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ABSTRACT

BACKGROUND: The study of telomere length and influencing factors in early human development has both fundamental and
applied importance.

AIM: A comparative assessment of telomere length in the compartments of human blastocysts, and the analysis of the telo-
mere length association with the quality of blastocysts, genetic imbalance and the maternal age.

MATERIALS AND METHODS: The study was performed on trophectoderm and inner cell mass samples of 41 human blas-
tocysts, 26 of which were genetically imbalanced according to preimplantation genetic testing and verification of its results.
The microscope slides were prepared for further telomere detection in interphase nuclei by quantitative fluorescence in situ
hybridization (Q-FISH).

RESULTS: Telomeres in trophectoderm were longer than in inner cell mass, with their length varied from blastocyst to blasto-
cyst. Telomere length in either trophectoderm or inner cell mass did not differ between genetically balanced and imbalanced
blastocysts. There was a tendency towards a decrease in telomere length in the blastocyst compartments with increasing
maternal age, however, a statistically significant correlation was not confirmed. The telomere length in the inner cell mass,
but not in the trophectoderm, was associated with blasocysts’ quality based on the Gardner grade: medium quality blastocysts
had longer telomeres than high quality blastocysts.

CONCLUSIONS: Long telomeres in trophectoderm may be necessary for implantation and subsequent placentation. Telomere
length can be considered among modifiers of the effects of karyotype abnormalities and other negative factors: the inheritance
by an embryo of long telomeres apparently gives it a developmental advantage even when genetically imbalanced or has poor
morphology. Implantation seems to be an important checkpoint for negative selection of embryos with “unsuccessful” combi-
nations of telomere length, karyotype, and morphology.

Keywords: telomere length; human blastocyst; aneuploidy; maternal age; trophectoderm; inner cell mass; assisted
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Nnuna TenoMep B TpopakTOoAEPME U BHYTPEHHEH
KNeTo4yHoi Macce 6aacTouucT yenoBeKa:
CpaBHMTE/IbHbIA aHA/IU3 U OL,eHKa BAMAIOLLMX Ha
Hee ¢aKTOpoB

A.B. TuxoHos, 0.A. EdumoBa, M.W. KpanueuH, 0.B. Manbiwesa, E.M. KoMaposa,
A.B. l'onybesa, A.A. lNenamnHa

HayuHo-uccnea0BaTesIbCKUN MHCTUTYT akyLuepcTBa, TMHeKonori 1 penpogyktonorumn uM. [.0. OtTa, CaHkT-Metepbypr, Poccus

AHHOTAUMA

AxTtyanbHocTb. V3yueHne LnnHbI TefoMep M BAMAIOWMX HA Hee (aKTOpOB B paHHeM 3MOpPUOHANbHOM pa3BUTUW YesloBEKa
MMeeT KaK (hyHAaMeHTanbHoe, TaK U MPUKIaAHoe 3HaYeHue.

Lenb — cpaBHuTENbHAsA OLEHKA ANMHbI TEIOMEp B KOMMapTMeHTax b611acToumCT YenoBeKa, a TakKe aHan3 accoupaLmuu
AJMHbI TEIOMEP C Ka4YeCTBOM BNacToLMCT, HaJMYMEM Y HUX FEHETUYECKOro AucbanaHca U BO3pacToM NaLMEHTOK, OT KOTOPbIX
nonyyeHbl bnacToumcTsI.

Matepuanbl u MeTogpl. VccnegosaHue npoeefieHo Ha obpasuiax TPOh3IKTOLEPMbI M BHYTPEHHE! KNETOYHOM Macchl 41 bra-
CTOLMCTbI YeNOBeKa, Y 26 M3 KOTOpbIX Obii BbISBIEH FeHETMYECKUA AucbanaHc npu MpoBeAEHWM MpEeMMMIAaHTaLMOHHOM0
reHeTUYecKOro TeCTUpOBaHWA M BepuduKauuM ero pesynbTaToB. V13 06pa3LoB roTOBUAM MMKPOCKOMMYECKWE Npenapartbl.
TenoMepbl BbISIBNANM B MHTEpda3HbIX AApax METOA0M KONIMYECTBEHHOW (hiyopecLieHTHo! rmbpuamsaumm in situ (quantitative
fluorescence in situ hybridization, Q-FISH).

