level during
senescence indicates a decline in the activity levels of
the initial reactions of glycolysis. The end of the prolif-
eration of heterotrophic tomato cells in culture coincided
with a decrease in flows through glycolysis and the TCA
cycle [21]. As heterotrophic tobacco cell cultures age, the
aerobic respiration activity decreases [20]. Presumably,
this is the result of carbon starvation. A rapid decrease
in respiration levels associated with a reduction in the
phosphorylated sugar contents was previously noted in
starved cultures after removing the substrate from the
medium [14, 15]. Parallel, as the main osmotic agent,
the high sucrose levels in the cells of older cultures
can be due to its accumulation in the central vacuole,
the volume of which increases during cell growth [53].
The accumulation of free sugars is detected at the later
stages of plant and organ development [50, 54]. Vacuole
growth is also probably associated with an enhancement
in the malate pool, which usually accumulates in appar-
ent quantities in this organelle [55, 56]. The accumulation
of malate and other carboxylates may be mediated by
the partial oxidation of sugars for energy supply [57], as
can an increase in the level of pyruvate, which is the end
product of glycolysis.

Based on the results of the enrichment analysis, it
can be suggested that ascorbate metabolism is activated
during senescence, as a result of enhanced oxidative
stress in senescent cultures. High culture density and
depletion of nutrients in the medium can be stress fac-
tors. A decrease in respiration levels in the late stages
of development can be considered as a mechanism for
reducing oxidative stress and slowing down the senes-
cence process.

CONCLUSION

To summarize, it should be noted that cells of se-
nescent heterotrophic cultures experience stress associ-
ated with carbon starvation and changes in the culture
medium composition. The metabolomic data obtained
indicated that senescence is associated with a decrease
in the intensity of the biosynthetic processes, a reduc-
tion in the activity of the initial steps of glycolysis, and
the accumulation of complex sugars, pentoses, and
carboxylates.
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