Pesynbtatbl. B TpodakToAepMe TenoMepbl 0Kasanuch AJIMHHEE, YeM BO BHYTPEHHEN KNETOYHOW Macce, Npu 3TOM JJIMHa Te-
nomep B 06oMx KoMNapTMeHTax BapbupoBana oT bnactoumctsl K 6nactouncre. [lnvHa TenoMep He pasnuyanack Mexgay bna-
CTOLMCTaMM C reHeTUYecKuM aucbanaHcoM u 6e3 TaKoBOro Kak B TPO(IKTOAEPMe, Tak M BO BHYTPEHHEW KIETOUHOW Macce.
OTMeueHa TeHOEHUMS K YMEHbLUEHMIO [JIMHbI TeloMep B KOMNapTMeHTax bnacToumucT ¢ yBenmyeHneM Bo3pacta NaLMeHToK,
OT KOTOPbIX MOJTyYeHbl BAACTOLMCTLI, 0AHAKO CTAaTUCTUYECKM LOCTOBEPHOM KOPPENALMM He yCTaHOBNeHo. [uHa Tenomep
BO BHYTPEHHEl KNETOYHOM Macce, Ho He B TPOd3aKTOAepMe 61acToUMCT accoLMMpoBaHa € UX KaYecTBOM Ha OCHOBAHUM OLLEH-
Ku no [apaHepy: Ans bnacToumcT cpefHero KayecTBa XxapaKTepHbl bonee AsMHHbIE TENOMepbl, YeM s 61acTOLMCT BbICOKO-
ro KayecTsa.

BeiBogpl. [InnHHbIE Tenomepbl B TPoh3aKToLepMe MOTYT BbiTb HE06X0AMMBI AN UMMAHTALMK M JaNbHENLEN MiaLeHTaLmm.
[lnuHy TenoMep MOXHO paccMaTpuBaTh Kak 0AMH M3 MoauduKkaTopoB addeKTa aHOManmin KapuoTuna U Spyrux HeraTuBHbIX
(aKTopoB: HacneLoBaHWe 3MOPMOHOM AJIMHHBIX TeNOMep, N0 BCEN BULMMOCTY, AAET eMy NPeUMyLLeCTBO B Pa3BUTUM Aae
NP1 HaNMuMM reHeTUYeckoro aucbanaHca uam Mopdonoruyeckux HapyLieHuid. Mpyu 3TOM UMNNaHTaumus SBNSETCA BaXKHbIM
NepUOLOM HEraTUBHOM CeNleKLMM IMOPUOHOB C «HEYAaYHbIMU» COYETAHUAMM [JIMHbI TeIOMep, KapuoTina u Mopdonorum.

KnioueBbie cnoBa: onvHa Tenomep; BnacToumucTa YenoBeKa; aHeynionauns; MaTepVIHCKMﬁ BO3pacT; TpOd)E)KTO,U,epMa;
BHYTPEHHAA K/1IeTOYHaA Macca; BcnoMorartesibHble PenpooyKTUBHbIE TEXHOJIOUMN.
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BACKGROUND

During the preimplantation period, the successful em-
bryogenesis is predetermined by several key events: first
cleavages and establishment of cell contacts, genome-
wide epigenetic reprogramming and chromatin remodel-
ing, activation of the embryonic genome, and cell lin-
eage development. The preimplantation stage culminates
with the blastocyst formation, which consists of two cell
compartments: the trophectoderm (TE) and the inner cell
mass (ICM).

The intense division of embryonic cells, which is es-
sential for the development of a blastocyst capable of
implantation and further formation of all types of cells
and tissues of the body, requires the maintenance of a
certain telomere length. Telomeres are nucleoprotein
structures consisting of a variable number of tandem
hexanucleotide repeats, shelterin complex proteins, and
telomeric ribonucleic acid (RNA) [1, 2]. Telomeres located
at the ends of linear chromosomes protect them from
endonuclease activity, non-homologous recombination,
and end fusions [3].

Telomeres inevitably shorten with each cell division
due to the phenomenon of DNA terminal underreplica-
tion [4]. Unprogrammed telomere shortening may occur
under the negative influence of external factors [5-7].
Critical telomere shortening leads to cell death [8].
Maintenance and extension of telomere length is pos-
sible through programmed and well-orchestrated action
of telomerase [9] and/or alternative telomere lengthen-
ing mechanisms based on homologous recombination of
telomeric sequences [10]. Long telomeres are associated
with increased longevity [11, 12], a reduced risk of some
cancers [13-15], and high in vitro fertilization (IVF) ef-
ficiency [16, 17].

Telomeres are critical in cell viability, and the proper
regulation of their length during cleavages is a prerequi-
site for normal embryonic development. Furthermore, the
establishment of a certain telomere length in the blasto-
cyst compartments during differentiation of blastomeres
into the TE and ICM and the preparation of the blasto-
cyst for implantation and active growth is obviously an
important stage. However, the paucity of data regarding
telomere length in human blastocysts is primarily attrib-
utable to the challenges in obtaining research material
and methodological difficulties in the analysis of pauci-
cellular samples.

The study aimed to compare the telomere length
in the compartments of human blastocysts and ana-
lyze the telomere length association with the qual-
ity of blastocysts, genetic imbalance, and the maternal
age.
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MATERIALS AND METHODS
Study Materials

The study used human blastocysts from 22 married
couples referred to infertility treatment at the D. 0. Ott
Research Institute of Obstetrics, Gynecology, and Re-
productology. Controlled ovarian hyperstimulation was
performed using recombinant and/or urinary gonadotro-
pins according to the previously described protocol [18].
In vitro fertilization and embryo culturing to the blas-
tocyst stage were performed under standard protocols
[19, 20]. Blastomere or TE biopsies were performed for
preimplantation genetic testing (PGT) of embryos for an-
euploidies or structural rearrangements, depending on the
medical recommendation for a particular couple. Blas-
tocysts were cryopreserved and biopsy specimens were
subjected to PGT by fluorescence in situ hybridization
(FISH), array comparative genomic hybridization (aCGH),
or next-generation sequencing (NGS). The study was per-
formed on the blastocysts with PGT-detected genetic im-
balance and blastocysts without genetic imbalance that
were not cryopreserved due to the patient’s refusal.

The patients provided the informed written consent
for the use of their blastocysts. The study was approved
by the Ethics Committee of the D.0. Ott Research Institute
of Obstetrics, Gynecology, and Reproductology, Protocol
No. 120 dated July 21, 2022.

Microscopic Preparations of TE and ICM Cells from
Human Blastocysts

Cryopreserved blastocysts were thawed in the Kitaza-
to thawing medium (Japan) according to the manufac-
turer’s guidelines. Then, blastocysts were placed in G-TL
culture medium (10145, Vitrolife, Sweden) for 12-16 h
(5% 0,, 6% CO,). The Gardner scale was used to assess
the quality of the blastocysts [21]. The zona pellucida
was removed and blastocysts were separated into the TE
and ICM using an Octax laser (Vitrolife GmbH, Germany).
The obtained TE and ICM samples were fixed on slides
using the standard protocol with modifications, which had
been used repeatedly in previous studies [20, 22, 23].

Fluorescence In Situ Hybridization

FISH with probes (Vysis, Abbott Molecular, USA) spe-
cific for the chromosomal loci where the imbalance was
detected during PGT was performed on the interphase
nuclei of the TE and ICM to confirm the genetic imbalance
in the blastocysts. The PGT verification algorithm was
described in detail in a previous study [24].

FISH with telomeric probes (K532611-8, DAKO, Den-
mark) was performed to detect telomeric regions on
blastocyst interphase nuclei preparations. All hybridiza-
tion steps were performed under the protocol recom-
mended by the manufacturer, with minor modifications
as previously described [20].
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After digital imaging of blastocyst interphase nu-
clei with hybridization signals to telomeric chromo-
somal sequences, the preparations were used to de-
tect the 21922.13-922.2 locus (a reference site for
measuring telomeric signals) by FISH using a Vysis LSI
21 DNA probe (Abbott Molecular, USA). All hybridization
steps were performed according to the manufacturer’s
guidelines with the modifications described previously
(25, 26].

Digital Imaging and Measurement of Fluorescence
Intensity of Telomeric and LSI 21 Hybridization
Signals

Digital images of interphase nuclei with hybridization
signals were captured using a Leica DM2500 microscope
(Leica Microsystems CMS GmbH, Germany) equipped with
a Leica DFC345 FX camera and Leica Application Suite V3
software. All digital images were acquired with the same
settings: an exposure time of 1.3 s, a gain setting of x1,
and a gamma setting of 2.0.

The intensity of fluorescent signals for telomeric re-
gions and the 21922.13-q22.2 locus was assessed us-
ing Image J 1.52n software, which allows measuring the
average brightness level in a manually selected region of
the photographic image.

Statistical Analysis

Statistical analysis was performed using GraphPad
Prism software, version 6.01, with the D’Agostino-Pear-
son test for normality, the Wilcoxon T test for pair-wise
comparison of non-parametric variables, the Mann-Whit-
ney U test for comparison of non-parametric variables,
and the Spearman’s non-parametric test for correlation
coefficients.

Telomeres
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RESULTS

Telomere length differs between the compartments
of human blastocysts

The quantitative FISH (Q-FISH) method using telo-
meric probes (K532611-8, DAKO, Denmark) on fixed
interphase nuclei of the TE and ICM was used to mea-
sure the telomere length in the compartments of human
blastocysts (Fig. 1). The Q-FISH method is widely used
to measure the telomere length in the cells fixed at both
metaphase [20, 27, 28] or interphase stage [28]. The ad-
vantage of this approach over molecular genetic methods
is the ability to accurately determine the telomere length
in individual cells of paucicellular samples.

When metaphase or interphase chromosomes are
fixed on a slide, the degree of chromatin condensation
may vary both among the cells and within a cell among
different chromosomes. To reduce the effect of chroma-
tin condensation on the brightness and size of the telo-
meric fluorescence signal, relative but not the absolute
telomere length was calculated. For this purpose, we
calculated a ratio of the fluorescence intensity of the
hybridization signal to telomeric regions to a reference
hybridization signal. The region of the long arm of chro-
mosome 21 22.13-q22.2 (LSI 21), which is character-
ized by low inter-individual variability, was chosen as the
reference site.

The relative telomere length was measured in
2-49 interphase TE nuclei and 2-31 interphase ICM nu-
clei in each blastocyst. In each interphase nucleus, the
fluorescence intensity of 16 hybridization signals to telo-
meric sites was measured using ImageJ 1.52n software.
The mean for each nucleus was then calculated. In the
same interphase nucleus, the fluorescence intensity of

20 ym

Telomeres

Fig. 1. Interphase nuclei from trophectoderm (a) and inner cell mass (b) of a human blastocyst after telomere detection by Q-FISH using

telomeric DNA probes (yellow) and staining with DAPI (blue)

Puc. 1. WHtepdasHble snpa TpodaKToaepMbl (@) M BHYTPEHHEN KIETOUHOM Macchl (b) BnacToumcTbl YesloBeKa Nocsie BbISIBNEHUS TeSIoMep
meTooM Q-FISH ¢ ucnonbsoBaHneM TenomepHbix [IHK-30H40B (KenTbii) 1 okpawwmsanus DAPI (cununi)
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Fig. 2. Mean relative telomere lengths in trophectoderm and inner cell mass of 41 human blastocysts
Puc. 2. CpenHne oTHOCUTENbHBIE [JTMHBI TeloMep B TPO(IKTOAEPME U BHYTPEHHEN KINeTOYHOM Macce 41 bnacToumcTbl YenoBeka

the hybridization signals of LSI 21 reference sites was
measured, and the mean was subsequently determined.
The relative telomere length in each interphase nucleus
was calculated by finding the ratio of the mean fluores-
cence intensity of telomeric regions to that of the ref-
erence regions. The mean relative telomere length was
then calculated for TE and ICM in each blastocyst. Con-
sequently, the calculation of relative telomere length
in the compartments of 41 blastocysts selected for the
analysis resulted in 41 values for TE and 41 values
for ICM.

The generalized D’Agostino—Pearson test showed
a normal distribution of relative telomere length in
the TE (p = 0.1745) and an abnormal distribution in
the ICM (p = 0.0011), which determined the choice of
non-parametric criteria for comparing these samples.
The comparative analysis revealed that the relative telo-
mere length in the TE was significantly higher than that in
the ICM (Wilcoxon T criterion, p = 0.0256; Fig. 2).

The variability of telomere length in the TE and ICM
was analyzed, and the ratio between the relative telo-
mere length in the TE and that in the ICM was calculated
for each blastocyst. In most cases (25/41), the values
were expectedly >1, whereas in 16 out of 41 cases,
they were <1. After calculating the oscillation coeffi-
cient, which facilitates the assessment of the relative
telomere length deviation from the mean, the following
values were obtained: 185% for TE, 227% for ICM, and
220% for TE/ICM.

Therefore, in human blastocysts, telomeres are lon-
ger in the TE than in the ICM, with the telomere length in
both compartments exhibiting variability from blastocyst
to blastocyst.

DOl https://doi.org/10]

The telomere length in the TE and the ICM of
human blastocysts is not associated with karyotype
abnormalities

To analyze the possible contribution of karyotype pa-
thology to the variability of the telomere length in the TE
and ICM, blastocysts were divided into two groups ac-
cording to the genetic imbalance detected by PGT and its
verification by the FISH method in the TE and ICM nuclei:
blastocysts without genetic imbalance (n = 15) and blas-
tocysts with genetic imbalance (n = 26). A comparison
of the relative telomere length in the TE of genetically
balanced blastocysts with that of genetically imbalanced
blastocysts revealed no difference (p = 0.5931, Mann-
Whitney U criterion). Similarly, the relative telomere
length in the ICM of blastocysts with and without ge-
netic imbalance did not differ (p = 0.6116, Mann-Whitney
U criterion). A comparison of TE/ICM relative telomere
length ratios between blastocysts with and without ge-
netic imbalance also showed no difference (p = 0.8094,
Mann—Whitney U criterion).

Therefore, karyotype abnormalities are not associated
with changes in the telomere length in human blastocyst
compartments.

Patient age does not affect the telomere length in
blastocyst compartments

To assess the possible impact of maternal age on the
telomere length in blastocysts, we compared the telo-
mere lengths in the TE and ICM between two groups of
blastocysts: those obtained from the patients of younger
(<35 years of age; n = 20) and older (>35 years of age;
n =21) reproductive age. No difference was found be-
tween the blastocysts obtained from patients of younger

/816/ecogen630364
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Fig. 3. The scatter plots of the mean relative telomere lengths in trophectoderm (T3) (@) and in inner cell mass (BKM) (b) and maternal age.
The Spearman test showed no significant correlations (p =-0.1118, p = 0.4866 for TE and p = —0.2768, p = 0.0798 for ICM)
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Tpuyeckui Tect CnupMeHa)

and older reproductive age when comparing relative telo-
mere lengths in the TE (p = 0.3556), ICM (p = 0.0974),
and TE/ICM ratios (p = 0.7022) using the Mann-Whitney
U test.

The relative telomere length in the blastocyst com-
partments was compared with respect to the presence/
absence of genetic imbalance and the maternal age. In
the absence of genetic imbalance, no statistically sig-
nificant differences in relative telomere length were
observed between the blastocysts from younger (n = 5)
and older (n = 10) patients (p > 0.9999 for TE, p = 0.5122
for ICM, and p =0.4795 for TE/ICM, Mann-Whitney
U test). Genetically imbalanced blastocysts from patients
younger (n = 15) and older (n = 11) than 35 years showed
no difference in relative telomere when comparing TE
(p =0.3763), ICM (p =0.2131), and TE/ICM (p = 0.9806,
Mann-Whitney U test).

The correlation analysis showed no significant re-
lationship between maternal age and relative telomere
length in the TE (p=-0.1118, p =0.4866) and ICM
(p =-0.2768, p = 0.0798; Fig. 3).

Therefore, the telomere length in the compartments
of blastocysts with and without genetic imbalance was
not correlated with the maternal age.

The telomere length in the ICM of human blastocysts
is associated with their quality according to the
Gardner grading scale

The association between the telomere length in the
blastocyst compartments and the quality of these blas-
tocysts, as determined by the Gardner morphology score,
was tested by dividing the blastocysts into two groups: of
high quality and medium quality. In the Gardner grading
scale, the numbers from 1 to 6 are used to describe the
size of the blastocyst cavity. The blastocysts that initiated
hatching and already hatched and ready for implantation
blastocysts are marked with the numbers 5 and 6, re-
spectively. The first letter in the Gardner scale indicates

DOl https://doiorg/10.17816/ecogenb30364

the ICM quality, whereas the second letter indicates the
TE quality. In this scale, A is the highest quality of the
quantitative and qualitative cellular compartment com-
position, and C is the lowest quality, indicating degen-
erative cell processes [21]. The high-quality group com-
prised 11 blastocysts that received grades 6AA and 5AA.
The medium-quality group encompassed 30 additional
blastocysts, which received grades 5AB, 5BA, and lower
grades, reaching as low as 3BB and 2AA. A comparison
of relative telomere length in TE revealed no significant
differences between high- and medium-quality blasto-
cysts (p = 0.3075, Mann-Whitney U test). However, telo-
meres in the ICM were found to be longer in medium-
quality blastocysts compared to high-quality blastocysts
(p = 0.0101, Mann-Whitney U test; Fig. 4).

Consequently, the telomere length of blastocysts in
the ICM, but not in the TE, is associated with their quality,
as measured by the Gardner grading scale. Specifically,
blastocysts exhibiting average quality are characterized
by longer telomeres in comparison with those of high
quality.

DISCUSSION

Despite the fact that telomeres and the mechanisms
of their length regulation have been studied for several
decades, many questions regarding programmed and
unprogrammed changes in telomere length during hu-
man ontogenesis remain unclear. This is particularly true
for the earliest stages of development, the preimplan-
tation period, when research material is most difficult
to access. The introduction of assisted reproduction into
medical practice provided a unique opportunity to study
human embryos in vitro. This study compared the telo-
mere length in the TE and ICM of human blastocysts and
evaluated the possible association of factors such as
blastocyst quality, genetic imbalance in the blastocysts,
and maternal age with telomere length.
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Fig. 4. The comparisons of mean relative telomere lengths between blastocysts of high and medium quality. Telomere lengths do not differ between
trophectoderms (a). Telomeres in inner cell mass (b) are longer in medium quality blastocysts compared to telomeres of high quality blastocysts
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nnyaetcsa B Tpod3aKToLepMe (a), 0fHAKO BO BHYTPEHHE! KIETOYHOM
y BN1acToOLMCT BbICOKOr0 KayecTBa

The most significant and novel finding in the study is
the difference in the telomere length between compart-
ments in a human blastocyst: telomeres were longer in
TE than in IMC. In studies by other authors, the telomere
length in blastocyst compartments was only compared
in model objects. For example, the telomeres in mouse
blastocysts were shown to be longer in the ICM, whereas
in bovine blastocysts, they were longer in the TE [29, 30].
Thus, the telomere length in the blastocyst compartments
is a species-specific feature.

The finding that the telomeres in the TE of human
blastocysts are longer than in the ICM is especially in-
teresting due to the trophoblast importance for implan-
tation. The trophoblast plays a key role at this stage of
development, when an embryo is just starting to form.
Subsequently, the trophoblast forms the extraembryonic
tissues, which provide many functions necessary for in-
trauterine development. A notable feature of extraembry-
onic tissues is their accelerated growth rate, evidenced
by the mitotic index of chorionic cytotrophoblast, which is
comparable to that observed in some cancers [31]. How-
ever, the lifespan of extraembryonic tissues is short and
limited to the intrauterine development. The hiological
significance of long telomeres in the TE of human blas-
tocysts is probably related to the intensive cell divisions
that facilitate the rapid growth of extraembryonic tissues.
The reserve of telomere length formed during cleavages
due to the alternative telomere lengthening (ALT) [32] and
telomerase activity [33] reduces the need for TE cells in
the active mechanisms for telomere lengthening through-
out the life period of extraembryonic tissues. In fact,
there is no direct evidence of ALT mechanism activity in
extraembryonic tissues [34]. Another indirect evidence is
the physiological decrease of telomerase activity in the
placenta during pregnancy [35-37] and its abnormal in-
crease in trophoblastic disorders [36, 38].

In embryogenesis, telomere length is associated with
such factors as maternal age and embryonic karyotype
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abnormalities. Studies of the relationship between karyo-
type and telomere length in human preimplantation em-
bryos are still limited and mainly focused on the develop-
ment of applied technologies. In addition, their results are
contradictory. For example, oocytes with short telomeres
were shown to be more prone to meiotic errors result-
ing in aneuploidies. Therefore, the authors proposed
to consider the telomere length in oocytes as a crite-
rion for their selection to achieve greater IVF effective-
ness [39]. Furthermore, the authors observed a shorter
telomere length in the aneuploid embryos exclusively
during cleavages, but not at the blastocyst stage [39].
Mosaic day-4 embryos with developmental delay were
found to have shorter telomeres in the aneuploid cells
than in the euploid cells [40]. Conversely, a recent study
demonstrated that aneuploid blastocysts exhibited lon-
ger telomeres compared with euploid blastocysts [41].
The present study demonstrates that telomere length
is equivalent when comparing both TE and ICM blasto-
cysts with and without genetic imbalance. Notably, the
study used a cell-by-cell analysis to assess telomere
length, considering the division of the blastocyst into
compartments, a methodological approach that differs
slightly from the studies by other authors. Our findings
are consistent with those of a previous study that used
a cell-by-cell analysis of polar bodies of oocytes and
blastomeres of day-3 cleaving embryos. This earlier
study demonstrated that telomere length is not associ-
ated with aneuploidy [42]. However, given the conflicting
data regarding the association between telomere length
and the presence of karyotype abnormalities in human
blastocysts, further research is required.

The extent to which maternal age affects the telo-
mere length in embryos remains unclear. Previous stu-
dies identified a tendency toward telomere shortening in
the embryos from women of advanced reproductive age
and women with a history of recurrent miscarriage. How-
ever, no correlation was found between a telomere length
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and the ability of embryos to develop to day 5 [40]. Fur-
thermore, an analysis of human triploid zygotes showed
no correlation between pronuclear telomere length and
parental age [20]. The absence of correlation between
telomere length and maternal age was demonstrated in
a study performed on polar bodies of oocytes and blas-
tomeres of day-3 embryos [42], which is consistent with
our results obtained for TE and ICM of human blastocysts.
However, despite the absence of a statistically significant
correlation between the telomere length in the blastocyst
compartments and the maternal age, a trend toward telo-
mere shortening in blastocysts with increasing maternal
age, more pronounced for ICM, was observed.

Apparently, most studies on the relationship between
maternal age and aneuploidy and telomere length in hu-
man preimplantation embryos are somehow related to
the telomere theory of reproductive aging [43, 44]. How-
ever, the accumulating data that do not support this con-
cept suggest a slightly different biological role of telo-
meres. A telomere length may act as a possible cause of
aneuploidy, especially in the older female reproductive
age, as well as one of the effect modifiers of karyotypic
abnormalities and other negative factors. In other words,
if an embryo has inherited longer telomeres, even in the
presence of a genetic imbalance, it will have an advan-
tage over an embryo with shorter telomeres at critical
stages of development. Presumably, an important stage
of negative embryo selection is implantation, which can
be successfully passed by blastocysts with certain com-
binations of characteristics, including telomere length,
karyotype, and morphology. The inheritance of a particu-
lar telomere length by an embryo, in turn, is predeter-
mined both by the length of telomeres in the parental
gametes and by exogenous and endogenous effects dur-
ing the periconceptional period. Moreover, a transgenera-
tional effect cannot be excluded [45].

Several facts support our hypothesis that telomere
length may serve as a modifier of the negative effects,
with a critical stage of negative selection during implan-
tation. First, a high heterogeneity of telomere length in
cleaving embryos was observed in this and other studies
[39, 40, 42, 46]. Second, the present study showed that
the telomeres in the ICM of low-quality blastocysts are
longer than those in high-quality blastocysts. This sug-
gests that embryos with longer telomeres can form a
blastocyst despite reduced quantitative and qualitative
cellular characteristics. Finally, our previous study on
first-trimester chorionic cytotrophoblasts revealed longer
telomeres in developing fetuses with abnormal karyo-
type compared to arrested fetuses with abnormal karyo-
types and developing fetuses with normal karyotype [47].
These findings let us conclude that the inheritance of
long telomeres may contribute to the development of
an embryo with an abnormal karyotype. Furthermore,
the combination of short telomeres and chromosomal
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abnormalities, even those compatible with life, leads to
early miscarriage. These assumptions are consistent with
the studies that found short telomeres in aneuploid ar-
rested embryos [48] and longer telomeres in newborns
with trisomy 21 compared to newborns with normal
karyotype [49, 50]. In addition, telomerase activation and
subsequent telomere elongation are known to occur in
the postnatal period as a means of adaptation to various
stresses [51, 52]. This indirectly supports a possible role
of telomere length as a modifier of negative factors in
embryogenesis.

CONCLUSION

Therefore, the telomeres in the TE cells of human
blastocysts are longer than in the ICM, which is prob-
ably related to the role of trophoblast in implantation
and further rapid formation of extraembryonic structures.
The high inter-individual variability of telomere length, its
lack of correlation with genetic imbalance in blastocysts
and with maternal age, as well as longer telomeres in the
ICM of medium-quality blastocysts compared with those
of high quality, indicate that telomere length may serve
as one of the effect modifiers of karyotype abnormalities
and other negative factors.
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